
INTRODUCTION

Stroke is a cerebrovascular disease that causes death and disabil-
ity worldwide. It affects the arteries leading to and within the brain, 
and blood-brain barrier (BBB) disruption following ischemic 
stroke can result in severe vasogenic edema formation and hemor-
rhagic transformation. The BBB does not function independently 

but as a module within the greater context of the multicellular 
neurovascular unit (NVU) [1]. The NVU comprises various 
vascular cells (pericytes, smooth muscle cells, endothelial cells), 
glial cells (astrocytes, microglia, oligodendrocytes), and neurons 
[2]. Regeneration of NVU components serves as a reconstructive 
mechanism in the neuropathology of brain diseases.

Pericytes are known to maintain the BBB in the brain and have 
diverse functions, especially during hypoxia; they rapidly change 
their anatomical morphology and function in sync with endothe-
lial cells [3]. In response to ischemia, pericytes produce reactive 
oxygen species (ROS) since they are sensitive to low concentra-
tions of ROS [4]. In hypoxic conditions, pericyte detachment 
increases instability in patients with arteriovenous malformation 
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[5]. In contrast, migration of pericytes could serve as a protective 
mechanism to prevent death during injury [6]. It has been sug-
gested that pericytes acquire the ability to differentiate into neuro-
nal, microglial, and vascular cells after conditions such as ischemic 
diseases and hypoxia [7]. 

Pericytes may express a variety of factors in response to ischemia 
to protect adjacent cells, including neurons and other NVU com-
ponents [4]. Among various factors, platelet-derived growth fac-
tor B (PDGF-B), expressed by endothelial cells, binds to platelet-
derived growth factor receptor β (PDGFRβ) on pericytes and 
induces pericyte proliferation and survival. PDGF-B has been 
shown to significantly increase the expression of nerve growth fac-
tor and neurotrophin-3 (NT- 3) through Akt in pericytes [8]. Once 
PDGF-B binds to its receptor, receptor dimerization induces sev-
eral signaling pathways that have been associated with migration, 
proliferation, and survival [9], but the underlying mechanisms 
remain poorly understood.

Neuroglobin (Ngb) is an endogenous neuroprotective molecule 
that is expressed predominantly in the brain. It is induced by 
neuronal hypoxia and cerebral ischemia, and it protects against 
hypoxic or ischemic neuronal injury [10]. Ngb enhances cell vi-
ability under hypoxia and various types of oxidative stress in 
transgenic systems [11]. It is thought to transport oxygen across 
the BBB and/or interfere with the intrinsic pathway of apoptosis 
in mitochondria [12]. A newly discovered function of Ngb is that 
it promotes neurogenesis in mice after stroke [13]. Neurogenesis, 
which is the formation of new neurons by neural stem/progeni-
tor cells (NSPCs), occurs throughout life as well as in pathological 
conditions of the brain [14]. Reports indicate that Ngb may affect 
neurons as well as pericytes, which have developmental (differen-
tiation) potential in the BBB. 

Since pericytes play important roles under physiological condi-
tions and mediate vital pathological processes in ischemic stroke, 
there is an upsurge of interest in developing therapeutic strategies 
for ischemic stroke targeting pericytes. 

Considering emerging evidence that the role of Ngb in neuro-
genesis promotes NSPC differentiation into various brain cells, 
we expected Ngb to exist in neurons and other brain cell types. In 
the present study, we investigated whether Ngb exists in vascular 
lineage cells, pericytes in NVU, and the role of NVU and BBB in-
tegrity after transient middle cerebral artery occlusion (tMCAO) 
in mice. 

MATERIALS AND METHODS

All animal experiments were performed in accordance with 
the Association for Assessment and Accreditation of Laboratory 

Animal Care of Sookmyung Women’s University. After the experi-
ments, all animals were euthanized with an overdose of anesthetic 
to minimize pain or discomfort. 

Animals

Male C57BL/6 mice (21~25 g, 10~12 weeks) were used in this 
experiment (Orient, Seongnam, South Korea). The animals were 
housed in a purpose-built facility with a controlled environment 
and maintained in an isolator set to maintain temperature and 
relative humidity at 24±2℃ and 50%, respectively. Artificial light-
ing provided a 24 h cycle of 12 h light:12 h dark. Sterile water and 
food were also supplied.

Transient middle cerebral artery occlusion (tMCAO)

Female mice were subjected to tMCAO and reperfusion for 45 
min. Transient focal cerebral ischemia was induced in the mice 
by occlusion of the left MCA using a 5-0 suture (monofilament 
nylon). Briefly, the left common carotid artery was exposed, and 
the external carotid artery (ECA) was dissected distally. The in-
ternal carotid artery (ICA) was isolated, and a blunted suture was 
introduced into the ECA lumen and then gently advanced into the 
ICA lumen to block MCA blood flow. After 45 min of tMCAO, ce-
rebral blood flow was restored by suture withdrawal. The incision 
was closed, and the mice were allowed to recover on a heating pad.

Cresyl violet staining 

After MCAO, the brains were excised, frozen for 1 h at -80℃, 
and serially cryosectioned. Cresyl violet staining is generally used 
to quantify experimental brain infarcts. The sections were rehy-
drated using a sequence of ethanol baths (50, 70, 80, 90, and 100%) 
and immersed in distilled water for 2 min and incubated for 10 
min in a cresyl violet bath. The next sections were rinsed twice 
with differentiation solution. They were then dehydrated through 
a sequence of ethanol baths (100, 90, 80, 70, and 50%). The sections 
were finally cleaned in xylene for 5 min and mounted with cover-
slips using Permount (Fair Lawn, NJ, USA).

Evaluation of BBB permeability

A 2% solution of Evans blue in normal saline (0.2 ml/mouse) was 
injected intravenously 24 h after tMCAO. The stain was allowed to 
circulate for 1 h. In sham-operated animals, intravenous injection 
of Evans blue was also performed. The stain was allowed to circu-
late for 1 h. The brains were collected and dehydrated using 30% 
sucrose. Immunohistochemistry was performed on 30 µm sec-
tions. Fluorescence signals were detected using a Zeiss epifluores-
cence microscope at excitation/emission wavelengths of 630/657 
nm.
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Western blot analysis

Whole proteins were extracted from cells or tissues. The con-
centration was determined by BCA assay, and 30 μg of the protein 
was loaded on 10%~12% SDS-PAGE gel. Electrophoresis was 
performed for approximately 2 h at 80 V. Then, the protein was 
transferred to the PVDF membrane, and the primary antibody 
was incubated overnight at 4℃. Primary antibodies against Ngb 
were diluted to 1:1000 (RD181043050, BioVendor, Asheville, NC, 
USA). The secondary antibody was incubated for 1 h at room tem-
perature. The ECL reagent was used to detect target proteins, while 
β-actin was used to normalize the experimental error.

Immunohistochemistry

The brains were perfused with 4% paraformaldehyde in PBS (pH 
7.4) and frozen. Immunohistochemistry was performed on 30 µm 
sections using rabbit polyclonal anti-mouse Ngb (Sigma 1:100), 
mouse monoclonal anti-NeuN (Chemicon; 1:200), rat monoclo-
nal anti-PDGFRβ (Abcam; 1:100), mouse monoclonal anti-αSMA 
(Abcam; 1:100), mouse monoclonal anti-glial fibrillary acidic 
protein (Sigma; 1:200), as primary antibodies, and Alexa Fluor 
488-conjugated goat anti-rat IgG (Abcam; 1:500), Alexa Fluor 
594-conjugated goat anti-mouse IgG (Invitrogen; 1:500), and Al-
exa Fluor 546-conjugated goat anti-rabbit IgG (Invitrogen; 1:500) 
as secondary antibodies. Controls included omitting primary or 
secondary antibodies. Fluorescence signals were detected using a 
Zeiss LSM 800 confocal laser scanning microscope at excitation/
emission wavelengths of 495/519 (Alexa Fluor 488), 556/573 (Al-
exa Fluor 546), 590/617 (Alexa Fluor 594), and 358/461 (DAPI) 
nm. In order to quantify Ngb expressed around blood vessels, 
we measured Ngb signals within 2 mm of all blood vessels using 
512×512-pixel figures by image J.

Fluorescence-activated cell sorting 

The brain tissue was minced and digested with 5 ml collage-
nase/dispase (2 mg/ml) in HBSS for 30 min in a 37℃ water bath, 
triturated with a 14G needle 20 times, and filtered with 40 μm 
cell strainer. Percoll (22%) was used to remove debris and myelin. 
After centrifugation at 700 G for 10 min, the supernatant was 
discarded. The cell pellet was resuspended in staining buffer and 
stained with PE anti-CD13 (1:20) and anti-Ngb (1:50) antibodies. 
APC anti-rabbit IgG antibody was used as the secondary antibody 
to label the Ngb antibody. The labeled cells were detected using 
fluorescence-activated cell sorting (FACS) Canto (BD Biosciences, 
San Jose, CA, USA).

Statistical analysis

Data are expressed as the mean±standard deviation (SD). Sta-

tistical analysis was performed using GraphPad Prism software 
(GraphPad, San Diego, CA, USA). Comparisons between two 
groups were performed by unpaired t-test. Comparisons among 
multiple groups were performed using two-way ANOVA with 
Dunnett’s multiple comparison test. Student’s t-test was used to 
compare the mean values of two independent groups for each 
variable. Statistical significance was set at *p<0.05, **p<0.01, and 
***p<0.001.

RESULTS 

Distribution Ngb in NVU

Ngb is the globin of neurons, and its distribution and role in 
neurons and glia have been studied [15,16]. However, the func-
tions of Ngb in other brain cells, including the NVU, have not been 
studied. In this study, we found that Ngb is expressed not only in 
neurons and astrocytes, but also in other brain cells. IHC fluores-
cence staining of brain tissue showed that Ngb (red) was present in 
various cell types (green) constituting the BBB, including neurons, 
astrocytes, endothelial cells, and PDGFRβ-positive pericytes (Fig. 
1A). Moreover, immunoblotting of the isolated cerebral blood 
vessels also showed the expression of Ngb, although it was 67% 
less than that in the cerebral cortex (Fig. 1B). It was confirmed that 
Ngb is distributed not only in neurons and astrocytes, but also in 
the NVU consisting of endothelial cells and pericytes in the nor-
mal brain. Next, we investigated the distribution and role of Ngb in 
cerebral ischemia.

Differential levels of Ngb in the core and penumbra after 

tMCAO in mice

To observe how Ngb changes in brains with oxidative hypoxic 
damage, we used a mouse model of stroke with tMCAO. After 
stroke, cresyl violet was used to identify the infarct area, and the 
change in Ngb expression near the infarct area was analyzed (Fig. 
2A). Ischemic injury due to stroke is comprised of the core and 
penumbra. The core is the area of severe ischemia and necrosis of 
neuronal glial cells, while the penumbra is a rim of mild to moder-
ately ischemic tissue that may remain viable for several hours. The 
core and penumbra were classified based on cresyl violet staining 
(Fig. 2A). To observe the correlation between the levels and distri-
butions of Ngb in the cranial nerve vascular system, Ngb (red) was 
double stained along with the vascular marker CD31 (green) (Fig. 
2B). In the sham group, the expression of Ngb was near the blood 
vessel marker, CD31. In the tMCAO group, Ngb was decreased 
in the core of the cerebral infarct compared with the sham group, 
but levels of Ngb increased in the penumbra (peripheral tissue 
of the core). Moreover, after stroke, the Ngb around blood vessels 
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was detached from the NVU in the core and was observed to be 
increased in neurons [17]. In the penumbra of tMCAO, although 
less than that in the sham group, there was a larger amount of Ngb 
around the blood vessel compared with that in the core (Fig. 2B). 
Quantitative analysis showed that Ngb existed around the blood 
vessel, and it was reduced to 20% and 37% in the core and penum-
bra, respectively, compared with the sham group (Fig. 2C).

Different distribution patterns of Ngb levels depending on 

the subtypes of pericytes (PDGFRβ or αSMA) after stroke

Since Ngb was detected in and around endothelial cells, we 
analyzed the distribution of Ngb in various types of pericytes. 
Pericytes are multifunctional mural cells around endothelial 
cells. There are many different types of pericytes. Platelet-derived 
growth factor receptor β (PDGFRβ) [18], alanyl aminopeptidase 
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(CD13) [19], proteoglycan neuron-glial antigen 2 (NG2) [20], and 
desmin [21] are markers often used to identify various types of 
pericytes, with the α smooth muscle actin (αSMA) being used to 
define a contractile sub-class of pericytes [22]. The expression of 
all these markers changes during growth and development and 
may be up- or downregulated under pathological conditions [9]. 
We mainly observed pericytes labeled with PDGFRβ or αSMA, 
which is a contractile sub-class of pericytes. In PDGFRβ, its ex-
pression pattern was similar to that of Ngb, which was decreased 
in the core and increased in the penumbra 24 h and 1 week after 
tMCAO (Fig. 3A). On the other hand, the expression of αSMA in-
creased in the core 24 h after tMCAO, which persisted in the core 
of the infarct by one week (Fig. 3A). These results indicate that the 
distribution of Ngb differs depending on the subtype of pericytes 
(Fig. 3B). Our results showed that the pattern of Ngb expression 
was similar to that of PDGFRβ-labeled pericytes (Fig. 3B), which 

implied an association of Ngb with PDGFR signal in the NVU 
after cerebral ischemia. To confirm the amount of pericytes ex-
pressing Ngb after tMCAO in the whole brain, the sham or isch-
emic brains were minced and homogenized, respectively. These 
were analyzed by immunostaining with Ngb (APC) and pericytes 
(CD13-PE) using FACS. The Ngb-expressing cells increased by 
5-fold from the ipsilateral side of the ischemic brain, compared 
with the sham brain (Fig. 3C). In the whole brain, the pericytes 
expressing Ngb were 0.25% in the sham group and 1.25% in the 
ischemic brain. After stroke, increased Ngb and PDGFRβ peri-
cytes were confirmed in the ischemic brain using IHC and FACS. 
Therefore, it is necessary to investigate the function of Ngb in the 
NVU during stroke.
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Reduced BBB leakage with Ngb-positive pericytes in the 

penumbra after tMCAO

In hypoxic states or stroke, some pericytes migrate away from 
the endothelial cells [3]. This movement of pericytes leads to BBB 
breakdown and tight junction disintegration [23]. Our results have 
shown that Ngb is expressed in pericytes around the blood vessels 
of the sham group but is reduced in the ischemic core after stroke. 

This indicates the possibility that the existence of Ngb in pericytes 
plays an important role in maintaining the function of the BBB af-
ter stroke. To test whether the distribution of Ngb was involved in 
BBB integrity, we measured the extent of BBB leakage in the core 
or penumbra, along with the amount of Ngb-positive pericytes 
after stroke. 

Evans blue (EB) was injected 24 h after tMCAO, leakage was 
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measured by fluorescence excitation/emission wavelength of 
630/657 nm, and we found increased BBB leakage on the ipsilat-
eral side of the brain of mice receiving tMCAO (Fig. 4A). Simul-
taneously, the level of Ngb was analyzed by IHC staining after EB 
injection. In the sham group, EB dye existed only inside vessels and 
Ngb was distributed around the blood vessel, which showed no 
BBB leakage (Fig. 4B). However, in the tMCAO group, EB leaked 
into the brain tissue around the blood vessels, and the Ngb level 
was reduced. In particular, there was a lot of leakage in the core of 
the infarct, and Ngb disappeared around the blood vessel (Fig. 4B). 

Quantifying leaked EB by Image J showed that the core and pen-
umbra leaked 4.3 and 2.6 times more, respectively, in the tMCAO 
group than in the sham group (Fig. 4C). These results showed that 
Ngb exists in the pericytes around blood vessels in the healthy 
brain and functions to maintain the BBB barrier. However, in oxi-
dative cerebral ischemia conditions, it was found that Ngb was de-
creased in the pericytes around the NVU, which is highly affected 
by BBB leakage.
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DISCUSSION

This study investigated the distribution and role of Ngb in peri-
cytes after tMCAO in mice. We found that Ngb was increased in 
the penumbra, which was colocalized with PDGFR-positive peri-
cytes. Interestingly, the presence of Ngb-positive pericytes reduced 
BBB leakage in the penumbra after cerebral ischemia. Ischemic 
stroke is primarily a consequence of cerebrovascular disease; 
therefore, manipulating the pericytes of the NVU is important for 
developing therapeutic strategies for stroke. In particular, pericytes 
are early responders to brain hypoxia, and they change from a 
quiescent flat shape into an amoeboid morphology after ischemia. 
In addition, pericytes may differentiate into other cell types and 
thus may be important for central nervous system renewal. They 
can differentiate into the basic components of the NVU, including 
vascular cells and glial cells [24]. 

First, we found that Ngb is expressed not only in neurons and 
astrocytes but also in pericytes and endothelial cells of the brain, 
implying a potential role of Ngb in NVU. Pericytes are multifunc-
tional mural cells that surround endothelial cells. Controlling the 
crosstalk between endothelial cells and pericytes in the NVU is es-
sential for the regeneration of neural cells and governs microvessel 
stability under tMCAO [25].

Ischemia induces PDGF-B expression by endothelial cells and 
PDGFRβ expression by pericytes. Activation of PDGFRβ by 
PDGF-B induces the phosphorylation of Akt in pericytes, result-
ing in an anti-apoptotic response and promotion of pericyte pro-
liferation [8]. On the other hand, αSMA is a contractile pericyte 
that constricts capillaries during and after ischemia, which causes 
the no-reflow phenomenon after stroke [26]. 

We found that Ngb colocalized with PDGFRβ-positive pericytes 
in the penumbra after tMCAO; however, it was decreased in the 
core region. On the other hand, αSMA expression increased in the 
core rather than in the penumbra 24 h after stroke and was not 
colocalized with Ngb. Our results indicate that the distribution 
and role of Ngb are different in the various subtypes of pericytes 
depending on the severity of damage, such as in the ischemic core 
or penumbra. In other words, in the penumbra, the interaction 
of Ngb with PDGFRβ signaling might contribute to protection 
against oxidative stress, but not with the αSMA signal. Recently, 
it was reported that αSMA-positive type-2 pericytes were related 
to BBB disruption in brain disorders [27]. Selective regulation of 
pericyte subtype associated with Ngb is necessary to generate nov-
el therapeutic approaches for protecting the BBB against oxidative 
brain damage.

Our results showed that stroke increased the expression of 
PDGFRβ signal in the penumbra, and Ngb may support the 

survival of pericytes, at least in part through its interaction with 
PDGFR β signals. Modulation of the Ngb level in pericytes might 
be promising for accomplishing NVU reconstruction during CNS 
regeneration and repair after stroke.

Pericytes detach from the basal lamina as early as 1 h after isch-
emic stroke [28], and detachment could lead to disruption of BBB 
integrity [29]. Therefore, the presence of pericytes in the NVU 
protects against BBB leakage. For example, reduced pericyte cover-
age in microvessels, which is a hallmark of diabetic retinopathy, 
induces decreased BBB stability and subsequent pathological 
changes [30]. 

We found increased BBB leakage on the ipsilateral core where 
Ngb-negative PDGFR was absent in the ischemic brain at 24 h 
after tMCAO. However, Ngb-positive PDGFRβ pericytes were 
present around the cerebral blood vessels in the penumbra after 
tMCAO and reduced BBB leakage. These findings suggest that the 
existence of Ngb-positive PDGFRβ pericytes in NVU is beneficial 
for maintaining BBB integrity after stroke. 

Direct transplantation of pericytes, medication treatment to pre-
serve pericyte function, and other possible therapeutic strategies 
are all possible new solutions for ischemic stroke. Several medi-
cines have been reported to preserve pericyte function after isch-
emic brain injury. For example, the widely used antiplatelet drug 
cilostazol has been shown to prevent the detachment of pericytes 
and astrocyte endfeet from microvessels in spontaneous hyperten-
sive rats with spontaneous cerebral infarcts. In reperfusion injury, 
oxidative stress and free radicals serve as the main toxic factors to 
pericytes. Edaravone, a free radical scavenger, promotes pericyte 
proliferation and increases the pericyte coverage of endothelial 
cells, which attenuates BBB destruction during reperfusion injury 
[31].

Pericytes are much more abundant than supportive cells in 
endothelial cells. These are important functional components of 
the BBB and NVU. They display significant alterations during 
ischemia and reperfusion and actively participate in brain injury, 
cell preservation, and brain repair [32]. Therefore, it is necessary 
to identify a factor that can increase the number of pericytes. Our 
findings suggest that Ngb is an endogenous neuroprotective fac-
tor that preserves the existence of pericytes. Strategies to modulate 
pericyte response via Ngb after ischemia and reperfusion may 
provide new therapies for ischemic stroke. We identified a few 
natural compounds that upregulated Ngb expression using a cell-
based screening system [33]. In future studies, we may use these 
Ngb-upregulating compounds, such as flavonoids, to treat stroke 
animals to induce Ngb-pericyte-mediated BBB protection. 

Our results indicate that Ngb plays a role in PDGFRβ signaling 
to reduce the number of cells in the penumbra after stroke. This 
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implies that Ngb may be involved in the protective mechanism of 
pericytes during reperfusion injury after stroke. Further research 
is necessary to elucidate the mechanism of action of Ngb in peri-
cytes. To demonstrate the Ngb-mediated neuroprotective mecha-
nism in the pericytes of NVU, BrdU experiments are needed in 
Ngb transgenic mice to provide direct evidence of Ngb-mediated 
preservation of pericytes in the brain over time. Moreover, the 
cellular function of Ngb in pericytes is needed to investigate the 
mechanism of Ngb in subcellular locations, either in the cyto-
plasm or the nucleus. Until now, the subcellular location of Ngb 
has been known to be in the mitochondria and cytoplasm, which 
inhibit apoptosis by interacting with cytochrome C. In this study, 
we observed that Ngb was found in the nucleus when pericytes 
were detached from blood vessels after ischemic stroke. The role of 
Ngb in the cytoplasm and nucleus is expected to be different, and 
further studies are needed. 

In the present study, we demonstrated for the first time that Ngb 
existed not only in neurons and astrocytes, but also in pericytes 
that form the NVU in the brain. In cerebral ischemia, a pattern ap-
pears in which Ngb is detached from the NVU and is very low in 
the ischemic core. However, the distribution of Ngb in PDGFRβ-
positive pericytes was high in the penumbra of the infarct and 
resulted in reduced BBB leakage. Future studies may use Ngb-up-
regulating compounds to treat animals in the acute phase of stroke 
to preserve pericyte-mediated BBB integrity. These investigations 
may spur the development of therapeutic strategies targeting the 
protection of the BBB for neurological disorders such as stroke 
and vascular dementia.
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