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Automated detection of mouse 
scratching behaviour using 
convolutional recurrent neural 
network
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Scratching is one of the most important behaviours in experimental animals because it can 
reflect itching and/or psychological stress. Here, we aimed to establish a novel method to detect 
scratching using deep neural network. Scratching was elicited by injecting a chemical pruritogen 
lysophosphatidic acid to the back of a mouse, and behaviour was recorded using a standard handy 
camera. Images showing differences between two consecutive frames in each video were generated, 
and each frame was manually labelled as showing scratching behaviour or not. Next, a convolutional 
recurrent neural network (CRNN), composed of sequential convolution, recurrent, and fully connected 
blocks, was constructed. The CRNN was trained using the manually labelled images and then 
evaluated for accuracy using a first-look dataset. Sensitivity and positive predictive rates reached 
81.6% and 87.9%, respectively. The predicted number and durations of scratching events correlated 
with those of the human observation. The trained CRNN could also successfully detect scratching 
in the hapten-induced atopic dermatitis mouse model (sensitivity, 94.8%; positive predictive rate, 
82.1%). In conclusion, we established a novel scratching detection method using CRNN and showed 
that it can be used to study disease models.

Since the behaviour of experimental animals reflects their mental, physical, and cognitive status, it is often 
assessed in various fields of research. Experimental animals exhibit many behaviours, and researchers focus on 
specific phenotypes according to their interests. For example, in experimental rodents, the basic condition is 
assessed by observing spontaneous locomotor  activity1, curiosity is assessed by observing rearing behaviours, 
and abdominal pain is assessed according to writhing  behaviour2,3.

Scratching is one of the most important behavioural traits. Physiological disorders, as well as mental stress 
induce an itching sensation that manifests as scratching behaviour in animals. Several methods exist for measur-
ing scratching, such as visual observation, acoustic detection, and induction current detection generated by the 
scratching  motion4–6. These methods are accurate and are widely used in research. However, visual observation 
is time-consuming and labour-intensive while the acoustic detection and induction current detection methods 
require specialized equipment and complex analytical software. Therefore, a novel automated method that can 
detect scratching using simple equipment is required.

The recent development of deep neural network (NN) technologies has had a remarkable impact on animal 
research. Convolutional neural network (CNN), which effectively extracts feature maps from images, can deliver 
outstanding performance in image classification  tasks7. Several studies have shown that CNN-based algorithms 
are able to predict an animal pose from images with very high  accuracy8–10. Currently, several algorithms for pose 
estimation, such as LEAP and DeepLabCut, are available. Recurrent neural network (RNN), which can process 
time-series data, has also attracted attention. Since RNN can accept temporal and sequential inputs, it is used in 
machine translation and speech  recognition11,12. Based on these findings, we hypothesized that a combination 
of CNN and RNN could be used to analyse movies, which are essentially a time-series integration of images.
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Here, we show that a convolutional recurrent neural network (CRNN) trained with a total of about three 
hours of video can successfully detect scratching in mice in first-look videos with a high degree of accuracy. We 
also show that our trained CRNN can be used to assess pathological murine models.

Results
Image pre-processing and integration. To induce typical scratching in mice, we intradermally admin-
istered a pruritogen, lysophosphatidic acid (LPA, 200 nmole/site/25 μL, 2 site/mouse) in the back of BALB/c 
mice (n = 9). We recorded their behaviour in a black arena using a handy camera and obtained 30 video files of 
about nine minutes each. The recorded videos contain background information unrelated to mouse movement, 
which increases the file size and also prevents efficient NN training. To eliminate the background and reduce the 
file size, we obtained differential images between two consecutive frames. Then, we cropped the images around 
the geometric centre of the mouse calculated as previously  reported13 and binarized it (Fig. 1a). We grouped an 
image at time t and images ten frames before and after time t (Fig. 1b). The set of combined images was defined 
as the “segment” at time t.

Segment labelling. We carefully observed the videos and categorized all frames into “scratching” and “not 
scratching” classes. All scratching frames were labelled “1” and the others were labelled “0”. Next, we annotated 
all segments by labelling a segment at time t as the value of the frame label at time t (Fig. 1b). Thus, we classified 
all segments into two classes: 1, scratching, and 0, not scratching. We then aimed to solve this binary classifica-
tion problem using a NN. We randomly split 30 video files into 20 and 10 files, which were then used as the 
training and test datasets, respectively (Supplementary Table S1).

CRNN training. We constructed a CRNN with three blocks: CNN, RNN, and fully connected (FC) blocks 
(Fig. 2a). All 21 images in a segment were separately input into the CNN block. Three convolutional layers and 
a max pooling layer reduced the size of the feature map. The output tensor of the CNN block was flattened and 
integrated in long short-term memory (LSTM) units in the RNN block. Finally, the FC blocks converged the 
feature and returned the final output as a decimal value between 0 and 1.

Scratching is a relatively less frequent behaviour compared with others like running, resting, rearing, and 
grooming. Indeed, scratch frames accounted for less than 2% of the total training dataset. To deal with such 
imbalanced data, we increased the ratio of the scratching segments in input (called as upsampling) as follows. We 
randomly selected 1500 segments from the total segments and 100 from the scratching segments in the training 
dataset. These 1600 segments were flipped and rotated at random for data augmentation and then input to CRNN 
at once (this input was defined as an epoch). As shown in Fig. 2b, losses for the training dataset continuously 
decreased over 900 epochs and then reached a plateau. Training was stopped after 1000 epochs.

Detailed performance evaluation of trained CRNN. We evaluated the performance of the trained 
CRNN using the training dataset. For one segment, the CRNN returned a decimal value between 0 and 1, which 
could be interpreted as the probability to scratch. As shown in Fig. 3a, we classified a segment as scratching when 
the output value was more than 0.5. For the training dataset, CRNN could correctly predict 97.8% of scratch 
segments (6866 in 7018) and 99.8% of non-scratch segments (669,095 in 670,212), which corresponded to sen-
sitivity and specificity, respectively (Table 1; Fig. 3b). The positive predictive rate was 86.0% (6866 in 7983), and 
the negative predictive rate was 99.9% (669,095 in 669,247).

We counted the predicted number of scratching events by trained CRNN in each movie file and compared it 
with that of the human observation (Obs). We defined the predicted number of scratching events (“Prediction 
count” in figures) as the number of a series of continuous scratching segment. As shown in Fig. 3d, the predicted 
number of scratching events was highly correlated with the Obs number of scratching events (r = 0.97). We also 
calculated the duration for each scratching event and found that the predicted duration correlated with the 
duration of the Obs (r = 0.99, Fig. 3e). These results clearly indicate that learning was successfully conducted.

We then evaluated the performance of CRNN for the test dataset (Table 2; Fig. 3c). The test dataset was not 
used for training, and mice in test dataset were also different from those in training dataset (Supplementary 
Table S1). For the test dataset, CRNN predicted 81.6% of scratch segments (1941 in 2379) and 99.9% of non-
scratch segments (337,515 in 337,781). The positive and negative predictive rates were 87.9% (1941 in 2207) and 
99.9% (337,515 in 337,953), respectively. The prediction count and duration were also significantly correlated 
with the Obs count and duration. (r = 0.98 and 0.85 respectively; Fig. 3f,g).

Detailed evaluation of errors. We examined the prediction results in detail and classified errors (i.e., false 
positive and false negative in Fig. 3b,c) into three types: (1) “boundary error,” when the CRNN prediction was 
generally good, but there was some discrepancy with the Obs regarding when scratching started and/or ended; 
(2) “false detection,” when the CRNN predicted a scratching event but the mouse did not scratch in reality; (3) 
“oversight,” when the CRNN predicted no scratching, but the mouse scratched in reality (Fig. 4a). In the training 
datasets, 85% of the total error segments was boundary error, 12% was false detection, and 3% was oversight 
(Fig. 4b). In the test datasets, 57% of the total error segments was boundary error, 3% was false detection, and 
39% was oversight (Fig. 4c). These results showed that most of false positives and false negatives were boundary 
errors which were probably caused from the difference in recognition between Obs and CRNN. On the contrary, 
further improvement may be possible by decreasing the number of false detection and/or oversight segments 
for CRNN training.

In addition, we analysed a scratching event that showed a large discrepancy between predicted and Obs 
scratch durations (Fig. 3g, indicated by the arrow). Figure 4d shows detailed predicted probability and Obs data. 
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Figure 1.  Image pre-processing and integration. (a) Video file was divided into the images of each frame. The 
absolute difference of each pixel between two continuous frames was calculated and cropped in a square shape 
(300 × 300 pixel) around the geometric centre of mouse. Images were then grey-scaled and binarized. (b) For 
segment at time t, the pre-processed images from t − 10 to t + 10 was collected and labelled with the value of 
frame label at time t. The figure shows segment at t − 1 (including images from t − 11 to t + 9, labelled as “0”), 
segment at t (including images from t − 10 to t + 10, labelled as “1”), and segment at t + 1 (including images from 
t − 9 to t + 11, labelled as “1”).
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It clearly shows that while prediction indicated four separate scratching behaviours, the human eye read this as 
continuous mouse scratching for about 110 s. This may be due to differences in accuracy between human and 
machine image recognition.

Differentiation from grooming. Grooming is a common behaviour that mice use to clean their skin 
and fur. Mice groom themselves by moving their hands along their body, a motion that sometimes resem-
bles scratching. In order to examine whether trained CRNN misclassifies grooming as scratching, we manually 
labelled grooming events and compared them with prediction using the test dataset (representative example was 
shown in Fig. 4e). There were 50,147 grooming segments in the test dataset. Among them, only 15 segments 
were classified as scratching segment by trained CRNN. The CRNN almost perfectly differentiates between 
scratching and grooming.

Application to the dinitrofluorobenzene (DNFB)-induced dermatitis model. Finally, we investi-
gated whether our trained CRNN can successfully detect scratching behaviour in a common pathological mouse 
model. We chose the DNFB-induced dermatitis mouse model; the major manifestation of dermatitis is scratch-
ing. BALB/c mice (n = 4, mouse J to M in Supplementary Table S1) were sensitized with DNFB (0.5%/25 μL, 
applied to ventral skin). Four days later, both ears of the mice were stimulated with DNFB (0.2%/20 μL), and 
their behaviour was recorded in grey cages for 60 min, beginning immediately after stimulation. As shown in 
Table 3 and Fig. 5a, CRNN successfully predicted 94.8% of the scratch segments (2792 in 2945) and 99.9% of the 
non-scratch segments (859,341 in 859,951). We also analysed error type and found that 76.3% of the total error 
segments was boundary error, 19.1% was false detection, and 4.6% was oversight (Fig. 5b). We finally compared 
scratching count and duration between prediction and Obs, and, as shown in Fig. 5c,d, there was an excellent 
correlation between Obs and prediction for scratching count and duration (r = 0.99 and 0.93, respectively). Thus, 
these results demonstrate that the CRNN can be applied to a common pathological mouse model.

Discussion
Assessing the behaviour of experimental animals is essential for understanding their physical, mental, and 
cognitive status. In the present study, we established a novel automated method that can identify scratching 
in recorded video files using CRNN and further show that it can be used to assess pathological models. It is 
important to note that our method only requires common equipment, and the program script was written in a 
freely available programming language.

Figure 2.  CRNN architecture and training. (a) The architecture of CRNN. The images in one segment was 
separately input into CNN block. The output was flattened and integrated in RNN block and in full connected 
block. The detailed shapes of output tensor from each layer were shown in Supplementary Table S4. CV 
convolution, MP maxpooling, LSTM long short-term memory, FC fully connected. (b) The change of loss value 
during training.
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Many studies have investigated itch sensation in experimental animals. However, they typically use direct 

Figure 3.  The result of CRNN training. (a) The example of CRNN output interpretation. A segment whose 
CRNN output was more than 0.5 was classified as scratching segment. (b) The number of true positive/negative 
segments and false positive/negative segments in the training dataset. (c) The number of true positive/negative 
segments and false positive/negative segments in the test dataset. (d) The comparison of scratching counts in 
each video file between prediction and observation in the training dataset. (e) The comparison of duration time 
of each scratching event between prediction and observation in the training dataset. (f) The comparison of 
scratching counts in each video file between prediction and observation in the test dataset. (g) The comparison 
of duration time of each scratching event between prediction and observation in the test dataset. Significantly 
deviated event was indicated as arrow (see Fig. 4d). The dotted lines indicate the line when prediction was equal 
to observation.

Table 1.  Confusion matrix for training dataset.

Observation

Prediction

TotalScratch Not scratch

Scratch 6866 152 7018

Not scratch 1117 669,095 670,212

Total 7983 669,247 677,230
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Table 2.  Confusion matrix for test dataset.

Observation

Prediction

TotalScratch Not scratch

Scratch 1941 438 2379

Not scratch 266 337,515 337,781

Total 2207 337,953 340,160

Figure 4.  The detailed investigation of error segments. (a) Three error types. Black boxes indicate scratching 
segment in prediction or observation. Grey boxes indicate error segment. (b) The number of three errors in the 
training dataset. (c) The number of three errors in the test dataset. (d) Detailed investigation of the significantly 
deviated scratching event (indicated by arrow in Fig. 3g). (e) The representative data of grooming and 
scratching. Black boxes indicate grooming or scratching segment.
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observation to detect mouse scratching, which is labour-intensive, and has a low throughput. Automated detec-
tion systems are typically more sophisticated but often require specific  equipment4,6. In the current study, we 
recorded mouse behaviour using a commercially available handy camera and analysed the images using a com-
mon desktop computer with a GPU. In addition, we introduced frame subtraction for image pre-processing. This 
procedure not only reduces the file size for training and prediction but also cancels out any background noise. 
We utilized different type of cages for recording the LPA-treated mice (black arena) and that for DNFB-treated 
mice (grey cage). The trained CRNN could predicted mouse scratching behavior induced by DNFB correctly. 
Although further verification is required, this technology has some versatility.

CNN is known for its significant performance in image recognition tasks. In the field of biology, several stud-
ies have highlighted the usefulness of CNN-based algorithms. For example, Pereira et al. showed that CNN could 
estimate the position of body parts from a single  image9. Another study enabled pose estimation with very little 
training data by combining CNN and transfer  learning10. Schofield et al. also successfully identified the faces 

Table 3.  Confusion matrix for dermatitis-induced scratching.

Observation

Prediction

TotalScratch Not scratch

Scratch 2792 153 2945

Not scratch 610 859,341 859,951

Total 3402 859,494 862,896

Figure 5.  Application to DNFB-induced dermatitis model. (a) The number of true positive/negative segments 
and false positive/negative segments of DNFB-treated mouse video files. (b) The number of three errors. (c) The 
comparison of scratching counts in each video file between prediction and observation. (d) The comparison of 
duration time of each scratching event between prediction and observation. The dotted lines indicate the line 
when prediction was equal to observation.



8

Vol:.(1234567890)

Scientific Reports |          (2021) 11:658  | https://doi.org/10.1038/s41598-020-79965-w

www.nature.com/scientificreports/

of chimpanzees using  CNN14. We also attempted to establish CNN or shallow CRNN with less layers to predict 
mouse scratching behaviour. However, they represented limited performance as shown in Supplementary Note 
and Supplementary Fig. S1. Since animal behaviour is composed of sequential motions, we assumed that the 
combination of CNN and multiple RNN layers can be better strategy for behavioural detection.

We trained the CRNN using sequential pictures obtained from each movie in which mice were administrated 
LPA to the skin on their back. The trained CRNN successfully predicted LPA-induced scratching. Notably, it 
could also classify DNFB-induced scratching when DNFB was topically applied to mouse ears. These results 
suggest that the behaviour of scratching the back and ears was sufficiently similar for CRNN. However, it is still 
unclear whether this CRNN can identify other types of scratching, including systemic scratching induced by 
cholestasis or nose/mouth scratching with the forelimbs, such as that caused by food  allergies15,16.

There are some limitations in the system developed in this study. In the preliminary analysis, we determined 
important parameters to establish better neural network as shown in Supplementary Note; binarization thresh-
old, the number of frames per segment, the upsampling ratio, and NN architecture. In addition to these tun-
ings, image acquisition using a high-speed camera and selection of training dataset can improve the accuracy. 
Researchers often utilized black mice including C57BL/6 as well as white mice. We found that current CRNN 
trained with white BALB/c mice dataset represented relatively lower performance in the detection of LPA-induced 
scratching in black C57BL/6 mice (sensitivity: 22.1%, Supplementary Fig. S2; Supplementary Table S5). Training 
dataset obtained from various mouse strains may expand the abilities of this method.

We specifically focused on scratching among the various animal behaviours. However, we predict that the 
procedure discussed here could be applied to other behaviours, such as grooming, rearing, resting, and feeding. 
In addition, the method could be applied to long-term studies (e.g., 24 h). As a result, it is possible that this 
automated technique could be used to detect and classify any and all mouse behaviours during a single day, which 
would provide novel insights into animal ethology.

In conclusion, we have established a novel and accurate scratching detection method using CRNN, which 
can also be used to assess pathological models.

Methods
Mice. BALB/c mice (12–16  weeks old; male and female) and C57BL/6J mice (8–10  weeks old; male and 
female) were purchased from Charles River Japan (Yokohama, Japan). All experiments were approved by the 
institutional Animal Care and Use Committee at the University of Tokyo (P18-067 and P19-079). Animal care 
and treatments were performed in accordance with the guidelines outlined within the Guide to Animal Use and 
Care of the University of Tokyo.

Scratch induction by lysophosphatidic acid (LPA) treatment. A pruritogen, LPA (200 nmole/site/25 
μL; Avanti Polar Lipids, Alabaster, AL, US), was intradermally injected to the back of BALB/c mice (2 site/mouse, 
n = 9)17,18. Immediately after injection, mice were placed into a black square arena (40 cm × 40 cm × 27 cm), and 
their behaviours were recorded for 30–60 min using a handy camera (HDR-CX720V, Sony, Tokyo, Japan) set 
at a height of 150 cm above the arena. Detailed recording conditions were as follows: frame rate, 60 Hz; resolu-
tion, 1920 × 1080 pixel, 24-bit colour. We used thirty of nine-minute video files in which mice scratched several 
times. These video files were split into training (20 files, mouse A to F in Supplementary Table S1) and test (10 
files, mouse G to I in Supplementary Table S1) datasets. We note that mice in training dataset were different 
from those in test dataset. The training dataset was used for CRNN training and the test dataset for performance 
evaluation.

Dermatitis model. 2,4-Dinitrofluorobenzene (DNFB, 0.5% in 25 μL; NACALAI TESQUE, INC., Kyoto, 
Japan) was applied to the shaved ventral skin of mice (n = 4, mouse J to M in Supplementary Table S1). Four days 
later, DNFB (0.2% in 20 μL) was applied to both ears. Behaviour was recorded for 60 min in grey rectangular 
parallelepiped cages (37 cm × 25 cm × 22 cm), beginning immediately after DNFB application.

Image pre-processing. Images of all frames of each video file were obtained. The absolute difference of 
each pixel between two adjoining frames was calculated (Fig. 1a). Differential images were cropped into a square 
shape (300 × 300 pixel) around the geometric centre of the mouse, which was independently calculated with 
previously described  method13. The images were grey-scaled and binarized using a pre-defined threshold. In 
the preliminary analysis, we tried three binarization threshold values (15, 25, and 35) among 0–255 and finally 
set 25 as threshold which showed best performance. These procedures were applied to all frames in each video 
except the first one.

Manual behaviour detection. Scratching behaviour was defined as the rapid, repetitive, and back-and-
forth movement of the hindlimb toward the injection site. We played the recorded video file in slow motion and 
identified scratching behaviour. We then scrutinized each frame and determined when it started and ended. All 
frames in all video files are labelled and checked by two researchers independently. These labels were named as 
human observation (Obs). For convenience, frames where the mouse was scratching were labelled as 1 and other 
frames were labelled as 0. Grooming was also manually identified in the test dataset video files.

Architecture of CRNN. The architecture of CRNN (described as architecture C in Supplementary Note) 
consists of three main parts: CNN, RNN, and FC blocks (Fig. 2a; Supplementary Table S4). The CNN block 
is composed of three alternately arranged convolutional layers (CV-1–CV-3; 32 filters, 3 × 3 kernel size, 1 × 1 
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stride, ReLU activation) and max pooling layers (MP-1–MP-3; 2 × 2 pooling size, 2 × 2 stride). The RNN block is 
composed of two LSTM layers (LSTM-1 and LSTM-2; 256 units, ReLU activation). The FC block is composed of 
five FC layers (FC-1–FC-5; 128, 128, 32, 8, and 1 unit in sequence). ReLU activation was used in the FC-1–FC-4 
layers and sigmoid activation was used in the FC-5 layer. Twenty percent of the units in the FC-1 and FC-2 layers 
were randomly dropped during training. The shape of the output tensor from each layer is given in Supplemen-
tary Table S4. The other NN architectures in Supplementary Note (architecture A and B) were constructed by 
removing several layers from architecture C (Supplementary Tables S2, S3).

CRNN training. For a frame at time t, 21 pre-processed images were collected from t − 10 to t + 10, which 
were named the “segment” at time t. Segments were labelled with the value of the frame label at time t. There-
fore, one segment had 21 serial images (300 × 300 pixel) and one label (0: not scratch, 1: scratch). For training, 
20 video files were used (training dataset). Fifteen hundred segments were randomly selected from the total 
segments, and 100 segments were selected from the scratch segments per epoch, allowing for duplicates. This 
upsampling ratio (1500/100) was determined by preliminary analyses where we tried 1600/0, 1500/100, and 
1400/200 and found 1500/100 was the best. Images within these 1600 segments were randomly flipped and 
rotated for data augmentation; then, they were resized to 200 × 200 pixel and input into CRNN. An ADAM opti-
mizer with a  10–4 learning rate and binary cross entropy loss function were used.

Scratching prediction. For prediction, each segment was input into the trained CRNN without data aug-
mentation. CRNN outputs a decimal value between 0 and 1 for each segment, which is interpreted as the pos-
sibility to scratch. We classified a segment as scratching when its output value was more than 0.5.

Computer hardware. The calculations described above were conducted on a desktop computer equipped 
with an Intel Core i7-8086K CPU, 32 GM RAM, and NVIDIA GeForce GTX 1080 Ti (11 GB) GPU. Image pre-
processing was conducted using an image processing library (OpenCV, version 3.4.7) in Python. CRNN training 
and prediction were conducted using Keras library (version 2.2.4) in Python.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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