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Relations of Microvascular Function, Cardiovascular Disease Risk

Factors, and Aortic Stiffness in Blacks: The Jackson Heart Study
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Background—Blacks have more severe endothelial dysfunction and aortic stiffening as compared with whites. We aimed to
investigate the association between aortic stiffness and microvascular function in the black community.

Methods and Results—We assessed the association between forearm vascular reactive hyperemia (an indicator of microvascular
function) and aortic stiffness in 1458 black participants (N=965 [66% women]; mean age: 66411 years) in the Jackson Heart
Study. We evaluated 2 measures of aortic stiffness: brachial pulse pressure and carotid-femoral pulse wave velocity. Using high-
resolution ultrasound and Doppler, we evaluated brachial blood flow at baseline and during reactive hyperemia after 5 minutes of
forearm ischemia. Multiple cardiovascular risk factors were significantly related to baseline and hyperemic brachial flow velocity.
Women had lower baseline flow across the entire age spectrum. During hyperemia, we observed a significant age-sex interaction
for flow velocity (P=0.02). Female sex was protective against microvascular dysfunction among younger participants, but older
women exhibited a greater attenuation of the hyperemic flow reserve. In multivariable models that adjusted for cardiovascular
disease risk factors and mean arterial pressure, higher carotid-femoral pulse wave velocity (B=—0.106+0.033; P=0.001 was
related to lower baseline flow. However, during reactive hyperemia, elevated brachial pulse pressure (f=—0.070+0.031; P=0.03)
and carotid-femoral pulse wave velocity (=—0.128+0.030; P<0.001) were both related to attenuated brachial flow velocity.

Conclusions—In a sample of blacks, higher aortic stiffness and pressure pulsatility were associated with lower flow reserve during
reactive hyperemia, beyond changes attributable to traditional cardiovascular disease risk factors alone. (J Am Heart Assoc.
2018;7:¢009515. DOI: 10.1161/JAHA.118.009515.)
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M easures of vascular and microvascular function are
powerful predictors of cardiovascular disease (CVD)
risk and progression. Multiple studies have established that
novel measures of hemodynamic load, including measures of
aortic stiffness (eg, central pulse pressure and aortic pulse
wave velocity), are predictive of incident CVD risk and disease
progression.” '° In addition, subclinical microvascular dys-
function is prevalent in individuals with CVD and is associated
with elevated aortic stiffness, which may stimulate small

vessel damage or remodeling, leading to elevated peripheral
resistance and attenuated flow.'"'? Prior analyses from the
Framingham Heart Study have shown that abnormal aortic
stiffness and increased pressure pulsatility are associated
with blunted microvascular reactivity to ischemic stress.’ In
addition, Framingham investigators have reported that asso-
ciations between aortic stiffness and CVD events are
mediated in part by pathways that include microvascular
damage and remodeling.'* Thus, microvascular dysfunction
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Clinical Perspective

What Is New?

» We assessed the association between microvascular func-

tion (brachial flow velocity) and aortic stiffness (brachial

pulse pressure and carotid-femoral pulse wave velocity) in a

sample of black participants.

Multiple risk factors were related to baseline (age, sex, heart

rate, body mass index, and smoking) and hyperemic (age,

heart rate, prevalent cardiovascular disease, and use of

statin medication) brachial flow velocity.

» We observed significant sex differences in relations between
hyperemic flow velocity and age.

* Both elevated brachial pulse pressure and higher carotid-
femoral pulse wave velocity were related to attenuated
brachial flow velocity in black participants.

What Are the Clinical Implications?

* In a sample of blacks, higher measures of aortic stiffness
and pressure pulsatility were associated with lower flow
reserve during reactive hyperemia beyond changes attribu-
table to traditional cardiovascular disease risk factors alone.

» Since black women have higher cardiovascular disease
mortality rates as compared with white women, our data
also suggest that differences in microvascular function may
contribute to racial differences for heart disease in women.

may be an important contributing mechanism by which aortic
stiffness leads to target organ damage and CVD events.'> '8

Blacks are disproportionately affected by CVD. They have
more severe endothelial dysfunction'® 2" and increased
aortic stiffness?>?® as compared with white Americans,
which may contribute to the increased prevalence of CVD
among this population. Since microvascular function varies
among ethnic groups, it is important to establish the relation
between aortic stiffness and microvascular reactivity within
more diverse, community-based samples. Thus, we examined
relations of microvascular function, CVD risk factors, and
aortic stiffness in black participants in the JHS (Jackson
Heart Study). We hypothesized that vascular risk factors are
associated with alterations in microvascular function at
baseline and during hyperemia and that measures of aortic
stiffness are related to attenuated hyperemic flow and
vasodilatory reserve after adjustment for other clinical
correlates of vascular dysfunction.

Methods

The data, analytic methods, and study materials will not be
made available to other researchers for purposes of repro-
ducing the results or replicating the procedure. The procedure

for requesting data from the Jackson Heart Study can be
found at https://www.jacksonheartstudy.org/.

Participants

The details and design of the JHS have been described.?*?°

Established from the former participants of the ARIC
(Atherosclerosis Risk in Communities) study, 5301 partici-
pants were recruited for the JHS baseline examination
(2000-2004). Participants in the third examination cycle
(2008-2013) who underwent arterial tonometry assessment
were eligible for this investigation (n=2092). Participants
were excluded for the following reasons: missing outcomes
and vascular function data (n=470), and missing covariates
(n=164). Written informed consent was obtained from all
study participants, and the research protocol was approved
by the Institutional Review Board of the University of
Mississippi Medical Center.

Image Acquisition and Flow Velocity Analyses

Image and flow analyses were performed as described
previously.'®'® Brachial artery diameter and Doppler flow were
measured at baseline and following 5 minutes of ischemia
produced by inflating a cuff, which was positioned on the
forearm, just distal to the antecubital fold, to ~50 mm Hg
above systolic pressure. The brachial artery images and Doppler
flow were assessed with a Siemens Acuson S2000 ultrasound
system mounted with 4Vc and 9L4 transducers using a carrier
frequency of 4.0 MHz and an insonation angle of =<60°.
Ultrasound data were digitized during the primary acquisition
and transferred to the core laboratory (Cardiovascular Engi-
neering, Inc, Norwood, MA) for analyses that were performed
masked to clinical data. Flows were analyzed from the digitized
Doppler audio data by using a semi-automated signal-averaging
technique as described previously.'® During the examination
for brachial flows, after cuff deflation, sonographers monitored
and recorded flow (for up to 15 seconds after cuff release) until
flow peaked. During secondary analysis, timing of peak flow was
visually confirmed from a raw spectral analysis of individual
beats; only 3 to 5 beats—representing the peak flow response
—were marked for inclusion in the signal-averaged spectrum.
Flow spectra were signal-averaged with the ECG as a fiducial
point and corrected for actual insonation angle.

Measures of Aortic Stiffness and Microvascular
Function

Aortic stiffness and microvascular function were assessed as
described previously.13 We measured brachial pulse pressure
and CFPWV to assess 2 distinct but related measures of aortic
stiffness. Brachial pulse pressure was examined as a measure
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of the pressure pulsatility proximal to the vascular bed of
interest. Pulse pressure amplification was calculated as the
ratio of brachial pulse pressure to the central pulse pressure.
CFPWV is related directly to aortic wall stiffness. In addition,
using high-resolution ultrasound and Doppler flow, we
assessed brachial flow velocity at baseline and during reactive
hyperemia after 5 minutes of forearm cuff occlusion. Hyper-
emic flow velocity reflects the flow at near maximal dilation of
forearm microvasculature in response to local shear stress
and other ischemic stimuli. Baseline flow brachial flow velocity
depends on forearm microvascular density, tone, and
structure, '®?% and hyperemic flow velocity reflects the near
maximal microvessel dilation of the forearm produced by

ischemia-induced vasodilator generation, including nitric
oxide 13,18,27,28

Statistical Analyses

We assessed multivariable cross-sectional relations of
various CVD risk factors with baseline and hyperemic
brachial flow velocity using stepwise multivariable regres-
sion models that adjusted for age, sex, mean arterial
pressure, and current antihypertensive medication use; the
threshold value for inclusion and removal from the model
was P<0.1. Other CVD risk factors considered in the
stepwise model were selected a priori based on literature
review and included heart rate, body mass index, active
smoking, current statin use, prevalent CVD (defined as
unstable angina, myocardial infarction, fatal coronary heart
disease, heart failure, stroke, or intermittent claudication),
pulse pressure amplification, alcohol consumption, hor-
mone replacement therapy (in women), and fasting
glucose. We considered non-linear relations for age, and
since age and sex may differentially and synergistically
affect aortic stiffness and microvascular function, we
considered age-sex interaction by incorporating corre-
sponding terms in the analysis. These stepwise models
did not consider stiffness measures.

Furthermore, we assessed the relation between aortic
stiffness measures (brachial pulse pressure and CFPWYV)
and microvascular function (brachial flow velocity) using
multivariable regression after adjusting for other known
or potential correlates of brachial flow velocity. Relations
of each measure of aortic stiffness with brachial flow
velocity (as the dependent variable) were considered
separately. We also tested interactions of older age
(using median age) and sex with stiffness variables by
incorporating corresponding interaction terms in the
analysis.

All analyses were performed with SAS version 9.3 for
Windows (SAS Institute, Cary, NC). Two-tailed P<0.05 was
considered statistically significant for the analysis.

Results

The final sample included 1458 participants (965 [66%]
women). Characteristics and hemodynamic data of the study
participants are presented in Table 1. This sample exhibited a
high prevalence of anti-hypertension treatment. On average,
brachial artery mean flow increased = sevenfold during
reactive hyperemia. A comparison of these characteristics
between included and excluded participants is shown in
Table S1. The included sample contained more female
participants; however, the clinical characteristics between
included and excluded groups were similar.

Multivariable cross-sectional correlates of baseline and
hyperemic brachial flow velocity are presented in Table 2.
Greater age was associated with lower baseline and hyper-
emic flows (Figure). Female sex was associated with lower
baseline flow. In addition, during hyperemia, we observed a
significant age-sex interaction (f=—0.11840.049; P=0.02)
for flow velocity. Higher heart rate was associated with
elevated resting and hyperemic flows. Elevated body mass

Table 1. Demographic Characteristics and Hemodynamic
Measures (n=1458)

Variable Value*
Age, y' 6611
Women, n (%) 965 (66)
Body mass index, kg/m? 31+6
Fasting glucose, mg/dL 106433
Medical history
Anti-hypertension treatment, n (%) 1092 (75)
Prevalent cardiovascular disease, n (%) 225 (15)
Active smoking, n (%) 154 (10)
Current statin use, n (%) 473 (32)
Alcohol consumption in the past 12 mo, n (%) 635 (44)
Hormone replacement (women), n (%) 305 (21)
Tonometry and hemodynamic variables
Heart rate, beats/min 65+10
Mean arterial pressure, mm Hg 98+12
Systolic blood pressure, mm Hg 137419
Diastolic blood pressure, mm Hg 71£10
Brachial pulse pressure, mm Hg 66+18
Pulse pressure amplification® 1.01+0.13
Carotid-femoral pulse wave velocity, m/s 11+4
Baseline mean brachial flow velocity, cm/s 5.343.3
Hyperemic brachial flow velocity, cm/s 449+17.8

*All values are mean+SD except as noted.
Full age range for the participants is 33 to 93 years.
*Calculated as the ratio of brachial pulse pressure to the central pulse pressure.
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Table 2. Multivariable Relations Between Common Covariates and Brachial Flow Velocity (n=1458)

Brachial Flow Velocity (SD)

Baseline Hyperemia
Variable B SE P Value B SE P Value
Age* —0.162 0.027 <0.001 —0.314 0.040 <0.001
Female sex* —0.148 0.055 0.007 0.016 0.050 0.8
Age xfemale sex —0.118 0.024 0.02
Mean arterial pressure* —0.034 0.025 0.2 —0.002 0.024 0.9
Antihypertensive medication —0.006 0.062 09 —0.106 0.058 0.07
Heart rate 0.140 0.026 <0.001 0.064 0.024 0.007
Body mass index 0.073 0.026 0.006
Active smoking 0.176 0.084 0.04
Prevalent cardiovascular disease —0.149 0.067 0.03
Antihypertensive medication —0.102 0.052 0.05

*“Forced into the model. All coefficients represent SD difference in flow per SD difference in continuous variables or presence of categorical variables. Baseline model adjusted R?=0.07.

Hyperemia model adjusted R*=0.20.

index and active smoking were associated with higher resting
flow but were not related to hyperemic flow. Prevalent CVD
and statin medication use also were associated with a blunted
flow response during hyperemia.

Relations between aortic stiffness measures and brachial
flow velocity are presented in Table 3. In models adjusted for
age, sex, mean arterial pressure, and heart rate, higher mean

CFPWV was related to lower baseline flow, which persisted after
further adjustment for additional CVD risk factors. In models
adjusted for age, sex, mean arterial pressure, and heart rate,
higher mean brachial pulse pressure and CFPWV were related to
blunted hyperemic flow response. Upon further adjustment
with additional correlates of brachial flow velocity and CVD risk
factors, the relation between brachial pulse pressure and

8.0
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Figure. Adjusted mean brachial flow velocity across the age spectrum stratified by sex (n = 1458). The adjusted group means+SE (least
squares means) of the (A) baseline brachial flow and (B) hyperemic brachial flow were plotted by age group and stratified by sex. Participants
were grouped by 5-year age intervals. To prevent small groups on the extremes, participants aged <55 and >75 years were grouped together.
Models were adjusted for age, sex, age-sex interaction, mean arterial pressure, heart rate, body mass index, active smoking, prevalent
cardiovascular disease, statin medication, and antihypertensive medication.
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Table 3. Relations Between Measures of Arterial Stiffness and Brachial Flow Velocity (n=1458)

Cooper et al

Brachial Flow Velocity (SD)
Baseline Hyperemia
Variable and Model B+SE P Value Adjusted R? B+SE | P Value Adjusted R?
Brachial pulse pressure
Minimally-adjusted model* 0.0444-0.034 0.2 0.06 —0.086+0.031 0.006 0.19
Expanded model® 0.0584-0.034 0.08 0.07 —0.0704-0.031 0.03 0.20
CFPWV
Minimally-adjusted model* —0.11140.033 <0.001 0.07 —0.135+-0.030 <0.001 0.20
Expanded model —0.1064-0.033 0.001 0.08 —0.128+0.030 <0.001 0.21

All coefficients represent SD difference in flow per SD difference in continuous variables. CFPWV indicates carotid-femoral pulse wave velocity.

*Adjusted for age, sex, mean arterial pressure, and heart rate.

TAdjusted for age, sex, age-sex interaction, mean arterial pressure, heart rate, body mass index, active smoking, prevalent cardiovascular disease, statin medication, and antihypertensive medication.

CFPWV persisted during hyperemia. We found no evidence of
effect modification by median age or sex (all £~0.05) for the
relations in Table 3.

Discussion

Principal Findings

Our community-based study evaluated cross-sectional rela-
tions between measures of aortic stiffness and microvascular
function, as assessed by brachial flow velocity, in a sample of
black participants. CFPWV, but not brachial pulse pressure, was
associated with microvascular function at baseline. Baseline
and hyperemic flows were lower with greater age. Women had
significantly lower baseline flow velocity across the full age
range examined; however, during hyperemia, age relations of
flow velocity differed by sex. Furthermore, higher measures of
aortic stiffness and pressure pulsatility were associated with
lower mean brachial flow velocity during reactive hyperemia,
indicating blunted flow reserve. The observed association of
higher aortic stiffness or pressure pulsatility with lower
hyperemic flow may be attributable to similar causal factors.
However, the present study shows that these associations
persisted in multivariable models that adjusted for contempo-
raneously measured shared risk factors, which is consistent
with earlier findings by the Framingham Heart Study.'® Thus,
the present study suggests that aortic stiffening among blacks
is accompanied by blunted reactivity of the peripheral micro-
circulation beyond that which is explained by CVD risk factor
burden alone.

Comparisons to Previous Studies

Multiple risk factors were significantly related to baseline and
hyperemic brachial flow velocities, which is similar to a prior
Framingham study.'® The Framingham study, however, addi-
tionally showed that total-to-high density lipoprotein

cholesterol ratio (baseline), prevalent CVD (baseline), fasting
glucose (hyperemic), antihypertensive medication (hyperemic),
and hormone replacement in women (both baseline and
hyperemic) were correlated to brachial flows. Although both
studies were performed in middle-aged to older samples with
similar techniques that measure brachial flow, our sample
exhibited higher levels of CVD risk factors (compared with the
Framingham sample),'®'® which is consistent with previous
studies of racial disparities.?’ 3% Additionally, Howard et al
observed that blacks have higher incidence of hypertension,
diabetes mellitus, and dyslipidemia post-middle age,** which
exacerbates disparities in risk factor prevalence later in life.
Thus, disparities in the prevalence and incidence in clinical and
subclinical risk factors likely contribute to racial discrepancies
in correlates of vascular dysfunction.

In addition, although we observed that female sex was
associated with lower baseline flow velocity, which may be
protective in the setting of aortic stiffness, the relation of sex to
hyperemic flow was more complex and varied across the age
spectrum. Similar to Celermajer et al,** we observed that
female sex was protective against microvascular dysfunction
among the youngest group (aged <55 years), but older women
exhibited a greater attenuation of the hyperemic flow reserve.
Thus, we observed that the association of female sex with
microvascular dysfunction reversed and was further exacer-
bated with advancing age (female sex-median age interaction,
P=0.02), which was not observed in the prior Framingham
sample. Our study is consistent with a few studies that suggest
that this sex-related protection against microvascular damage
is lost among black women as evidenced by reduced flow-
mediated dilation. For example, Loehr et al observed that
adjusted absolute and percentage change in brachial artery
diameter was significantly reduced in African-American women
compared with white women post menopause.?’ In addition,
Perregaux et al showed that endothelium-dependent vasodila-
tion was significantly impaired in blacks compared with whites,
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and that while white women vasodilated significantly more than
white men, the sex difference was not observed among black
participants.®® Neither of the 2 aforementioned studies
adjusted for flow velocity, but a previous Framingham Heart
Study showed that the sex difference in flow-mediated dilation
was completely explained by differences in flow velocity.'®
Since black women have higher CVD mortality rates as
compared with white women, perhaps differences in microvas-
cular function may contribute to racial differences in rates of
heart disease in women. However, additional studies among
diverse cohorts of women across a broader age range are
warranted to elucidate the putative mechanisms.

Link Between Stiffness Measures and
Microvascular Dysfunction

At baseline, elevated pulse pressure was not associated with
baseline flow, whereas elevated CFPWV was significantly
associated with lower baseline flow. Although these are 2
well-known measures of aortic stiffness, they have varying
relations with aortic wall stiffness and geometry. Brachial
pulse pressure is affected by aortic flow, wave reflections,
and local resistances; thus, apparent relations are influenced
by parameters other than aortic stiffness.'® On the contrary,
CFPWV (the reference standard measure of aortic stiffness)
is a more direct assessment of aortic wall stiffness and is
less dependent on aortic diameter and local factors.?® Yet,
the combination of higher pulse pressure and higher baseline
flow suggests a mismatch between basal flow and aortic
diameter (assuming high aortic flow), which may have
contributed to a trend toward a significant relation between
elevated pulse pressure and higher baseline flow (P=0.08).
However, higher aortic wall stiffness per se (as indicated by
elevated CFPWV) may contribute to lower basal flow because
of downstream microvascular damage and remodeling.

We observed that participants with higher CFPWV and
brachial pulse pressure exhibited attenuated forearm brachial
flow velocity during hyperemia (in models adjusted for
potentially common CVD risk factors). This finding suggests
that abnormal aortic stiffness and elevated arterial pressure
pulsatility are associated with structural or functional abnor-
malities in peripheral small vessels. Thus, our data in this
older black sample further contribute to the growing body of
evidence that links elevated aortic stiffness and microvascular
dysfunction. Beyond midlife, the aortic impedance increases
disproportionately to the peripheral muscular arteries, leading
to impedance matching between the aorta and first-genera-
tion arteries and a reduction in wave reflection.®”*® This
reduction in wave reflection eliminates the protective mech-
anism that normally buffers the peripheral microcirculation
against excessive pressure and pulsatility.®”*® For example,

previous studies have shown that microvascular dysfunction
may contribute to the progression of structural and functional
damage to the brain and kidneys.'®>™"” In addition, we recently
showed that microvascular dysfunction may represent a
partial mediator of the relations between aortic stiffness and
CVD events, including myocardial infarction, unstable angina,
heart failure, and ischemic stroke.' Thus, disparities in the
extent and progression of microvascular dysfunction may
contribute to ethnic differences in target organ diseases with
microvascular etiologies. However, longitudinal studies that
assess relative risks between blacks and other ethnic groups
are warranted.

Limitations

Our study has limitations that should be considered. We
employed a cross-sectional observational study design, which
limits our ability to establish temporal relations between
aortic stiffness measures and microvascular function. Cross-
talk between small and large vessels has been described’
and may represent bidirectional relations, which cannot be
differentiated in our cross-sectional study. Thus, it is possible
that alterations in peripheral blood flow and microvascular
function affect aortic stiffness. We did not account for
multiple testing; therefore, our investigation is more suscep-
tible to type-1 error. In addition, the prevalence of antihyper-
tensive medications was high; these medications affect
vascular function, which may limit the external validity
(generalizability) of the study’s physiological insights. How-
ever, we adjusted for antihypertensive treatment in the
primary analysis since it would be impractical to exclude
these participants and unethical to request participants to
suspend treatment. Furthermore, since blacks have a higher
prevalence of hypertension (compared with white individuals),
high prevalence of antihypertensive medications is an inher-
ent characteristic of an aging black cohort. Thus, our findings
may not be generalizable to other ethnic or racial groups and
younger individuals. The consideration of these limitations
should be balanced with the uniqueness of this study to
investigate the relation of aortic stiffness to microvascular
function in a large community-based cohort of blacks using
novel vascular tonometry methods.

Conclusion

In our study, among a cross-section of black participants,
elevated aortic stiffness and higher arterial pressure pulsatility
were associated with microvascular dysfunction as assessed by
brachial flow velocity during reactive hyperemia. Although
various CVD risk factors are related to impaired microvascular
function, they were unable to fully explain the relations between
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measures of aortic stiffness and blunted hyperemic flow
reserve. Thus, the effects of age-related, environmental, and
genetic factors may impact microvascular function through
alterations in aortic stiffness and pulsatile load. Because
impairment in small and large vessel function is associated with
worse long-term CVD outcomes, microvascular dysfunction, as
aresult of elevated aortic stiffness and pressure pulsatility, may
represent an underlying mechanism for the increased CVD risk
in blacks. However, further studies involving cohorts with more
diverse participants are warranted.
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Table S1: Comparison of demographic characteristics and hemodynamic measures of
excluded and included participants.

Variable Included Excluded* P-value®
(N=1458) (N varies)
Age, years 66+11 6512 <0.001
Women, N (%) 965 (66) 318 (59) 0.004
Body mass index, kg/m? 3116 35+8 <0.001
Fasting glucose, mg/dL 106+33 105+32 0.39
Medical history
Anti-hypertension treatment, N (%) 1092 (75) 327 (61) 0.05
Prevalent cardiovascular disease, N (%) 225 (15) 80 (15) 0.8
Active smoking, N (%) 154 (10) 51 (10) 1
Current statin use, N (%) 473 (32) 156 (29) 0.76
Alcohol consumption in the past 12 months, N (%) 635 (44) 238 (44) 1
Hormone replacement (women), N (%) 305 (21) 92 (17) 0.59
Tonometry and hemodynamic variables
Heart rate, beats/min. 65+10 6711 0.04
Mean arterial pressure, mm Hg 98+12 99+13 0.33
Systolic blood pressure, mm Hg 137+19 136+19 0.21
Diastolic blood pressure, mm Hg 71+10 73+11 0.002
Brachial pulse pressure, mm Hg 66+18 64+17 0.0007
Pulse pressure amplification 1.01+0.13 1.01+0.15 0.96
Carotid-femoral pulse wave velocity, m/s 11+4 12+6 0.24
Baseline mean brachial flow velocity, cm/s 5.3+3.3 5.5+3.8 0.14
Hyperemic brachial flow velocity, cm/s 44.9+17.8 46.7+20.1 0.004

All values are meanzstandard deviation except as noted. *N varies (440-537) for excluded participants
based on availability of data. 'Differences between included and excluded participants were
determined by t-tests for continuous variables and x2 tests for categorical variables.
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