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Abstract

Platelet-rich plasma (PRP) is a widely used autologous treatment for tendon injuries in

clinics. Platelets (PLTs) are a major source of high mobility group box1 (HMGB1) that

is gaining attention as a chemoattractant that can recruit stem cells to the wound area

to enhance healing of injured tissues; however, the contribution of PLT HMGB1 in

wounded tendon healing remains unexplored. This study investigated the effect of PLT

HMGB1 within PRP on tendon healing using PLT HMGB1 knockout (KO) and GFP

mice. A window defect was created in the patellar tendons of both groups of mice, and

wounds were treated with either saline, PRP isolated from PLT HMGB1-KO mice, or

PRP isolated from GFP mice. Seven days post-treatment, animals were sacrificed and

analyzed by gross inspection, histology, and immunostaining for characteristic signs of

tendon healing and repair. Our results showed that in comparison to mice treated with

PRP from PLT HMGB1-KO mice, wounds treated with PRP from GFP mice healed

faster and exhibited a better organization in tendon structure. Mice treated with PRP

from PLT HMGB1-KO mice produced tendon tissue with large premature wound areas

and low cell densities. However, wounds of PLT HMGB1-KO mice showed better heal-

ing with PRP from HMGB1-KO mice compared to saline treatment. Moreover, wounds

treated with PRP from GFP mice had increased extracellular HMGB1, decreased

CD68, increased stem cell markers CD146 and CD73, and increased collagen III pro-

tein expression levels compared to those treated with PRP from PLT HMGB1-KO

mice. Thus, PLT HMGB1 within PRP plays an important role in tendon wound healing

by decreasing inflammation, increasing local HMGB1 levels, and recruiting stem cells

to the wound area in the tendon. Our findings also suggest that the efficacy of PRP

treatment for tendon injuries in clinics may depend on PLT HMGB1 within PRP

preparations.
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Introduction

Tendon injuries to the Achilles and patellar tendons are prevalent in both occupational and

athletics populations. Overall, healing of injured tendons is slow and yields an inferior quality

of tendon tissue that is prone to re-injury. Many therapeutic approaches including injection of

autologous platelet-rich plasma (PRP) have been devised to manage tendon injuries [1,2]. The

use of PRP is a popular option in the treatment of tendon injuries in orthopaedics and sports

medicine [1,2], however the efficacy of PRP treatment on tendon injuries, particularly in clini-

cal trials, has been controversial. Several studies have reported that PRP can effectively treat

tendon injuries [3–5], whereas others have shown the opposite with no improvement in pain

or tendon function after PRP treatment [6–8]. Thus, further investigation into the role of

platelets (PLTs) in tendon wound healing is essential to understand the PLT action mechanism

in PRP and improve the efficacy of PRP in the treatment of tendon injuries.

Although lacking nuclei, platelets are a rich source of high mobility group box-1 (HMGB1),

a highly conserved nuclear protein that is released by all cell types upon injury [9,10]. The

function of HMGB1 as an inflammatory molecule or chemoattractant is dependent upon its

redox state. When inside the cell, either in the nucleus or cytoplasm, HMGB1 is completely

reduced as fully reduced HMGB1 (frHMGB1). Once released to the extracellular matrix,

frHMGB1 is partially oxidized to disulfide HMGB1 (dsHMGB1) that is believed to initiate tis-

sue inflammation [11]. Research has suggested that during platelet activation, HMGB1 is pre-

sented on the cell surface and released in significant amounts, with the current theory that

HMGB1 is fully reduced at this stage [12–15]. Therefore, we hypothesized that platelet

HMGB1 (PLT HMGB1) within PRP may have an important role in tendon injury healing. To

test the hypothesis, we investigated the effect of PLT HMGB1 within PRP on wounded tendon

healing using a transgenic mouse line with platelet-specific ablation of HMGB1 (PLT

HMGB1-KO). The findings of this study showed that PLT HMGB1 within PRP preparations

is able to promote healing and repair of tendon injuries.

Materials and methods

Animals

C57BL/6-Tg (UBC-GFP) mice (GFP mice) were obtained from Jackson Laboratory (Bar Har-

bor, ME). Mice with platelet-specific ablation of HMGB1 (Pf4-Cre Hmgb1fl/fl mice, referred to

as PLT HMGB1-KO mice) were generated as described elsewhere using the Cre/loxP system

[16].

The protocol for animal use was approved by the Institutional Animal Care and Use Com-

mittee of the University of Pittsburgh (IACUC protocol #18083391). All experiments were per-

formed according to the relevant guidelines and regulations. The animals were cared for by

the staff of the Division of Laboratory Animal Resources (DLAR), which provides veterinarian

consultation regarding animal health and welfare.

Mice were sacrificed using carbon dioxide. Secondary physical method (cervical disloca-

tion) of euthanasia was performed to ensure death. The euthanasia method is consistent with

the recommendations of the Panel on Euthanasia of the American Veterinary Medical Associ-

ation. During animal experiments, no adverse events, including mortality, occurred. Only

female mice were used in the experiments. For in vitro experiments, three PLT HMGB1-KO

mice and three GFP mice were used. For in vivo experiments, six transgenic mice (3 PLT

HMGB1-KO mice, and 3 GFP mice) were used in each of three groups (see below, Mouse ten-
don wound healing model). The number of mice in this study, which focused on histochemical

and immunohistochemical analyses, was based on a similar, previous study [17].
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Isolation and preparation of platelets and PRP

Mice were anesthetized with isoflurane, and blood was drawn from the retro-orbital plexus

into anti-coagulated tubes. PRP was obtained by centrifugation at 500g for 10 min. Platelets

were first pelleted from PRP by centrifugation at 1,000g for 10 min, and were then resus-

pended in ACD buffer consisting of 39 mM citric acid, 75 mM sodium citrate, and 135 mM

dextrose with 5 mM of EDTA according to the published protocol [18]. This platelet solution

was used for the following experiments.

Determination of HMGB1 in activated platelets

Isolated platelets were activated by adding 100 μl of 10,000 U/ml bovine thrombin solution

into 0.4 ml of 1 × 108/ml platelet-ACD solution at room temperature for 30 min. The reaction

mixture was centrifuged at 1,000g for 10 min, and the supernatant was collected to determine

the amount of HMGB1 released from platelets using an HMGB1 ELISA kit according to the

manufacturer’s protocol (Shino-Test Corporation, Tokyo, Japan). The pellet was re-suspended

with 0.9% of sodium chloride solution and reacted with a rabbit anti-mouse HMGB1 primary

antibody for 3 hrs at room temperature (1:350, abcam, Cat. #ab18256), followed by a goat anti-

rabbit secondary antibody conjugated with Cy3 for 1 hr at room temperature (1:500, Millipore,

Cat. #AP132C).

Mouse tendon wound healing model

The effect of PLT HMGB1 on tendon wound healing was tested with a window defect created

in each patellar tendon (PT) of PLT HMGB1-KO mice and GFP mice using a 1 mm diameter

biopsy punch. Wounded PLT HMGB1-KO mice and GFP mice were divided into three groups

(6 mice/group, 3 PLT HMGB1-KO mice, and 3 GFP mice). Group 1 mice were treated with

10 μl of saline (Saline), group 2 mice were treated with 8 μl of PLT HMGB1-KO PRP and 2 μl

of bovine thrombin for PRP activation (KO-PRP), and group 3 mice were treated with 8 μl of

GFP-PRP and 2 μl of bovine thrombin (GFP-PRP). All mice were sacrificed at 7 days post-

treatment, and patellar tendons of these mice were harvested. The effect of PLT HMGB1 on

wounded tendon healing and cell migration was assessed by H&E and immunostaining.

Histochemical staining on mouse tendon tissue sections

Tendon tissue sections were fixed with 4% paraformaldehyde for 20 min at room temperature,

and then washed three times with PBS. Slides were stained with H&E at room temperature,

washed with water 3 times, and dehydrated through 15%, 30%, 50%, 75%, 95% alcohol, and

absolute alcohol for five minutes each. Next, slides were treated with xylene and mounted with

resinous mounting medium. Finally, the staining results were observed and imaged on a

microscope (Nikon eclipse, TE2000-U).

Immunostaining on mouse tendon tissue sections

For immunostaining, the patellar tendons were dissected from the mice and were immediately

immersed in O.C.T compound (Sakura Finetek USA Inc., Torrance, CA) in disposable molds

and frozen at -80˚C. Then, cryo-sectioning was performed at -25˚C to obtain 8 μm thick tissue

sections, which were left at room temperature overnight. The tissue sections were fixed in 4%

paraformaldehyde for 15 min and blocked with universal blocking solution (ThermoFisher

Scientific, Pittsburgh, PA, Cat. #37515). The sections were then incubated with rabbit anti-

mouse HMGB1 antibody (1:350, abcam, Cat. #ab18256) at 4˚C overnight followed by goat

anti-rabbit secondary antibody conjugated with Cy3 for 1 hr at room temperature (1:500,

PLOS ONE Platelet HMGB1 promotes tendon healing

PLOS ONE | https://doi.org/10.1371/journal.pone.0251166 September 16, 2021 3 / 18

https://doi.org/10.1371/journal.pone.0251166


Millipore, Cat. #AP132C). Since the purpose of this staining was to evaluate the presence of

extracellular HMGB1 in the tendon, the tissue sections were not treated with the penetration

reagent Triton-X100 that disrupts the nuclear membrane.

Similarly, the fixed tissue sections were reacted individually overnight at 4˚C with the

following primary antibodies: rabbit anti-CD68 antibody (1:500, Abcam, Cat. #125212,

Cambridge, MA), rabbit anti-CD146 antibody (1:500, Abcam, Cat. #75769; Cambridge,

MA), rabbit anti-CD73 antibody (1:500, LSBio, Cat. #LS-B14527-50, Seattle, WA), or rab-

bit anti-collagen III antibody (1:500, ThermoFisher, Cat. #22734-1-AP, Waltham, MA). In

the next morning, tissue sections were washed 3 times with PBS and incubated at room

temperature for 2 hrs with Cy3-conjugated goat anti-rabbit IgG antibody (1:500, Milli-

pore, Cat. #AP132C). Total cell numbers were stained with 4’,6-diamidino-2-phenylindole

(DAPI). The stained tendon tissue sections were imaged using the fluorescent microscope

(Nikon eclipse, TE2000-U).

Semi-quantification of positively stained tissue sections

The percentage of HMGB1 expression in activated platelets from PLT HMGB1-KO and GFP

mice was determined by semi-quantification. Platelets were stained for HMGB1 (as above)

from three mice of each group, smeared onto a glass slide, and imaged using a fluorescent

microscope (Nikon eclipse, TE2000-U). The percentages of HMGB1 expression in platelets

were calculated by dividing the number of positively stained platelets with red fluorescence by

the total number of platelets.

For semi-quantification of cell marker staining in tissue sections, stained tissue sections (3

sections/mouse) in each group (3 mice/group) were examined under a microscope and five

random images were taken. Positively stained areas were manually identified by examining the

images taken and processed using SPOT™ imaging software (Diagnostic Instruments, Inc.,

Sterling Heights, MI). The proportion of positive staining was calculated by dividing the posi-

tively stained area by the total area viewed under the microscope. These values were averaged

to represent the percentage of positive staining in all the groups.

Statistical analysis

All results were obtained from 6 tendons (three mice) from each group and presented as the

mean ± SD. The statistical analyses were performed with an unpaired student t-test. When

P< 0.05, the two groups in comparison were considered significantly different.

Results

Expression of HMGB1 is decreased in platelets of PLT HMGB1-KO mice

First, the expression of PLT HMGB1 was assessed for both transgenic lines, specifically

Pf4-Cre Hmgb1fl/fl mice, referred to as PLT HMGB1-KO mice, and GFP mice. Platelets

were isolated and stained as described in the methods. Immunostaining showed that PLT

HMGB1 was decreased within PLT HMGB1-KO mice (Fig 1A and 1B) compared to GFP

mice (Fig 1C and 1D). Semi-quantification (Fig 1E) confirmed these results showing only

~7% of platelets in PLT HMGB1-KO mice stained positively for HMGB1, but 86% of

platelets in GFP mice stained positively for HMGB1. After verifying both transgenic lines

for the level of PLT HMGB1, further experiments were performed using PRP preparations

to investigate the effect of PLT HMGB1 within PRP preparations on tendon wound

healing.

PLOS ONE Platelet HMGB1 promotes tendon healing

PLOS ONE | https://doi.org/10.1371/journal.pone.0251166 September 16, 2021 4 / 18

https://doi.org/10.1371/journal.pone.0251166


PRP generated from PLT HMGB1-KO mice impairs tendon wound healing

Patellar tendon (PT) wounds of mice from each group were treated individually with PRP gen-

erated from either PLT HMGB1-KO mice or from GFP mice. A saline treatment was used as a

control treatment. Saline treated wound exhibited large unhealed wound areas (red arrows in

Fig 2A and 2D), whereas wounds treated with either KO-PRP or GFP-PRP in both mouse

groups (Fig 2B, 2C, 2E and 2F) showed better healing compared to saline treated wounds.

Further gross inspection showed that wound healing in the patellar tendons of PLT

HMGB1-KO mice displayed greater unhealed wound areas in all treatment groups (Fig 2B

and 2C, yellow and green arrow in B and C, respectively) compared to GFP mice (Fig 2E and

2F). PLT HMGB1-KO mice treated with GFP-PRP (Fig 2C) exhibited slightly better healing

compared to treatment with KO-PRP (Fig 2B). However, PLT HMGB1-KO mice treated with

KO-PRP (Fig 2B) had better healing than a saline treatment (Fig 2A, red arrow). These results

Fig 1. KO-PLTs contain much less HMGB1 than GFP-PLTs. A, B: HMGB1 expression in the platelets of

HMGB1-KO mice (KO-PLT); C, D: HMGB1 expression in the platelets of GFP mice (GFP-PLT); B, D: Enlarged

images of the box areas in the image A and C. E: Semi-quantification of positively stained platelets with HMGB1

confirms the results of immunostaining showing that only a few (~7%) platelets in HMGB1-KO mice are positively

stained with HMGB1 compared to more than 86.8% of platelets in GFP mice were positively stained with HMGB1.
�P< 0.01 (GFP-PLT vs. KO-PLT). Green bars: 50 μm; Yellow bars: 10 μm.

https://doi.org/10.1371/journal.pone.0251166.g001
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indicated that PLT HMGB1 within PRP preparations is required for promoting tendon

wound healing by PRP.

Histological analysis by H&E staining confirmed our gross inspection results. The wounds

in the patellar tendons of PLT HMGB1-KO mice healed poorly overall, while wounds in

GFP-PRP treated mice healed faster (Fig 3). Specifically, PLT HMGB1-KO mice treated with

KO-PRP still exhibited large unhealed areas (Fig 3B, black arrow), although GFP-PRP treated

Fig 2. PRP generated from PLT HMGB1-KO mice adversely affects wounded PT healing. Results show that

wounded PTs of PLT HMGB1-KO mice (KO mice) healed slower (A-C, red, yellow, and green arrows point to

unhealed area) than PTs in GFP mice (D-F). However, PRP (KO-PRP or GFP-PRP) treated wound (B, C, E, F) healed

much faster than the wounds treated with saline (A, D, red arrows). PT: Patellar tendon; KO-PRP: PRP prepared from

PLT HMGB1-KO mice; and GFP-PRP: PRP prepared from GFP mice.

https://doi.org/10.1371/journal.pone.0251166.g002
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KO mouse wound displayed better healing (Fig 3C) compared to that treated with KO-PRP

(Fig 3B). In contrast, GFP-mice treated with GFP-PRP had complete healing with a normal-

like tendon appearance (Fig 3F), while unhealed wound areas were found in GFP mice treated

with KO-PRP (Fig 3E, black arrow). GFP-PRP treated wounds in the patellar tendon of GFP

mice displayed newly formed tendon tissue in the wound area with normal-like tendon orga-

nization (Fig 3F). Saline treated tendons produced large unhealed wound areas in both mouse

Fig 3. Healing of wounded PTs treated with KO-PRP is impaired compared to that treated with GFP-PRP. H & E

staining results show that wounded patellar tendons (PTs) in PLT HMGB1-KO mice heal slower (A-C, black arrows in

B and C show unhealed and disorganized area) than GFP mice (D-F). Both KO-PRP and GFP-PRP treated wounds (B,

C, E, F) healed much faster than wounded patellar tendons treated with saline (A, D, red arrows point to large

unhealed area). KO-Mouse: PLT HMGB1-KO mouse; KO-PRP: PRP from PLT HMGB1-KO mice; and GFP-PRP:

PRP from GFP mice. Black bars: 100 μm.

https://doi.org/10.1371/journal.pone.0251166.g003
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groups (red arrows in Fig 3A and 3D), in contrast to PRP treatment which generally enhanced

healing in patellar tendons despite the model or form of PRP used as a treatment (Fig 3B–3F).

These results further confirm that PLT HMGB1 within PRP preparations is able to enhance

tendon healing, and without PLT HMGB1, tendon wound healing is impaired.

HMGB1 level in tendon matrix is low in PLT HMGB1-KO mice after PRP

treatment

Previous research has shown that the release of local HMGB1 from injured tissues can enhance

the healing and regeneration of skeletal, hematopoietic and muscle tissues in vivo [19]. Thus,

to further evaluate the role of PLT HMGB1 in PRP preparations in healing and repair, the

patellar tendons from each transgenic injury model with their respective PRP treatments were

evaluated for the release of tendon tissue specific HMGB1 at the site of injury. Each patellar

tendon was assessed with immunostaining for HMGB1 to determine whether the presence or

absence of PLT HMGB1 in both the GFP-PRP and KO-PRP may affect healing and repair

within our model. Our results showed that the acute injury model induced the release of

HMGB1 from local tendon tissue surrounding the wound area to the tendon matrix in both

GFP mice and PLT HMGB1-KO mice, as evidenced by positively stained HMGB1 (red fluo-

rescence in Fig 4). However, reduced levels of HMGB1 can be seen within the tendon matrix

Fig 4. HMGB1 expression in KO-PRP treated wound is much lower than GFP-PRP treated wound. Higher levels

of HMGB1 are found in the wound areas of GFP tendons (M-X) than that of PLT HMGB1-KO mouse patellar tendons

(A-L). GFP-PRP treated wound areas (I-L, and U-X) have much more HMGB1 than the wounds treated with saline

(A-D, and M-P). KO-PRP: PRP from PLT HMGB1-KO mice; and GFP-PRP: PRP from GFP mice. Immunostaining.

White bars: 200 μm; Yellow bars: 50 μm.

https://doi.org/10.1371/journal.pone.0251166.g004
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of PLT HMGB1-KO mice (Fig 4A–4L) in comparison to the elevated level of HMGB1 released

in tendons of GFP mice (Fig 4M–4X). Fluorescent image analysis indicated that GFP-PRP

treatment increased the levels of HMGB1 in the tendon matrix of both transgenic mouse lines

specifically due to treatment with GFP-PRP (Fig 4I–4L and 4U–4X). However, the concentra-

tions of locally released HMGB1 in the tendons treated with PLT HMGB1-KO PRP were not

significantly increased (Fig 4E–4H). Thus, PLT HMGB1 is able to enhance the presence of

local HMGB1 at the injury site.

PRP from PLT HMGB1-KO mice increases inflammation in wounded

tendon

Using immunostaining, collected patellar tendon tissues were analyzed for CD68, a marker of

M1 pro-inflammatory macrophages [20,21]. Overall, the levels of CD68 in the wound areas of

PLT HMGB1-KO mice (Fig 5A–5F) were much higher than those of GFP mice (Fig 5G–5L).

Many CD68 positive cells were found in wounded tendons of both groups of mice treated with

saline (Fig 5A, 5B, 5G and 5H) suggesting a high level of tissue inflammation. In PLT

HMGB1-KO mice, GFP-PRP treatment decreased CD68 expression (Fig 5E and 5F) com-

pared to PRP from KO mice (Fig 5C and 5D). However, in GFP mice, treatment with

GFP-PRP significantly decreased positively stained CD68 cells (Fig 5K and 5L) compared to

the same group treated with PRP from KO mice (Fig 5I and 5J). Taken together, these results

suggest that ablation of PLT HMGB1 in PRP results in significant levels of CD68+ M1 macro-

phages in treated tendon tissues, while M1 cells are greatly reduced in tendons treated with

normal PRP treatments. Semi-quantification supports these results (Fig 5M), showing that

GFP-PRP is able to reduce the level of CD68+ M1 macrophages in both transgenic mouse

lines, while both saline and KO-PRP are largely similar in the level of CD68+ cells.

Stem cell marker expression is reduced in wounded mouse tendons treated

with PRP from PLT HMGB1-KO

HMGB1 have been shown to enhance tissue repair by recruiting resident stem cells [22]. Thus,

to assess the effect of PLT HMGB1 on resident stem cells, patellar tendon tissues were immu-

nostained for CD146 and CD73 stem cell marker expression [23,24]. GFP-PRP treatment of

both transgenic mouse lines recruited stem cells to the wound areas, as shown by elevated

CD146+ cells within GFP-PRP treated tendons (Fig 6E, 6F, 6K and 6L) compared to tendons

treated with KO-PRP (Fig 6C, 6D, 6I and 6J). However, few CD146+ cells can be seen in the

saline-treated tendons of PLT HMGB1-KO mice (Fig 6A and 6B) compared to saline treat-

ment of GFP mice (Fig 6G and 6H). Overall, higher levels of CD146+ cells were found in the

tendons of GFP mice (Fig 6G–6L) compared to PLT HMGB1-KO tendons (Fig 6A–6F).

Semi-quantification supports these results (Fig 6M), showing that GFP-PRP treatment ele-

vated CD146+ cells in both transgenic lines, with the highest levels found within GFP mice.

Similar results were found with CD73 levels in wounded tendons (Fig 7). Few CD73+ cells

can be seen within saline-treated tendons of PLT HMGB1-KO mice (Fig 7A and 7B), com-

pared to saline treated GFP mice (Fig 7G and 7H). Overall, both PLT HMGB1-KO PRP and

GFP-PRP were able to increase the level of CD73+ cells but to different degrees. GFP-PRP

treatment increased CD73+ cells in both mouse lines (Fig 7E, 7F, 7K and 7L), surpassing the

effect of PLT HMGB1-KO PRP on CD73 levels (Fig 7C, 7D, 7I and 7J). Semi-quantification

of CD73 staining supports these results (Fig 7M), with GFP-PRP treatment producing elevated

CD73+ cells in both transgenic lines with the highest levels in the treated tendons of GFP mice.

Taken together, these results suggest that HMGB1 ablation in PLTs can negatively affect ten-

don wound healing by decreasing stem cell recruitment.
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PRP from PLT HMGB1-KO mice impairs collagen III production in

wounded tendons

Collagen type III (Col III) has an important role in the healing and repair of wounded tendons

[25]. Immunostaining for Col III was carried out to assess healing within wounded and treated

patellar tendons. Overall, Col III expression was higher in the treated tendons of GFP mice

(Fig 8G–8L) compared to tendons in PLT HMGB1-KO mice (Fig 8A–8F). Also, GFP-PRP

treatment increased Col III levels in wounded tendons in both mouse lines (Fig 8E, 8F, 8K

and 8L), compared to PLT HMGB1-KO PRP treatment (Fig 8C, 8D, 8I and 8J). The results

indicate that in contrast to normal PLTs in GFP mice, HMGB1-ablated PLTs impair tendon

wound healing due to decreased Col III levels. Semi-quantification supports this conclusion

(Fig 8M), with the GFP-PRP treatment surpassing the KO-PRP treatment in Col III

Fig 5. Macrophage marker CD68 expression is much higher in KO-PRP treated wound than GFP-PRP treated

wound. Higher levels of CD68 are found in the wound areas of PLT HMGB1-KO mouse patellar tendons (A-F) than

that of GFP mouse tendons (G-L). GFP-PRP treated wound areas (E, F, and K, L) have decreased CD68 expression

compared with saline treated wounds (A, B, and G, H). Semi-quantification (M) confirms the results. �P< 0.01

(KO-PRP vs. GFP-PRP). KO-PRP: PRP from PLT HMGB1-KO mice; and GFP-PRP: PRP from GFP mice.

Immunostaining. White bars: 200 μm; Yellow bars: 50 μm.

https://doi.org/10.1371/journal.pone.0251166.g005
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production. Finally, similar to other results above, GFP-PRP treatment was able to produce

the highest Col III production in GFP mice.

Discussion

This study investigated the effect of platelet-derived HMGB1 in PRP on wounded tendon heal-

ing using a transgenic mouse line with a specific platelet HMGB1 ablation. Our results demon-

strated that in an acute patellar tendon injury model treated with PRP from mice lacking

platelet-derived HMGB1, tendon healing was impaired. Impaired tendon healing was charac-

terized by a decrease in local HMGB1 release from injured tissues, an increase in CD68+ M1

macrophage cells, a decrease in CD146+ and CD73+ stem cells, and a decrease in Col III con-

tent. In contrast, treatment with PRP from GFP-mice increased local HMGB1 concentrations

Fig 6. Stem cell marker CD146 expression is much lower in KO-PRP treated wound than GFP-PRP treated

wound. Very low levels of CD146 are found in the wound areas of KO-PRP treated mice (A-F) compared GFP

tendons which have much higher level of CD146 expression (G-L). GFP-PRP treated wound areas (E, F, and K, L)

have much more CD146 than the wounds treated with saline (A-D, and G-J). Semi-quantification (M) confirms the

results. �P< 0.01 (KO-PRP vs. GFP-PRP). KO-PRP: PRP from PLT HMGB1-KO mice; and GFP-PRP: PRP from GFP

mice. Immunostaining. White bars: 200 μm; Yellow bars: 50 μm.

https://doi.org/10.1371/journal.pone.0251166.g006
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in the wound area, reduced the recruitment of inflammatory cells to wounded tendons,

increased the recruitment of stem cells, and increased Col III levels. Although the wounds

treated with PLT HMGB1-KO PRP healed faster than the wounds treated with saline, they

healed much slower in comparison to wounds treated with GFP-PRP. This slowed healing is

likely due to the ablation of PLT HMGB1 in these mice, with our results showing the expres-

sion of minimal amounts of PLT HMGB1 (Fig 1) that may still facilitate some level of healing

compared to the saline treatment. Our results also demonstrated that GFP-PRP treatment

enhanced wounded tendon healing in both mouse lines, however to a greater extent in GFP

mice than in PLT HMGB1-KO mice. In GFP mice, endogenous HMGB1 in addition to PLT

HMGB1 within GFP-PRP were likely collectively involved in enhancing tendon healing. Thus,

our results showed that HMGB1 in platelets is a critical factor in PRP treatment, and the

Fig 7. Stem cell marker CD73 expression is much lower in KO-PRP treated wound compared to GFP-PRP treated

wound. Very low levels of CD73 are found in the wound areas of KO-PRP mouse patellar tendons (A-F) compared to

GFP tendons, which have much higher levels of CD73 expression (G-L). However, both KO-PRP and GFP-PRP

treated wound areas (C-F, and I-L) have more CD73 than the wounds treated with saline (A, B, and G, H). Semi-

quantification (M) confirms the results. �P< 0.01 (KO-PRP vs. GFP-PRP). KO-PRP: PRP from PLT HMGB1-KO

mice; GFP-PRP: PRP from GFP mice. Immunostaining. White bars: 200 μm; Yellow bars: 50 μm.

https://doi.org/10.1371/journal.pone.0251166.g007
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efficacy of PRP treatment for tendon injuries in clinics may depend on the level of PLT

HMGB1 within PRP preparations.

Tendon injury is one of the most common musculoskeletal injuries that can persist for

years with poorly repaired tendon leading to further re-injury. In current clinical practices,

PRP is widely used to treat tendon injuries [2,26], with a number of studies showing that PRP

treatment promotes the healing and physical function of wounded tendon [1,2,5,27]. These

beneficial effects are attributed to the platelets in PRP, the role of which is well-established in

wound healing and tissue repair [28]. In fact, platelets are the “first responders” during wound-

ing that trigger platelet activation and aggregation [29]. Once activated, platelets release many

factors (e.g. cytokine and growth factors) to enhance healing of injured tissues [30].

Fig 8. Tendon matrix marker collagen III expression is much lower in KO-PRP treated wound than GFP-PRP

treated wound. Very low levels of collagen III (Col III) are found in the wound areas of KO-PRP mouse patellar

tendons (A-F) compared to GFP tendons with higher levels of Col III (G-L). KO-PRP and GFP-PRP treated wound

areas (C-F, and I-L) have more Col III than the wounds treated with saline (A, B, and G, H). Semi-quantification (M)

confirms the results. �P< 0.01 when KO-PRP treatment is compared to GFP-PRP treatment. KO-PRP: PRP from PLT

HMGB1-KO mice; GFP-PRP: PRP from GFP mice. Col III: Collagen type III. Immunostaining. White bars: 200 μm;

Yellow bars: 50 μm.

https://doi.org/10.1371/journal.pone.0251166.g008
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In particular, HMGB1, which is abundant in platelets [13,15,31], is also released by acti-

vated platelets. It has been shown that HMGB1 released by injured tissues promotes tissue

repair by inducing migration and proliferation of stem cells [32–34]. Locally released HMGB1

recruits bone marrow-derived mesenchymal stem cells (MSCs), and promotes the prolifera-

tion and differentiation of tissue-associated resident stem cells [11,34,35]. For instance, vascu-

larization of regenerating tissue is compromised in the absence of leukocyte HMGB1 in a

mouse model lacking HMGB1 in the hematopoietic system, but vessel number and vascular

area were significantly higher in the presence of leucocyte HMGB1 [36]. This study indicated

that leukocyte HMGB1 controls the nutrient and oxygen supply to the regenerating tissue. A

study demonstrating the role of HMGB1 in muscle regeneration has shown that heterozygous

HMGB1+/− mice, which express 50% less HMGB1 when compared with wild type mice, have

delayed muscle regeneration after acute injury [37]. Fully reduced frHMGB1 has been gaining

much attention as a chemoattractant that orchestrates tissue regeneration [19,22]. This subse-

quent increase in stem cells in response to HMGB1 administration suggested that the regener-

ative properties of HMGB1 were mediated by muscle stem cells and high expression of

HMGB1 is required for optimal skeletal muscle regeneration [22]. Exogenous administration

of a single dose of HMGB1, either locally or systemically, promoted tissue repair by targeting

endogenous stem cells. Using HMGB1−/− mice, they identified the underlying mechanism as

the transition of quiescent stem cells from G0 to GAlert, and these primed cells rapidly respond

to appropriate activating factors released upon injury. These studies support our findings by

highlighting the role of HMGB1 as a chemoattractant that promotes regeneration of wounded

tendons by recruiting stem cells to injury site.

Macrophages are known to play an essential role in orchestrating inflammation and tissue

repair [38]. Macrophages secrete various growth factors and signaling molecules and are thus

involved in the regulation of inflammation, wound healing, and tissue repair [39]. Our find-

ings show that active inflammation is present within wounds treated with PRP from PLT

HMGB1-KO mice as indicated by the presence of CD68+ M1 macrophages [40], in contrast

those treated with PRP from GFP mice. Inflammation can have a detrimental effect on healing.

Chronic wounds fail to heal because they are stalled in an early inflammatory state during

wound healing [41]. For acute injuries, prolonged inflammation can lead to slow healing

which may cause the wound to enter a chronic state and fail to heal [42]. Thus, controlling

inflammation may be an important step in preventing certain acute injuries from progressing

to a chronic state. Research has shown that HMGB1 is able to mediate macrophage polariza-

tion [43]. M1 macrophages are characterized by a proinflammatory phenotype which produces

proinflammatory cytokines, phagocytosis of microbes, and initiate an immune response [20].

M2 phenotype macrophages are a tissue-healing phenotype that releases more HMGB1, which

may activate stem cells and promote tissue healing [44,45]. The switch from a proinflamma-

tory M1 to a tissue-healing M2 phenotype in macrophages is an essential step in muscle regen-

eration to limit the inflammatory response [21,46]. Our results have shown that local HMGB1

is released in high levels in the wounded tendon matrix when treated with PRP from GFP

mice as opposed to low levels of local HMGB1 release due to treatment with KO-PRP. This ele-

vated level of local HMGB1 expression may help switch M1 macrophages to tissue healing M2

phenotype that may enhance healing [47]. Further research however is needed to evaluate the

effect of PLT HMGB1 on the M2 phenotype and on macrophage polarization in an acute ten-

don injury model.

As described above, many studies have demonstrated that HMGB1 activates endogenous

stem cells to accelerate tissue regeneration [19,22]. Our results indicated that tendon wounds

treated with PRP from mice lacking platelet-derived HMGB1 harbor a reduced number of

CD146+ and CD73+ stem cells (Figs 6 and 7). Our results indicate that both platelet and local
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HMGB1 facilitates stem cell migration in normal wound healing. Our results also demonstrate

high level of Col III expression in wounds treated by “regular PRP” (GFP-PRP) suggesting

“normal” wound healing was occurring, in contrast to the low level in KO mice PRP treated

ones. Although Col III is not a major component of the normal tendon, it is believed to play

an important role during the healing process because of its ability to form rapid crosslinks and

stabilize the repair site [25].

There are certain limitations with this study. As our resource for PLT HMGB1-KO mice is

limited, our study only evaluated healing and repair at a single, relatively short time point (or 7

days post-injury) and only focused on the assessment of a limited number of cell markers. Fur-

ther research is needed within a longer healing timeframe to further assess the effect of the

ablation of PLT HMGB1 on tendon healing and repair.

In conclusion, this study has demonstrated that PLT HMGB1 within PRP plays an impor-

tant role in healing wounded tendon by decreasing inflammation, increasing local HMGB1

levels, and recruiting stem cells to the wound area. These results provide the first evidence for

the role of PLT HMGB1 within PRP as a therapeutic treatment to promote tendon wound

healing. Our findings suggest that the efficacy of PRP treatment for tendon injuries in clinics

may depend on PLT HMGB1 within PRP preparations.
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