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Understanding how building blocks of life contribute to physiology is greatly aided
by protein identification and cellular localization. The two main labeling approaches
developed over the past decades are labeling with antibodies such as immunoglobulin
G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs
are large proteins (150 kDa), which limits penetration depth and uncertainty of target
position caused by up to ∼25 nm distance of the label created by the chosen targeting
approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered
as part of fusion proteins because they consist of multiple independent translated
chains. In the last decade single domain antigen binding proteins are being explored
in bioscience as a tool in revealing molecular identity and localization to overcome
limitations by IgGs. These nanobodies have several potential benefits over routine
applications. Because of their small size (15 kDa), nanobodies better penetrate during
labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be
fused with other cDNA. Multidomain proteins can thus be easily engineered consisting
of domains for targeting (nanobodies) and visualization by fluorescence microscopy
(fluorescent proteins) or electron microscopy (based on certain enzymes). Additional
modules for e.g., purification are also easily added. These nanobody-based probes can
be applied in cells for live-cell endogenous protein detection or may be purified prior
to use on molecules, cells or tissues. Here, we present the current state of nanobody-
based probes and their implementation in microscopy, including pitfalls and potential
future opportunities.

Keywords: nanobody, chromobody, fluobody, probes, light microscopy, super-resolution microscopy, electron
microscopy, tagging

INTRODUCTION

Defining protein identity and visualizing protein localization is fundamental in biology.
Uncovering dynamics of protein localization and function were boosted when green fluorescent
protein (GFP) and other fluorescent proteins (FPs) were developed and used to tag proteins
of interest (Tsien, 1998; Giepmans et al., 2006; Rodriguez et al., 2017). Advantages of these
chimeric fusion proteins include the lack of distance between protein of interest and label,
thereby improving the resolution, as well as the specificity of labeling derived from the genetic
fusion. Disadvantages include modification of the target protein, with the consequence that
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unmodified endogenous proteins cannot be studied (Giepmans
et al., 2006). To detect endogenous proteins, immunolabeling
using antibodies (immunoglobulins, mostly of the IgG isotype;
IgGs) conjugated with small fluorophores are typically
applied. However, for intracellular targeting IgGs require
plasma membrane permeabilization leading to a damaged
ultrastructure (Schnell et al., 2012). Furthermore, IgGs are
large (∼150 kDa; ∼14 nm long; Table 1). This may result
in a distance greater than 25 nm between target and label in
indirect conventional immunolabeling, the so-called linkage
error (Muyldermans, 2013; Mikhaylova et al., 2015). In addition,
IgGs are multidomain proteins which require post-translational
modifications (Muyldermans, 2013) and therefore preclude
routine controlled genetic modification and modular expression
in conjunction with e.g., GFP.

Nanobodies are single variable domains of heavy-chain only
antibodies (hcAB) derived from Camelidae species (Hamers-
Casterman et al., 1993; Muyldermans, 2013; Helma et al.,
2015; Van Audenhove and Gettemans, 2016), but do not
compromise in the binding-affinity compared to IgGs, due
to its complementarity-determining region (CDR) organization
(Muyldermans et al., 2001; Muyldermans, 2013; Beghein and
Gettemans, 2017). Nanobodies have been explored since 2006
as labeling tools in light microscopy (LM) (Rothbauer et al.,
2006), because of the several potential advantages of nanobodies
over other labeling techniques. Nanobody-mediated targeting
for protein identification is more precise than IgG targeting,
as nanobodies are only ∼15 kDa with a diameter of 2–3 nm
(Table 1) and can be encoded by a relative short stretch single
cDNA of 360 base pairs (Van Audenhove and Gettemans, 2016;
Traenkle and Rothbauer, 2017; Carrington et al., 2019). This
cDNA can genetically be fused to FPs cDNAs for intracellular
(live-cell) imaging or tags can be added for purification and
chemical modifications. Like IgGs, customized nanobodies can
be created against a protein of interest and the cDNA can be

shared free of charge, as opposed to IgGs (Zuo et al., 2017;
McMahon et al., 2018). Here, an overview is given about the past
and potential future of nanobody application in microscopy.

NANOBODIES IN LIGHT MICROSCOPY

Nanobodies (see Box 1 for terminology) can be expressed in
cells conjugated to a detection module (like GFP) to target
endogenous intracellular proteins, or they can be expressed,
purified and then applied in immunolabeling resembling
traditional immunofluorescence approach. Conventional
immunolabeling is performed using IgGs, but for an improved
penetration nanobodies can be used as an alternative (Fang et al.,
2018). The improved penetration of nanobodies is illustrated
in nuclear labeling of anti-GFP labeling targeting Histone2B
(H2B)-GFP. Note that, in an equal labeling time, the nanobodies
are colocalizing in the nucleus with the GFP, whereas the IgGs are
mainly localized in the cytoplasm (Figure 1A). Though the anti-
GFP is the best characterized and most used nanobody to date
(Table 2), nanobodies are also used for visualizing endogenous
proteins (Figure 1B and Table 2). Finally, nanobodies can
be applied for live-cell imaging, both as purified proteins
typically targeting extracellular antigens or being expressed
from its introduced cDNA and targeted to intracellular antigens
(Rothbauer et al., 2006; Ries et al., 2012).

cDNA Delivery of Chromobodies for
Intracellular Targeting
The first nanobody-based visualization of intracellular targets
was achieved by the fusion to FPs (“chromobodies” Rothbauer
et al., 2006; Table 1), being expressed in the target cells.
Since then more nanobodies where developed targeting proteins
inside cells (Table 2, delivered as cDNA). These intracellular
chromobodies have been applied in small organisms like Danio

TABLE 1 | Overview of different probes used in microscopy.

IgG FP Nanobody Chromobody Fluorescent
nanobody

APEX2-Nanobody FLIPPER-body

Reagent

Synonyms - - VhH, sdAB Fluorescent intrabody Fluobody - HRP-mCherry nanotrap

Size (kDa) 150 27 15 42 15 43 86

Cellular expression

Endogenous detection

Live-cell LM * *

EM * *

Color code positive moderate Negative

*Requires secondary labeling step.
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BOX 1 | Nanobody terminology Nanobody
Synonyms: single domain antibody (sdAB), variable domain of heavy-chain only antibody (VhH), nAbs.
Small antigen binding protein, derived from heavy-chain only antibodies (hcAB). These are produced in cell culture or in bacteria.
Intrabody
The cDNA of this probe is expressed in the cells for intracellular antigen targeting.
Chromobody
Synonyms: Fluobody, fluorescent nanobody.
Genetic fusion of intrabody and fluorescent protein. Direct visualization with microscopy is possible.
Labeled nanobodies
Synonyms: fluobody, fluorescent nanobody.
Nanobodies protein purified and tagged in vitro with e.g., a chemical dye.

FIGURE 1 | Nanobodies improve penetration and detect endogenous
proteins. (A) Anti-GFP nanobody labeling (mCherry and peroxidase fused) and
IgG labeling in H2B-GFP expressing cells. Cells permeabilized for 5 min with
0.1% Triton before labeling. Nanobodies and primary and secondary
antibodies incubated for 1 h each. Note the colozalization between GFP and
mCherry (nanobody), most prominently in the low-expressing cells, while
Alexa Fluor 594 (IgG) mainly localizes in the cytoplasm. (B) High HER2
expressing cells, SkBr3, labeled with nanobodies targeting HER2. Overlay of
nanobody fluoresence and EM image. Note the positive labeling at cell-cell
contact sites. Bars: 10 µm. Reproduced from De Beer et al. (2018),
http://creativecommons.org/licenses/by/4.0/.

rerio (Panza et al., 2015), Drosophila melanogaster (Harmansa
et al., 2017), Caenorhabditis elegans (Pani and Goldstein,
2018) and Toxoplasma gondii (Tosetti et al., 2019) allowing
live-cell and intravital microscopy. Intracellular expression of
chromobodies in mice was successfully achieved by infecting
the mice with adeno-associated viral particles containing the
coding sequence of the chromobody (Figure 2A) (Wegner et al.,
2017). Importantly, these chromobody approaches opens the
opportunity for intravital imaging of endogenous proteins.

Next to defining protein localization, chromobodies can
also relay functional changes in cells by fusing the nanobody
to a fluorescent sensor for e.g., Ca2+ or pH (Prole and
Taylor, 2019). For instance, anti-GFP nanobodies are fused
to a Ca2+ sensor targeting GFP labeled mitochondria (Zhao
et al., 2011). The nanobody facilitates the Ca2+ sensor to be
in close proximity of the mitochondria to allow for Ca2+

dependent fluorescence readout. This results in the imaging
of the local Ca2+ concentrations upon different stimuli. In
the same study, anti-GFP nanobodies were conjugated to a
SNAP-tag, a 20 kDa protein, modified from the human DNA
repair protein O6-alkylguanine-DNA alkyltransferase (Keppler
et al., 2003). The SNAP-tag is used to recruit a chemical dye,
which facilitates live-cell imaging for Chromophore-Assisted
Light Inactivation (CALI) (Jacobson et al., 2008): laser-induced

subcellular destruction of a protein of interest. Thus nanobodies
allow precise molecular targeting and enable analysis of
the function of biomolecules, as well as precise protein
manipulation with CALI allowing a direct cause/consequence
study in living cells.

Fluorescence Signal From Unbound Chromobodies
Despite the success of chromobodies as intracellular probes,
a disadvantage is their continued presence. Chromobodies
fluoresce whether or not they bind to their target, as opposed
to immunolabeling techniques that include multiple wash-out
steps for unbound reagents or genetic fusions between target
and FPs. To reduce the signal from non-bound chromobodies,
conditionally stable chromobodies have been developed (Tang
et al., 2016b). These modified anti-GFP chromobodies are
instable and rapidly degraded by the proteasome. When
stabilized, however, these chromobodies will bind their target and
consequently will no longer be degraded. Indeed, engineering
and application of conditionally stable anti-GFP chromobodies
resulted in a reduced background fluorescence (Tang et al.,
2016b). The mutations in the genetically modified nanobodies are
highly conserved within nanobodies and therefore the switching
from stable to instable nanobodies is generically applicable.

Non-targeted fluorescence can also be reduced by enhancer
nanobodies (Roebroek et al., 2015). When the enhancer
nanobodies bind with GFP, it increases the fluorescence and
stability of the GFP. Enhancer nanobodies were also applied in
a method to track single molecules in live-cell imaging (Ghosh
et al., 2019). Here, an array of nanobodies is fused to the protein
of interest, and expressed in cells with cytosolic monomeric GFP.
Upon GFP binding to the array of nanobodies, the GFP molecules
increase in fluorescent intensity, resulting in an increased signal-
to-noise ratio. This binding can in the microscope be seen as
a single dot, that represents a single protein of interest. In
conclusion, the signal-to-noise ratio of chromobodies can be
improved by degrading unbound chromobodies or by enhancing
the fluorescence of bound FPs, which both will be beneficial in
the detection of proteins.

Delocalization of Targeted Proteins
Modifying cellular systems, in any way, may of course result
in altered biology (Schnell et al., 2012). Interactions between
endogenous proteins and ectopically expressed chromobodies
can potentially influence the localization and function of the
protein of interest. Binding of nanobodies to their target during

Frontiers in Cellular Neuroscience | www.frontiersin.org 3 November 2020 | Volume 14 | Article 573278

http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-14-573278 October 27, 2020 Time: 18:41 # 4

de Beer and Giepmans Nanobody-Based Probes in Microscopy

TABLE 2 | Nanobody implemented in microscopy – An overview of targets that have been visualized using nanobodies and microscopy.

Target Delivered as Technique References

Actin cDNA or
Protein

LM / SR Rocchetti et al., 2014; Panza et al., 2015; Plessner et al., 2015; Moutel et al., 2016;
Periz et al., 2017; Wegner et al., 2017; Abdellatif et al., 2019; Tosetti et al., 2019

Active β2-Ars cDNA LM Irannejad et al., 2013

Alexandrium
Minutum

cDNA LM Mazzega et al., 2019

ALFA-tag cDNA or
Protein

LM / SR Gotzke et al., 2019

AMIGO-1 cDNA LM Dong et al., 2019

Amyloid β Protein LM Li et al., 2016

Arabidopsis
Thaliana

Protein EM De Meyer et al., 2014

ARTC2 Protein LM Bannas et al., 2015a,b

ATP7B cDNA LM Huang et al., 2014

bacteriophage p2 Protein EM De Haard et al., 2005

BC2-tag Protein LM / SR Braun et al., 2016; Virant et al., 2018

β-catenin cDNA or
Protein

LM Traenkle et al., 2015; Hebbrecht et al., 2020

BFP Protein SR Sograte-Idrissi et al., 2019

CapG cDNA LM De Clercq et al., 2013; Van Audenhove et al., 2013; Van Impe et al., 2008

CD11b Protein LM / CLEM Rashidian et al., 2015; Duarte et al., 2016; Fang et al., 2018; Wöll et al., 2018; Cheloha
et al., 2019

CEA Protein LM Hafian et al., 2014; Ramos-Gomes et al., 2018

C.Jejuni Protein LM Riazi et al., 2013

Clostridium Difficile
toxin

Protein LM Pizzo et al., 2018

Cortactin cDNA LM Van Audenhove et al., 2014, 2015; Bertier et al., 2018; Hebbrecht et al., 2020

Ebolavirus Protein LM Darling et al., 2017; Sherwood and Hayhurst, 2019

EGFR Protein LM / CLEM Iqbal et al., 2010a; Oliveira et al., 2012; Van De Water et al., 2012; Zarschler et al.,
2014; Kooijmans et al., 2016; Krüwel et al., 2016; Van Driel et al., 2016; De Beer et al.,
2018; Beltrán Hernández et al., 2019; Karges et al., 2019

Eps15 cDNA LM Traub, 2019

Extracellular
vesicles

Protein EM Popovic et al., 2018

Fascin cDNA LM Van Audenhove et al., 2015; Gross et al., 2016

FGFR1 cDNA LM Monegal et al., 2009

γ-H2Ax cDNA LM Rajan et al., 2015

GPCR cDNA SR Sungkaworn et al., 2017

Gelsolin cDNA LM Van Impe et al., 2008; Van Den Abbeele et al., 2010; De Clercq et al., 2013; Van
Audenhove et al., 2013

Gephyrin cDNA LM Dong et al., 2019

GFAP Protein LM / CLEM Li et al., 2012; Fang et al., 2018

GFP / YFP cDNA or
Protein

LM / SR/
CLEM

Rothbauer et al., 2006, 2008; Bazl et al., 2007; Schornack et al., 2009; Kirchhofer
et al., 2010; Caussinus et al., 2011; Casas-Delucchi et al., 2012; Han et al., 2012; Li
et al., 2012; Pellis et al., 2012; Ries et al., 2012; Herce et al., 2013, 2017; Szymborska
et al., 2013; Truan et al., 2013; Bleck et al., 2014; Wang et al., 2014; Ariotti et al., 2015,
2017, 2018; Finnigan et al., 2015; Harmansa et al., 2015, 2017; Kamiyama et al., 2015;
Kaplan and Ewers, 2015; Katoh et al., 2015; Klamecka et al., 2015; Nieuwenhuizen
et al., 2015; Platonova et al., 2015a,b; Roebroek et al., 2015; Shin et al., 2015;
Wedeking et al., 2015; Berry et al., 2016; Chamma et al., 2016, 2017; Drees et al.,
2016; Gross et al., 2016; Harper et al., 2016; Joensuu et al., 2016; Künzl et al., 2016;
Moutel et al., 2016; Tang et al., 2016a,b; Teng et al., 2016; Wendel et al., 2016;
Katrukha et al., 2017; Roder et al., 2017; Almuedo-Castillo et al., 2018; Buser et al.,
2018; De Beer et al., 2018; Gadok et al., 2018; Klein et al., 2018; Pani and Goldstein,
2018; Temme et al., 2018; Buser and Spiess, 2019; Cramer et al., 2019; Ghosh et al.,
2019; Mann et al., 2019; Osswald et al., 2019; Prole and Taylor, 2019; Seitz and
Rizzoli, 2019; Sograte-Idrissi et al., 2019; Farrants et al., 2020; Joshi et al., 2020

(Continued)
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TABLE 2 | Continued

Target Delivered as Technique References

Gp41 (HIV) cDNA LM Lutje Hulsik et al., 2013; Boersma et al., 2019

H2A-H2B cDNA LM Jullien et al., 2016

HER2 Protein LM / CLEM Kijanka et al., 2013; Rakovich et al., 2014; Zou et al., 2015; D’Hollander et al., 2017;
Kijanka et al., 2017; De Beer et al., 2018; Ramos-Gomes et al., 2018; Martinez-Jothar
et al., 2019; Debie et al., 2020

HIF-1α Protein LM Groot et al., 2006

HIV-1 cDNA LM / SR Helma et al., 2012

Heterochromatin
Protein 1α

cDNA or
Protein

LM Moutel et al., 2016

Homer1 cDNA or
Protein

LM / SR Dong et al., 2019

Human Neonatal
Fc Receptor

Protein LM Andersen et al., 2013

Huntingtin cDNA LM Southwell et al., 2008; Maiuri et al., 2017

IGFBP7 Protein LM Iqbal et al., 2010b; Tomanek et al., 2012

IRSp53 cDNA LM Dong et al., 2019

Lamin cDNA or
Protein

LM / SR Rothbauer et al., 2006; Schmidthals et al., 2010; Roder et al., 2017; Klein et al., 2018

L-plastin cDNA LM Delanote et al., 2010; De Clercq et al., 2013

LY-6C/6G Protein CLEM Fang et al., 2018

Marburgvirus Protein LM Darling et al., 2017; Sherwood and Hayhurst, 2019

MHC II Protein LM Rashidian et al., 2015; Duarte et al., 2016; Cheloha et al., 2019

Mouse IgG Protein LM / SR Pleiner et al., 2018

NFT2 cDNA LM Van Audenhove et al., 2013

NTA domain
cortactin

cDNA LM Bertier et al., 2018

Nup35 Protein SR Ma et al., 2017

Nup37 Protein SR Ma et al., 2017

Nup85 Protein LM / SR Pleiner et al., 2015

Nup93 Protein LM / SR Pleiner et al., 2015; Göttfert et al., 2017

Nup98 Protein LM / SR Pleiner et al., 2015; Göttfert et al., 2017

Nup155 Protein LM / SR Pleiner et al., 2015

n-WASP cDNA LM Hebbrecht et al., 2017

p53 cDNA or
Protein

LM Moutel et al., 2016

PARP1 cDNA LM Buchfellner et al., 2016

PCNA cDNA LM Burgess et al., 2012; Panza et al., 2015; Schorpp et al., 2016

PepTag cDNA LM Traenkle et al., 2020

PFR1 Protein LM Obishakin et al., 2014

POM121 Protein SR Ma et al., 2017

PSMA Protein LM Fan et al., 2015

Rabbit IgG Protein LM / SR Pleiner et al., 2018

RFP / mCherry cDNA or
Protein

LM / SR /
CLEM

Ries et al., 2012; Bleck et al., 2014; Platonova et al., 2015a,b; Wedeking et al., 2015;
Moutel et al., 2016; Teng et al., 2016; Ariotti et al., 2018; Buser et al., 2018; Buser and
Spiess, 2019; Cramer et al., 2019; Prole and Taylor, 2019; Sograte-Idrissi et al., 2019

SAPAP2 cDNA LM Dong et al., 2019

NAP-25 Protein LM / SR Maidorn et al., 2019

Survivin cDNA LM Beghein and Gettemans, 2017

Syntaxin 1A Protein LM / SR Maidorn et al., 2019

Tau
(phosphorylated)

Protein LM Li et al., 2016

Tubulin cDNA or
Protein

LM / SR Olichon and Surrey, 2007; Mikhaylova et al., 2015; Moutel et al., 2016

VEGFR cDNA LM Ahani et al., 2016

Vimentin cDNA or
Protein

LM / SR Maier et al., 2015, 2016; Klein et al., 2018

VSG Protein LM Stijlemans et al., 2004

Vsig4 Protein LM Zheng et al., 2019

Vγ9Vδ2-T cell Protein LM De Bruin et al., 2016

EM, electron microscopy; SR, super resolution fluorescence microscopy; CLEM, correlated LM/EM.
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FIGURE 2 | Nanobodies delivered for intracellular live-cell imaging. (A) Chromobodies cDNA loaded in e.g., adeno-associated viral particles (AAV). These viruses are
used to infect cells in culture or in animals e.g., mouse. (B) Magnetic optical dimerization tool exists of two nMagHigh1 and pMagHigh1. Here, the nMagHigh1 is
fused to nanobody fragment containing CDR1/2 and pMagHigh1 is fused to nanobody fragment containing CDR3. Upon stimulation of light, the magnetic tool
paired together, resulting in restoring the nanobody. (C) Fluorescent nanobodies in e.g., oligomers can be taken up via endocytosis. Here, when endosomal rupture
is induced, the free fluorescent nanobodies can bind to their target. (D) Microfluidic cell squeezing for temporary cell permeabilization. Purified fluorescent
nanobodies are present in the medium, and diffuse into the accessible cytoplasm. (E) MoonTag: array of 24 peptide sequence repeat allows visualization of single
molecules directly following translation by signal amplification. Chromobodies accumulate at the peptide chain. Major inspiration for this cartoon is from Roder et al.
(2017), Klein et al. (2018), Boersma et al. (2019), Yu et al. (2019).

or post-translationally may disrupt proper protein folding,
macromolecule organization and/or transport. Despite the often-
highlighted benefits of nanobody-technology, like any other
technique their use should be validated including the effect on
protein localization. Artificial modifying localization of proteins
can be used on purpose for targeted interference. Chromobodies
targeting endogenous actin-binding proteins, like gelsolin and
cortactin, led to a disturbed actin distribution (Van Audenhove
et al., 2013; Hebbrecht et al., 2017; Wegner et al., 2017; Bertier
et al., 2018) paralleled with a decrease in both the number of
invadopodia as well as extracellular matrix degradation. These
factors are important in cell migration (Wolf and Friedl, 2009).
Thus, chromobodies-assisted protein modulation allows to study
the contribution of specific proteins of biology, including cell

migration or some of its consequences, like the delay of metastasis
(Bertier et al., 2018).

Controlled Nanobody Activation
Spatiotemporal control of chromobody function is desirable
in several assays. To initiate functionalized chromobodies in
a controlled manner, chemogenetics or light stimuli can be
applied to influence the binding capacity of the nanobody during
and after synthesis. Such chemogenetic control employs ligand-
modulated antibody fragments (LAMAs): a circular permutated
bacterial dihydrofolate reductase (cpDHFR) linked to the
nanobody is in such a conformation that it recognizes and binds
to the nanobody target. In the presence of cell permeable DHFR
inhibitors, the conformation changes precluding the antigen
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binding site of the nanobody binding the target, and thereby
loss of association of nanobody and target. This process can be
reversed to activate the nanobody binding (Farrants et al., 2020).

The light-dependent nanobody, termed photobody, uses
a genetic photocaged tyrosine variant that results in the
inactivation of the antigen-binding site (Arbely et al., 2012;
Mootz et al., 2019). The photocaged tyrosine is photo-labile, and
upon light induction (365 nm) the antigen-binding properties
of the chromobodies are restored. Optobody, a second light-
dependent tool, uses a split nanobody with a N-terminal
fragment containing CDR1 and CDR2, and a C-terminal
fragment containing CDR3 (Figure 2B; Yu et al., 2019).
When both fragments are genetically fused to an optical-
induced dimerization tool [MagHigh (Kawano et al., 2015)],
the complete nanobody folds upon light stimulus and thereby
forms the antigen-binding site. However, a generic position
to split the nanobody is lacking, and thus for every different
nanobody optimization and validation is needed. Overall, the
activation of nanobodies using light or chemogenetic stimuli
gives spatiotemporal control over the nanobodies, allowing
precise subcellular modulation followed by direct readout of the
biological consequences on targets studied.

Purified Fluorescent Nanobodies
Delivered for Live-Cell Imaging
Nanobodies can also be generated in cellular systems,
subsequently purified and/or modified and then used in
bioassays. Typically, these are secreted by mammalian cells or
produced in high yields by bacteria (Harmsen and De Haard,
2007). After purification, the nanobody can for instance be
coupled to chemical dyes (Beghein and Gettemans, 2017)
to create fluorescent nanobodies (Tables 1, 2). Dyes suitable
for super-resolution microscopy (SRM), i.e., LM beyond the
diffraction limit resulting in typically 20 – 100 nm lateral
resolution [reviewed in (Schermelleh et al., 2019)], will increase
the resolution when using nanobodies compared to IgGs
because of the smaller size of the reagents used, reducing the
linkage error discussed above (Ries et al., 2012). Alternative
to conjugation of purified nanobody with small fluorescent
molecules, chromobodies can be expressed and purified.
These chromobodies can then be directly used in fluorescent
microscopy studies because they contain both the targeting
module as well as the fluorescent module (Figure 1). The
benefit of using cDNA encoding protein modules is the ease
to switch target or color with molecular cloning tools. To
employ these fluorescent nanobodies in live-cells different
delivery mechanisms for extracellular or intracellular targets
have been created.

Extracellular Targets
The extracellular domain of peripheral membrane proteins
in cultured cells is well accessible to ectopic added reagents
and therefore straightforward to target in live-cell imaging.
Nanobodies that target extracellular receptors may trigger
receptor specific endocytosis, which can be important for e.g.,
drug delivery. Endocytosis can be triggered via binding with

the human epidermal growth factor receptor 2 (HER2). Anti-
HER2 nanobodies (Kijanka et al., 2013) coupled to fluorescent,
drug containing nanoparticles (Martinez-Jothar et al., 2019),
were indeed able to trigger endocytosis. After the trigger, uptake
and cell viability was visualized to examine the effect of the
therapeutic nanoparticles. So, receptor mediated endocytosis can
be activated using fluorescent nanobodies to study therapeutic
agents coupled to the nanobodies.

Super resolution localization of GFP surface-exposed by
cells has been achieved while studing dynamic changes at
the plasma membrane: The glycosylphosphatidylinositol (GPI)-
anchored GFP reporter was further probed with Alexa647-
conjugated nanobodies to enable SRM based on the blinking
of the Alexa-dye. This resulted in higher resolution imaging
of dynamic changes and detection of protein enrichments in
the plasma membrane (Ries et al., 2012; Virant et al., 2018).
Indirect visualization enables newly displayed proteins at the
plasma membrane. Here, all available antigens first are blocked by
unconjugated nanobody. Upon exocytosis stimuli, at the plasma
membrane, new extracellular exposed antigens can be detected
with fluorescent nanobodies (Seitz and Rizzoli, 2019). This pulse-
chase approach allows dynamic studies, e.g., protein turnover, of
receptors and other cell surface proteins.

Intracellular Targets
The plasma membrane is a physical barrier for the nanobodies
to target intracellular proteins in live-cells. Therefore, custom
delivery methods are needed to target endogenous proteins
in (living) cells without permeabilizing the plasma membrane.
If nanobody expression is not an option because it first
needs chemical modification or the concentration should be
well-controlled, a purified nanobody may be delivered to
cells. Fluorescent nanobodies can enter cells via endocytosis,
when they formed non-covalent complexes with oligomers
(Figure 2C; Roder et al., 2017) or they undergo lipid-based
protein transfection (Oba and Tanaka, 2012; Virant et al., 2018).
After endocytosis, the nanobodies need to escape the endosomal
system and the formed complexes need to be degraded. However,
using this strategy one has to take into account that the efficiency
of endosomal escape is low (Stewart et al., 2016) and the
nanobodies in the endosomes are already fluorescent, resulting
in localized labeling of the endosomal system.

To prevent cellular uptake via endocytosis, cell-permeable
nanobodies were generated by the addition of a cyclic cell-
penetrating peptide [cCPP; (Herce et al., 2017)]. cCPPs are
arginine-rich peptides that facilitates direct penetration of
the plasma membrane to enter directly into the cytoplasm,
independent of endocytosis. The efficiency of the labeling
is expected to be increased because endosomal escape after
endocytic uptake is omitted. Another advantage of using the cell-
penetrating peptide is the ability to co-transport recombinant
proteins, e.g., GFP, inside the cells, when both are bound to the
nanobody. Although the efficiency of this co-transport was low,
this cell-permeable nanobody can be further explored to serve
as a drug delivery vehicle. A major disadvantage of the cCPPs
however, is the strong tendency to accumulate in the nucleolus.
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Generating temporary permeable plasma membranes
is another approach to artificially deliver cargo inside
cells. Different methods to temporary permeabilize the
membrane have been developed: (i) Electroporation to deliver
nanobodies linked to fluorescent quantum dots (QDs) into
cells (Shi et al., 2018). The QDs were used for single particle
visualization of intercellular transport by targeting kinesin motor
proteins (Katrukha et al., 2017); (ii) Artificial plasma membrane
channels that allow chromobody delivery into cells can be
formed by bacterial Streptolysin O (Teng et al., 2016). Unbound
nanobodies are removed during rinsing and the channels are
closed upon switching to a recovery medium; (iii) Photoporation
in which a laser-induced transfection enables the delivery of
the nanobodies intracellular, and when these are fluorescently
labeled, these can be directly detected (Hebbrecht et al., 2020).
(iv) Another method to induce temporary damage to the
plasma membrane is cell squeezing through the small capillaries
of a microfluidic system resulting in fragility of the plasma
membrane (Figure 2D; Klein et al., 2018). While the cells are
squeezed, extracellular proteins can diffuse into the cells. When
cells leave the small capillary the plasma membrane recovers
to its normal state. Obviously, the effect of any temporary
permeabilization approach used to enable nanobodies entrance
into cells, is that endogenous molecules might diffuse out or
targets may delocalize.

General Applicable Peptide Tags
Genetic fusion with FPs cDNA is the widely used technique for
protein visualization in living systems, but sometimes smaller
peptide tags are preferred. Currently, there are no nanobodies
available against common generic peptide tags (Muyldermans
et al., 2001; Stijlemans et al., 2004; De Genst et al., 2006;
Braun et al., 2016). Hence, three new small tags have been
developed along with their respective targeting nanobodies. (i)
The BC2-tag is a 12 amino acid peptide sequence originating
from β-catenin (Braun et al., 2016; Virant et al., 2018), but the
nanobody does not recognize endogenous β-catenin making it
fairly specific for the tag only. (ii) The ALFA-tag (13 amino
acids) forms an α-helix and is naturally absent in eukaryotes
(Gotzke et al., 2019), also making it a specific target for its
nanobody, which also counts for the (iii) Pep-Tag (15 amino
acids) (Traenkle et al., 2020).

An array of peptides fused to the protein of interest can
amplify the fluorescent signal, and thus increase the signal-to-
noise ratio. A peptide-repeat called MoonTag (Boersma et al.,
2019) was created to visualize active translation (Figure 2E).
Here, an array of a 15 amino acid peptide sequence was added
N-terminal of the protein of interest. The newly formed peptide
chain forms a docking site for chromobodies. The MoonTag
can be combined with the SunTag; an intracellular expressed
single-chain variable fragment (scFV; Tanenbaum et al., 2014).
Combining the two tags will allow visualization of different
reading frames within a single mRNA or can be used to amplify
the signal from different targets. Given the mechanism of probing
the target with a cDNA encoded peptide repeat, making use of the
same antibodies, this is a highly versatile enhancer system.

NANOBODIES IN ELECTRON
MICROSCOPY

While resolution of targets in LM is improved by using
nanobodies because of a reduced linkage error compared to IgG
targeting, the ultrastructural remains unexplored. In electron
microscopy (EM), the ultrastructure is revealed, but localizing
the protein of interest within this structure also requires
probes. EM-visualization of targets benefits from the nanobody-
technology because the probe is small and thus penetrates
better. Therefore, milder permeabilization is needed, better
preserving the ultrastructure. Moreover, the small size improves
the resolution compared to traditional immuno-EM because the
target and identifiable tag are in close proximity. Also in EM
proteins can be specifically identified using genetically encoded or
affinity-based probes. Genetically encoded probes may be based
on peroxidases that creates black precipitates in the presence
of diaminobenzidine (DAB) and H2O2. Affinity-based probes
include electron dense nanoparticles like nanogold and QDs (De
Boer et al., 2015). Of course the genetically encoded probes form
good candidates to use in conjunction with nanobodies as a
multi-modular probe for EM studies.

Intracellular Nanobody Expression
Intracellular nanobodies fused with soybean ascorbate peroxidase
(APEX2) (Lam et al., 2015) can target GFP or mCherry to
add an electron dense mark to the protein of interest at EM
level (Ariotti et al., 2015, 2017). This APEX2-nanobody can be
applied as general CLEM (correlated LM/EM) probe because
many cells and small organisms have already been engineered to
express GFP or mCherry. Using conditionally stable nanobodies
(section Nanobodies In Light Microscopy), unbound APEX2-
nanobody is degraded and thereby improve EM detection of
the target proteins (Ariotti et al., 2018). The conditionally stable
APEX2-nanobody enables studying protein-protein interactions
by making use of splitFPs as target (Figure 3A; Ghosh et al.,
2000; Hu and Kerppola, 2003). Here, a protein of interest
and its potential interacting protein are genetically fused with
different segment of e.g., GFP. Anti-GFP APEX2-nanobody
can only bind to the folded GFP, representing the interaction
between the two proteins of interest. When GFP is absent, the
conditionally stable APEX2-nanobodies are degraded. Another
alternative to study protein-protein interactions would be by
using nanobodies fused to splitHRP or splitAPEX2 (Martell et al.,
2016; Han et al., 2019). Two distinct nanobodies recognizing
proteins within close proximity will facilitate the refolding of the
peroxidase, which will result in DAB precipitates at that location
in the sample. The split peroxidase thus reduces the signal
of unbound nanobodies, leading to a more conclusive picture.
In conclusion, where chromobodies allow dynamic studies of
endogenous proteins, APEX2-nanobodies enable high resolution
analysis in the ultrastructural context.

Nanobodies as Immunolabeling Reagent
Purified nanobodies can be applied for affinity-based
immunolabeling, and thereby replace conventional IgGs.
Immunolabeling with unconjugated nanobodies was used to
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FIGURE 3 | Nanobody technology for EM. (A) Cells were expressing only C-terminus YFP or both C- and N-terminus YFP. The cells also expressed a conditionally
stable anti-YFP, for proteasomal degradation of unbound probe. The nanobodies were genetically fused with peroxidase, APEX2, for EM detection. Note that only
black precipitation is visible in cells expressing C-terminus YFP and N-terminus YFP. This confirmed the degradation of the nanobody with the peroxidase. Bars:
1 µm. (B) Purified nanobodies were used as primary antigen binding protein to reduce the distance between label and antigen. Nanobodies can be detected using
an anti-VhH IgG conjugated to gold for EM visualization. Bars: 0.5 µm. (C) Cells express H2B-GFP from Figure 1A, and are permeabilized after fixation followed by
labeling with anti-GFP FLIPPER-bodies. Note the colocalization in LM and the dark, positive nucleus in EM versus an unlabeled nucleus. Bars: 10 µm. (D) Neuronal
cells expressing pHluorin on the plasma membrane. Added anti-GFP nanobodies bind to the pHluorin, and after a pulse stimulation, synaptic vesicles are formed. In
EM, a population of unlabeled and labeled synaptic vesicles is detected. Arrows indicate synaptic vesicles, arrow heads indicate unstained vesicles and open arrow
heads indicate residual staining (PM, plasma membrane, SV, Synaptic vesicle). Bar: 0.5 µm. The images in (A–D) have been reproduced from the following studies
(Joensuu et al., 2016; Kijanka et al., 2017; Ariotti et al., 2018; De Beer et al., 2018), all of which have been published under a Creative Commons Attribution License.
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label HER2 in breast cancer cells, followed by a secondary anti-
nanobody IgG conjugated with nanogold (Figure 3B; Kijanka
et al., 2017). Although this already improved the resolution, it
could benefit more by replacing the IgG a direct labeling method
using conjugated nanobodies.

CLEM and Nanobodies
Reagents used in CLEM that are readily detectable both in
the FLM and EM, like nanogold or QDs, are relatively large
and/or bulky in comparison to 15–30 kDa range FPs or even
smaller fluorescent dyes like FITC. These inorganic nanoparticles
whether or not conjugated to nanobodies, will have limited
penetration (Giepmans et al., 2005; Schnell et al., 2012).
Therefore, we developed a completely protein-based probe,
called “FLIPPER”-body (Kuipers et al., 2015; De Beer et al.,
2018) with (i) a nanobody as targeting module; (ii) a FP for
LM analysis; and (iii) a horseradish peroxidase (HRP) for EM
analysis. The FLIPPER-bodies were produced by mammalian
cells applied as immunoreagent to label e.g., intracellular GFP
(Figure 3C). Other targets were generated by simple molecular
cloning interchanging the modules of the probe. FLIPPER-bodies
improve penetration due to its size and flexibility comparted
to IgGs-targeted nanoparticles and thus lead to a better target
detection while maintaining reasonable ultrastructure.

In conventional EM glutaraldehyde is used to fix the samples
for ultrastructural preservation (Schnell et al., 2012). However,
cells fixed with paraformaldehyde become permeable for small
molecules like e.g., small fluorescent nanobodies (Fang et al.,
2018). This labeling without adding permeabilization reagents
method was further developed to stain intracellular targets in
fixed mouse tissue slices. When targeting an intracellular target
with both nanobody and IgG, the nanobody penetrated up to
100 µm into a brain tissue slice, while the IgGs only stained
the surface of the slice. Subsequently, the same cells were
imaged with EM and ultrastructural details were well preserved
due to glutaraldehyde fixation after performing the nanobody
labeling. So, detergent treatment is not required when using small
nanobody probes and thus cellular structure is better preserved.
The technique needs to mature further to establish the ratio of
positives and false negatives to determine if the recognition of
the targets is generically reliable. Moreover, the accessibility of
targets within organelles, like mitochondria or nucleus, remains
to be studied further.

Nanobodies for Live-Cell Imaging and EM
Alternatively to expressing nanobody-based probes in the cellular
system of interest, they also can first be purified and then
applied to cells. An elegant example of this approach has been
used to visualize the formation of synaptic vesicles in living
cells (Joensuu et al., 2016). Ultrastructural localization of newly
formed synaptic vesicles can be examined using peroxidase-fused
nanobodies. Vesicle-associated membrane protein 2 (VAMP2)
mediates the formation of synaptic vesicles and is expressed at
the plasma membrane of neuronal cells. Anti-GFP nanobodies
were applied to target pHluorin, a GFP derivative, fused with
VAMP2 (Figure 3D). Upon K+ stimulation, pHluorin-VAMP2
with bound nanobody is endocytosed, and new synaptic vesicles

are formed. After EM preparation, the newly formed synaptic
vesicles were stained black, as a result of the peroxidase attached
to the nanobody, whereas older synaptic vesicles remained
unstained. Thus, the endocytic route of specific proteins of
interest can be visualized.

Purified nanobodies, fused to a FP and a peroxidase, were used
to analyze the retrograde transport system in live-cells (Buser
and Spiess, 2019) or within ultrastructural context (Buser et al.,
2018) to study the transport from the cell surface to the Golgi
complex. Cells with GFP-modified cycling reporter proteins at
the plasma membrane captured the nanobodies extracellular
and transported them in the cells. CLEM revealed the dynamic
behavior of different cycling reporter proteins, and showed
the ultrastructural localization of the reporter proteins. Overall,
these nanobody-based CLEM probes can reveal the localization
of plasma membrane proteins and visualize their dynamics,
together with the ultrastructural context.

Nanobodies in Cryo-EM
Structural analysis of proteins at atomic resolution is achieved
by cryo-EM [reviewed in (Kühlbrandt, 2014; Egelman, 2016;
Cheng, 2018)]. However different conformations of proteins may
be present, hindering the structural determination of specific
states. Here, nanobodies can help to stabilize the proteins into a
certain conformational state [reviewed in (Uchański et al., 2020)],
especially as the targeting module in rigid chimeras termed
megabodies. These stabilizing nanobody-chimeras recently have
been used to solve the type A γ -aminobutyric (GABAA) structure
in membranes-like structures in presence and absence of natural
ligands and antagonists (Laverty et al., 2019; Masiulis et al., 2019).
Using the megabodies, no longer the target proteins themselves
need to be engineered and thus structure on the endogenous
proteins is being revealed. Likely, nanobody technology will
further contribute to structural biology on many other target
proteins by facilitating single conformational protein states and
better understand the dynamic regulation of biomolecules by
their ligands without directly altering the proteins at study.

NANOBODIES FOR MICROSCOPY: TO
DATE A GREAT POTENTIAL BUT SUCH A
LIMITED USE

Nanobodies have clear benefits over conventional IgGs antibodies
or genetically encoded probes. Nanobodies (i) have a small
diameter resulting in better resolution and better penetration; (ii)
can visualize endogenous proteins in live-cell imaging; (iii) are
encoded by a one cDNA, which enables easy molecular cloning;
(iv) allow researchers to create and produce custom multi-modal
probes. Potential artifacts specific for nanobody technology in
microscopy include signal from chromobodies independent of
target binding and modified localization of the protein target,
as detailed above.

Nanobodies are still limited used in research, mainly
due to the limitation in the availability of nanobodies
for general targets compared to IgGs and researchers are
not aware of the possibilities of nanobody in microscopy.
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Here, we aim to increase the visibility of opportunities and
benefits highlighted in the main text, but also exemplified by
the successful new insights and new nanobody-based reagents by
many (Table 2). Other ways to improve the use of nanobodies
in research are open access sharing of nanobodies cDNA to
allow researchers to create and manipulate their own labeling
reagent and to increase the nanobody database of general
targets. Currently, most nanobodies are generated via Camelidae
immunization, a route that may be a (seemingly) hurdle for
scientists. However, these days the generation of nanobodies is
both economically and time-wise competitive with generation
of newly synthesized rabbit IgG against specific targets. The
novice user obviously will benefit of expertise and accessibility to
the needed infrastructure by more experienced users mentioned
throughout this review. In addition, a fast method based on a
yeast display platform to select nanobodies in vitro has been
established (McMahon et al., 2018).

From Current State to Future Outlook:
Nanobodies Towards a Common
Technique
Protein identification in microscopy has been greatly aided
by immunolabeling using IgGs as well as the application of
genetically encoded tags. Nanobody technology, being explored
for approximately 25 years is a great additional tool. Like
IgGs, endogenous proteins can be easily studied without direct
modification. Moreover, the single domain properties and
therefore the easy use as a module in other genetically encoded
probes allow freedom of use of tags and targeting module. In line
with SRM techniques, nanobodies have the added benefit over
IgGs that they hardly provide distance between target and label

(linkage error). The major limitation in the use of nanobodies
in general is the sparse availability of high affinity nanobodies
for specific targets. Increasing the availability for different targets
using immunization and/or micro-organism-based libraries will
increase the variation in the decade to come. When more targets
can be studied with nanobodies these will become a common tool
in the lab and share the top-3 podium with genetically encoded
tags as well as IgGs since they share benefits of both approaches
to identify and visualize targets of interest in dynamic systems
and with high precision.
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