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Abstract: Hyperlipidemia, a chronic disorder of abnormal lipid metabolism, can induce obesity,
diabetes, and cardiovascular and cerebrovascular diseases such as coronary heart disease, atheroscle-
rosis, and hypertension. Increasing evidence indicates that phytochemicals may serve as a promising
strategy for the prevention and management of hyperlipidemia and its complications. At the same
time, the concept of synergistic hypolipidemic and its application in the food industry is rapidly
increasing as a practical approach to preserve and improve the health-promoting effects of functional
ingredients. The current review focuses on the effects of single phytochemicals on hyperlipidemia and
its mechanisms. Due to the complexity of the lipid metabolism regulatory network, the synergistic
regulation of different metabolic pathways or targets may be more effective than single pathways or
targets in the treatment of hyperlipidemia. This review summarizes for the first time the synergistic
hypolipidemic effects of different combinations of phytochemicals such as combinations of the same
category of phytochemicals and combinations of different categories of phytochemicals. In addition,
based on the different metabolic pathways or targets involved in synergistic effects, the possible
mechanisms of synergistic hypolipidemic effects of the phytochemical combination are illustrated in
this review. Hence, this review provides clues to boost more phytochemical synergistic hypolipidemic
research and provides a theoretical basis for the development of phytochemicals with synergistic
effects on hyperlipidemia and its complications.

Keywords: synergistic hypolipidemic effect; phytochemicals; action mechanism; structure-bioactive
relationship; combination; lipid metabolic pathways

1. Introduction

Hyperlipidemia is a disorder in which abnormal lipid metabolism results in a higher-
than-normal level of one or more lipids in the serum, and the common symptoms are
high levels of total serum cholesterol (TC), triglycerides (TG), and low-density lipopro-
tein cholesterol (LDL-C) or low levels of high-density lipoprotein cholesterol (HDL-C),
which is called dyslipidemia in modern medicine [1–3]. Hyperlipidemia can cause some
serious cardiovascular diseases, such as coronary heart disease (CHD) and atherosclerotic
cardiovascular disease (ASCVD), which are responsible for millions of deaths in the world
every year [4]. Alarmingly, a study of early subclinical atherosclerosis showed that 63%
of participants have symptoms of subclinical atherosclerosis [5]. Although considerable
progress has been made in the treatment of hyperlipidemia, the incidence rate and risk
associated with this disease are still rising. Therefore, the prevention and treatment of
hyperlipidemia are extremely important. Currently, the main treatment of hyperlipidemia
is chemical drugs, and the classical lipid-lowering drugs include statins, fibrates, and
nicotinic acids [6]. The above-mentioned chemical drugs have definite clinical effects and
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obvious effects in lowering blood lipid, but similar to other chemical drugs, long-term use
of statins may also cause a series of potential side effects, for example, they may lead to liver
and kidney function damage, gastrointestinal reactions and other adverse reactions [7–9].
In addition, the regulation of lipid metabolism is a complex process involving multiple
pathways and targets, and it is difficult for the current single-target lipid-lowering drugs to
achieve both primary and secondary effects [10]. Therefore, safe and effective substitutes
are urgently needed to treat hyperlipidemia and its related complications. In this con-
text, phytochemicals have received considerable attention for their safety and therapeutic
potential [11,12].

Studies have shown that the natural active ingredients in some plants have unique
advantages in treating hyperlipidemia and preventing the development of cardiovascular
disease [13]. Furthermore, many studies have emphasized the hypolipidemic benefits
of phytochemicals, which are multi-component, multi-targeted, and have relatively low
toxic effects [14]. In fact, plants are natural sources of medicines, and their roots, stems,
leaves and seeds are rich in polysaccharides, flavonoids, saponins, phytosterols, fatty acids,
phenols, polypeptides and other small molecular compounds, which are active ingredi-
ents in drugs for cardiovascular diseases [15,16]. Many in vitro and animal studies have
shown that the consumption of these bioactive phytochemicals significantly improves hy-
pertension, low-density lipoprotein oxidation, lipid peroxidation, total plasma antioxidant
capacity and dyslipidemia [17]. After years of verification of hypolipidemic phytochem-
icals, the structural properties of their main components are becoming clearer, and the
mechanism of action is becoming clearer. For example, it has been suggested that plants
contain many biologically active phytochemicals that can act on multiple targets in complex
disease networks. In addition, different phytochemicals act synergistically at each target to
intervene in the development of disease and ultimately achieve therapeutic effects [18,19].
Interestingly, it is not clear which specific components produce the actual effects, which
makes the study of synergistic effects among phytochemicals a hot topic of interest.

Currently, most studies on phytochemicals to lower blood lipids are generally limited
to single substances or compounds of the same categories, while a single food may contain
several or even hundreds of active phytochemicals [20]. Food intake is also generally several
substances in the body at the same time. Therefore, the study of the synergistic effects of
these active phytochemicals has important practical significance and is also a new area
of research in nutrition and functional foods. However, due to the variety and structural
complexity of phytochemicals in foods, many factors influence their digestion, absorption
and utilization in vivo [21]. Although research relevant to interactive effects among the
phytochemicals has mounted up, the mechanism of phytochemicals synergy is still not
clear. Especially, biological influence factors are often neglected [22]. Many researchers
believe that one way to solve these problems is to combine two or more phytochemicals to
see whether and how they work together to lower blood lipids [23,24].

Lipid metabolism is a complex process that involves lipid biosynthesis, absorption,
transport, and elimination [14]. Due to the complexity of the lipid metabolism regulatory
network, the synergistic regulation of different metabolic pathways or targets may be more
effective than a single pathway or target in the treatment of hyperlipidemia. In recent years,
the process of lipid metabolism has become more and more clear, and some important
pathways and targets have been discovered by researchers. For example, the 5‘-adenosine
monophosphate (AMP)-activated protein kinase is a natural energy sensor in mammalian
cells that plays a key role in lipid metabolism [25]. This lays the foundation for us to study
the synergistic lipid-lowering effects of phytochemicals.

Recent research has shown that synergistic effects are the basis of the action of most
phytochemicals in biological systems. The complex interactions of phytochemicals facilitate
the combined action on multiple cellular and molecular targets, leading to measurable
biological effects. These effects can be observed among the components of plant extracts
and can be used to develop safer and more effective treatment strategies to treat and prevent
diseases [26]. For example, Park et al. showed that treatment with the combination of
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Hippophae rhamnoides and Zingiber mioga extracts inhibited the expression of genes associated
with adipocyte differentiation in 3T3-L1 cells more than any single extract treatment, and
the combination inhibited lipid accumulation in hepatocytes more effectively than the single
extract. However, which phytochemicals of Hippophae rhamnoides and Zingiber mioga have
synergistic effects needs to be further investigated [27]. Similarly, Yari et al. investigated the
clinical efficacy of flaxseed and hesperidin in non-alcoholic fatty liver disease and observed
significant synergistic effects of the combination on the regulation of lipid metabolism [28].

The concept of phytochemical synergy plays an important role in promoting human
health and preventing hyperlipidemia. In this review, we summarize for the first time the
synergistic hypolipidemic effects of different phytochemical combinations and the possible
mechanisms of the synergistic hypolipidemic effects of phytochemical combinations, which
provide clues for further development of phytochemical functional foods with synergistic
effects and hypolipidemic potential.

2. Synergistic Hypolipidemic Effects between Phytochemicals of the Same Category

Increasing evidence suggests that combinations of phytochemicals from the same
category may have a stronger hypolipidemic effect than a single phytochemical. Table 1 lists
some of the combinations of the same category of phytochemicals that are now attracting
scientific attention, identifying the categories with the potential hypolipidemic effects.

Table 1. Experimental assessment and mechanism of synergistic hypolipidemic effects between
phytochemicals of the same category found in plants.

Category Phytochemical
Combinations

Ratios and
Concentration Experimental Model Effect or Mechanisms Reference

Flavonoids quercetin and
kaempferol 1:1, 15 µM each HepG2 cells Improved LDL-C uptake

more effectively [29]

Flavonoids acacetin and apigenin 1:1, 10 µM each 3T3-L1 cells
Promoted the

phosphorylation of AMPK
and ACC

[30]

Flavonoids rutin and epicatechin 1:3, 10 mg/kg, 30 mg/kg Alloxan-induced
diabetic mice

Showed a very significant
improvement in body
weight and a potent

antihyperglycemic activity

[31]

Flavonoids
quercetin, catechin,

hesperidin and
isorhamnetin

2:2:2:1, 40 µM, 20 µM HL7702 cells
Down-regulated the mRNA

expression of SREBP-2
and LDLR.

[32]

Polysaccharides

high molecular
weight dextran and

low molecular
weight heteropolysac-

charide

1:1, 50 µg/mL each RAW264.7
macrophage cell

Demonstrated stronger
inhibitory effect on NO,

TNF- α, and
IL- 6 production

[33]

Polysaccharides
soluble dietary fiber

and insoluble
dietary fiber

1:1, 0.15 g/kg each Sprague–Dawley rats

The mRNA expression
levels of lipid synthesis

genes SREBP-1c and FAS
were significantly
down-regulated

[34]

Polyphenols
oligomeric

proanthocyanidins
and pterostilbene

5:3,
50 mg/kg, 30 mg/kg Male albino rabbits

The LDL/HDL ratio and
atherogenic index were

suppressed by 59.3%
and 25%

[35]

Polyphenols
catechin, hesperidin,

ferulic acid
and quercetin

20:9.3:4.3:2
20, 9.3, 4.3, 2 µMol/L Human plasma

Effects of polyphenols
protecting LDL from

oxidation were observed
[36]

Amides zanthoxylum
and capsaicin

3:6
3 mg/kg, 6 mg/kg Sprague–Dawley rats Reduced the serum levels

of TC, TG, and LDL-C [37]
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2.1. Synergistic Hypolipidemic Effects of Flavonoids

Flavonoids are a very rich and diverse category of natural phytochemicals with
important biological activities, which are composed of a common diphenylpropane (C6-
C3-C6) skeleton in which two aromatic rings are linked by a three-carbon chain [38]. Most
flavonoids can be sub-classified into the following categories, namely flavones, flavonols,
flavanones, flavanols, isoflavones, and anthocyanins (Figure 1) [39]. Flavonoids are widely
distributed in our daily diet and are the major phytochemicals in foods such as vegetables,
fruits, tea, and cocoa [40], and they can exist as free aglycones but are usually combined
with glycosides and dissolve in water in this form [41]. Because of the potential health care
value, safety and medicinal significance, it is considered to be an indispensable ingredient
in all kinds of medicines and dietary supplements [42].
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Studies have shown that eating foods rich in flavonoids is associated with lower
cardiovascular risk because of a significant reduction in cholesterol levels and free radical
scavenging activity [43,44]. Flavonoids can regulate the imbalance of lipid metabolism
by inhibiting lipid peroxidation and endogenous lipid biosynthesis and promoting lipid
redistribution and exogenous lipid metabolism, significantly reducing TG, TC and LDL-
C levels [45]. For example, to investigate the interrelationship among flavonoids in the
antioxidant and hypolipidemic effects, Qin et al. used ever-red and ever-green leaves
during the development of crabapple cultivars. They identified a total of 16 flavonoids
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from them and predicted a positive interaction of flavonoids in ever-red by principal
component analysis, and the experimental results also showed that the total antioxidant
capacity was significantly higher than the sum of the antioxidant capacity of individual
compounds [46].

Quercetin and kaempferol (different flavonoids), found in high levels in fruits and
vegetables, have been shown to protect against cardiovascular diseases by regulating lipid
levels [47]. Yusof et al. evaluated the lipid-lowering potential of quercetin and kaempferol
by LDL-C uptake on HepG2 cells. They found that the mixture of quercetin and kaempferol
(1:1,2:1 and 1:2) decreased the cell viability more than treatment individually, and the
combination of quercetin and kaempferol in a ratio of 1:1 had the best effect on the LDL-C
uptake of HepG2 cells. The conclusion just shows that quercetin and kaempferol have
some synergistic effects [29].

In addition, Ma et al. isolated 12 flavonoids (jaceosidin, kaempferol, chrysoeriol,
quercetin, apigenin, hispidulin, luteolin, quercitrin, rutin, isorhamnetin, genkwanin, and
acacetin) from Artemisia sacrorum, which were arranged into 11 combinations to investi-
gate their synergistic inhibitory effects on lipid accumulation in 3T3-L1 cells, respectively.
Combined analysis of oil-red O staining, triglyceride levels, and lipid accumulation assays
showed that the combination of acacetin and apigenin (1:1) had a more significant synergis-
tic inhibitory effect on lipid accumulation compared to the compounds used alone [30]. In
addition, the combinations of the plant flavonoids rutin and epicatechin (1:3) were tested
on alloxan-induced diabetic mice for 28 days. The combination showed impressive anti-
diabetic, anti-oxidant and anti-inflammatory activity without any observed signs of toxicity,
and the formulation is considered to be a potentially safe, multi-target drug alternative [31].

Sea buckthorn is rich in flavonoids, which have hypolipidemic and hypoglycemic
effects in mice fed with a high-fat diet [48]. To investigate the ameliorative effect of sea buck-
thorn flavonoids on obesity and hyperlipidemia, a network of component-target-disease
was constructed by screening 12 biologically active flavonoids and 60 target sites using
network pharmacological analysis and in vitro experimental methods. It has been shown
that four bioactive flavonoids, including quercetin, catechin, hesperidin and isorhamnetin,
may synergistically improve hyperlipidemia by promoting the conversion of cholesterol
to bile acids and cholesterol efflux, inhibiting the de novo synthesis of cholesterol, and
accelerating fatty acid oxidation [32].

The combination of plant flavonoids may have diverse biological activities such as
antioxidant, antibacterial, hypolipidemic, immune regulation, and liver protection [49]; we
can obtain a new, safe and multi-objective combination of plant flavonoids by optimizing
the combination and proportion of them, and the synergy of these phytochemicals will
have broad application prospects in the fields of medicine and plant-based functional foods.

The basic structures of reported flavonoids with synergistic hypolipidemic effects
from plants are shown in Figure 1.

2.2. Synergistic Hypolipidemic Effects of Polysaccharides

Polysaccharides are carbohydrates composed of more than 10 monosaccharides linked
by glycosidic bonds [50] and are one of the important active components of plants. They
have the activities of hypolipidemic, hypoglycemic, enhancing immunity, anti-oxidation,
anti-inflammation, anti-atherosclerosis and so on [51,52]. In general, polysaccharides can
be divided into two categories: homo-polysaccharides and hetero-polysaccharides. A
typical homo-polysaccharide is defined as having only one monosaccharide repeating
on the chain, while a hetero-polysaccharide is composed of two or more categories of
monosaccharides (Figure 2) [53]. Polysaccharides have the characteristics of strong polarity,
large molecular weight and difficulty to confirm the structure [54]. It has been suggested
that polysaccharides can inhibit the absorption of exogenous lipids and accelerate the
hepatic catabolism of TC by physically binding to lipid molecules or bile salts in the
gastrointestinal tract. The larger the relative molecular mass, the greater the characteristic
viscosity or hydrophobicity of polysaccharides, and the stronger the corresponding binding
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ability [55]. Zhang et al. [56] claimed that some polysaccharide compounds can bind to each
other to enhance the affinity between the receptor and the polysaccharide or to activate
more polysaccharide binding sites on the receptor, thus resulting in a synergistic effect.
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To investigate the physicochemical properties, anti-inflammatory and hypolipidemic ef-
fects of different polysaccharides in lipopolysaccharide-induced RAW264.7 macrophages, a
multifactorial test was conducted using three different concentrations (0, 50 and 100 µg/mL)
of high molecular weight dextran (885.2 kDa) and low molecular weight heteropolysaccha-
ride (24.5 kDa). The results showed that high molecular weight dextran and low molecular
weight heteropolysaccharide alone did not have significant effects compared to the control
group, while the combination showed significant inhibitory effects, indicating a significant
synergistic effect between them [33]. Similarly, Deng et al. analyzed the effect of complex
polysaccharides and their combinations on RAW 246.7 macrophages, showing that complex
polysaccharides with molecular weights between 100 and 1000 kDa had higher activity
compared to the corresponding single-component polysaccharides, which also suggests a
synergistic effect of different polysaccharides [57].

In addition, Li et al. investigated the effects of dietary fiber from bamboo shoots
on hyperlipidemia mice induced by a high-fat diet. After 6 weeks of treatment with the
combination of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), the body weight,
body fat and adipose tissue mass of rats were significantly reduced (p < 0.05), and TC, TG
and LDL-C levels were reduced by 30.20%, 53.28%, and 35.63%, respectively, compared
with the model group. SDF + IDF (1:1) treatments had a better ability of lowering blood
lipid and showed synergistic effects in preventing hyperlipidemia [34]. This synergistic
effect of the combination may be related to their vast array and saccharide-based complex
structures [58].

The studies of the active mechanism and the structure–activity relationship are the
basis of the application of polysaccharides. However, compared with other biomolecules,
polysaccharide structures are more complex, resulting in many polysaccharide structures
with significant activity that cannot be easily identified. Moreover, the absorption, transport,
distribution and metabolic processes of polysaccharides in vivo are difficult to investigate,
which greatly limits the development of polysaccharides in the direction of hypolipidemia.
At present, the hypolipidemic activity is mainly aimed at plant crude polysaccharides,
containing a mixture of polysaccharides, oligosaccharides, polysaccharide proteins and
other components, which makes researchers face certain difficulties in the study of their
synergistic effects. In recent years, with the development of new science and technology, the
derivatization modification of natural polysaccharides or the artificial synthesis of polysac-
charides with well-defined structures are expected to be used to investigate the structure–
activity relationship and activity mechanisms of polysaccharides [59]. Therefore, in the
future, strengthening the research on the structure, active groups and structure–activity
relationship of polysaccharide molecules will be the key to elucidating the synergistic
effects of different plant-derived polysaccharides.



Foods 2022, 11, 2774 7 of 24

2.3. Synergistic Hypolipidemic Effects of Polyphenols

Polyphenols are secondary metabolites produced by many edible plants and have
anti-diabetic, anti-inflammatory, anti-oxidant and hypolipidemic capabilities [60]. As an
anti-oxidant, polyphenols are able to reduce oxidative damage to lipids, proteins, enzymes,
carbohydrates and DNA in living cells and tissues, which is mainly attributed to the ability
to scavenge free radicals, provide hydrogen atoms or chelate metal ions [61]. The combi-
nation of several polyphenol components could improve antioxidant and hypolipidemic
efficiency, which can expand their applications in nutrition and biomedicine. For example,
Heo et al. found that individual phenolic compounds showed their specific antioxidant
capacity, and the sum of the antioxidant capacity of phenolic compounds resulted in an
increase in total antioxidant capacity [62].

Proanthocyanidins and pterostilbene are natural phenolic antioxidants with hypolipi-
demic effects [63–65]. Hannan et al. studied their hypolipidemic effects combined with
nicotinic acid in cholesterol-fed rabbits. The results showed that the LDL/HDL ratio and
atherogenic index were suppressed significantly in blend therapies with maximum effects
of 59.3 and 25% (p > 0.001) observed in 50:30:20 ratios of OPC, NA and PT compared to
individual therapies 37 and 18% max respectively [35]. This study provides important
evidence for the synergistic advantage of polyphenols in the hyperlipidemia effect and
its complications. In addition, four phenolic compounds, including catechin, hesperidin,
ferulic acid and quercetin, were also exhibiting synergistic effects in the prevention of
low-density lipoprotein oxidation in humans [36].

At present, there are few studies on the synergistic effects of polyphenols on lowering
blood lipid, which is mainly because there are many hydroxyl groups in the structure
of polyphenols, which makes it very unstable in light, heat, and alkaline conditions [66].
Furthermore, many polyphenols are poorly soluble and have low bioavailability in hu-
mans [67], which limits their commercial use in functional foods.

The basic structures of reported polyphenols with synergistic hypolipidemic effects
from plants are shown in Figure 3.
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2.4. Synergistic Hypolipidemic Effects of Other Phytochemicals

In addition to the above synergistic hypolipidemic effects among the same phyto-
chemicals category, other phytochemicals such as amides have also been found to have
synergistic effects in the treatment of hyperlipidemia and related diseases. Chen et al.
investigated the synergistic effects of different mass ratios of numb-tasting components of
Zanthoxylum bungeanum and capsaicin on lipid levels in hyperlipidemic mice. Compared
with the control group, feeding three different mass ratios (1:8, 2:7, and 3:6) of numb-tasting
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components of Zanthoxylum bungeanum and capsaicin reduced the serum levels of TC, TG,
and LDL-C in mice (p < 0.05) and the symptoms of fatty liver in rats. Among them, the
best effect was achieved at 3:6, without affecting the normal development of the mouse
liver [37].

The basic structures of reported other phytochemicals with synergistic hypolipidemic
effects from plants are shown in Figure S1.

In summary, a certain amount of studies have reported on the synergistic hypolipi-
demic effects of the same category of phytochemicals, especially flavonoids and polysaccha-
rides. Nevertheless, there are still some unresolved aspects; for example, the phytochemical
synergistic effects are usually studied based on observations in animal models, while in-
depth and systematic analyses at the molecular level are still pending. In addition, we
can search for new combinations of phytochemicals with clear molecular structures and
active groups showing synergistic hypolipidemic effects, which should serve as the focus
of further investigations.

3. Synergistic Hypolipidemic Effects between Different Categories of Phytochemicals

Nowadays, a large number of researchers indicated that different categories of phyto-
chemicals could show synergistic hypolipidemic effects. Table 2 lists recent studies based
on the hypolipidemic interactions between different categories of phytochemicals.

Table 2. Experimental assessment and mechanism of synergistic hypolipidemic effects between
different categories of phytochemicals found in plants.

Category Phytochemical
Combinations Ratios and Concentration Experimental Model Effect or Mechanisms Reference

Flavonoids with
Polyphenols

quercetin and
resveratrol

2:1,
30 mg/kg/d, 15 mg/kg/d Rats fed an HFD

May suppress obesity and
associated inflammation via
the AMPKα1/SIRT1
signaling pathway

[68]

Flavonoids with
polyphenols

genistein, quercetin
and resveratrol

1:2:2,
6.25 MM, 12.5 MM, 12.5 µM

Human primary
adipocytes and
3T3-L1 mouse
adipocytes

Lipid accumulation was
reduced by 80.3%; resulted
in a significant decrease in
lipid accumulation

[69]

Flavonoids with
polyphenols and
terpenoids

quercetin, crocin,
chlorogenic acid and
geniposide

10:1:30:10
10 µmol/L,1 µmol/L,
30 µmol/L, 10 µmol/L

HepG2 cells

Increased ABCA1, CYP7A1,
and AMPKα2 mRNA
expression, decreased
SREBP2, and LXRα
mRNA expression

[24]

Flavonoids with
polyphenols

quercetin, hyperoside,
rutin and chlorogenic
acid

6:9:2:1 Inhibitory activity of
HMG-CoA reductase

Increased the inhibitory
activity of HMG-CoA
reductase by 58.9%

[70]

Flavonoids with
aldehydes

kaempferol and
cinnamaldehyde

39: 58,
39 mg/kg, 58 mg/kg

Eight-week-old male
Kunming mice

Ameliorated glucose and
lipid metabolism disorders
by enhancing lipid
metabolism via the
activation of AMPK

[71]

Polysaccharides
with polyphenols

tea polysaccharide and
polyphenols 1:1, 400 mg/ kg each Sprague–Dawley rats

fed with high-fat diet

Reduced rat serum leptin
levels, inhibited the
absorption of fatty acids,
reduced the expression
levels of IL-6, TNF-α gene

[72]

Polysaccharides
with flavonoids

pumpkin
polysaccharides and
puerarin

2:1,
400 mg/kg, 200 mg/kg Male Kunming mice

Up-regulated the
expression of the critical
proteins in the Nrf2/HO-1
and PI3K/Akt
signaling pathways.

[73]

Polysaccharides
with phytosterols

oat β-glucan and
phytosterols

3:2,
3 g/d, 2 g/d

Healthy adults aged
18–70 years old

TC: HDL-C ratio was
significantly reduced [74]
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Table 2. Cont.

Category Phytochemical
Combinations Ratios and Concentration Experimental Model Effect or Mechanisms Reference

Polyphenols with
polysaccharides pectin and polyphenols 1:2

5 g/100 g, 10 g/100 g Male Wistar rats
Significantly lowered
plasma cholesterol
and triglycerides

[75]

Polyphenols with
alkaloids

epigallocatechin-3-
gallate and
caffeine

2:1,
40 mg/kg/d,20 mg/kg/d

Four-week-old
Sprague–Dawley
male rats

Improved gut microbiota,
inhibited fat accumulation,
increased expression of
hepatic TGR5

[76]

Polyphenols with
carotenoids

epigallocatechin-3-
gallate and lipophilic
lycopene

3:1,
30 mg/kg, 10 mg/kg

Healthy 4-week-old
male
Sprague–Dawley rats

Triggered the pathways of
HMGCR, LDLR, PPAR
and AMPK

[77]

Polyphenols with
amino acids curcuminoid, S-methyl

cysteine 1:1, 50 mg/kg each
Rats with cholesterol
metabolism
abnormality

Increased the conversion of
cholesterol into the feces as
much as 3 times

[78]

Terpenoids with
acetyl compounds

ursolic acid
and artesunate 1:1, 12.5 mg/kg each Rabbit fed with

Western-type diet

Significantly decreased the
plasma cholesterol
and triglyceride

[79]

Others policosanol and
10-dehydrocongerdione 1:1, 10 mg/kg each Adult male

albino rabbits

Resulted in a CETP
inhibitory activity,
increasing HDL-C level

[80]

3.1. Synergistic Hypolipidemic Effects of Flavonoids with Other Categories of Phytochemicals

Quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a flavonol compound with a wide dis-
tribution in the plant kingdom that has a variety of biological activities [81]. Resveratrol
(3,5,4′-trihydroxytrans-stilbene) is considered as a natural antioxidant and is known for
its anti-atherosclerotic properties, inhibiting lipid peroxidation and enhancing cholesterol
efflux [82]. Arias et al. investigated the additive or synergistic effects of resveratrol and
quercetin on fat accumulation and triglyceride metabolism in mice fed a high-fat diet. Mice
were treated with resveratrol (15 mg/kg/d), quercetin (30 mg/kg/d), or a combination of
them for 6 weeks, respectively. The results showed that the combination with quercetin or
resveratrol resulted in a significant reduction in lipid accumulation compared to treatment
alone, and the reduction percentage was greater than the calculated additive effect [83].

Similarly, Yang et al. observed that in maturing preadipocytes, resveratrol and
quercetin individually suppressed intracellular lipid accumulation by 9.4% and 15.9%,
respectively, and the combination of them at the same dose decreased lipid accumulation
by 68.6% [84]. Furthermore, a gas chromatography-mass spectrometry (GC-MS)-based
metabolomic approach was used to assess the potential role and mechanisms of quercetin
and resveratrol combination (2:1) at different doses (45, 90 and 180 mg/kg) in high-fat
diet (HFD)-induced obese rats. A total of 22 differential metabolites were found at the
transcriptional and metabolic levels in the HFD group compared to the normal group,
involving amino acid, galactose and pyruvate metabolism, pantothenic acid and coenzyme
a biosynthesis, citric acid cycle, and lysine degradation, respectively, while the combination
of quercetin and resveratrol reversed some of the differential metabolite changes [68]. In
addition, Zhao et al. also reported that a combination of quercetin and resveratrol (2:1) sig-
nificantly reduced TC, TG, and LDL-C levels in HFD-fed rats [85]. These results suggest
that quercetin and resveratrol have significant synergistic hypolipidemic effects.

Park et al. investigated the combined effects of quercetin, resveratrol, and genistein
on adipogenesis and apoptosis in human primary adipocytes (HAS) and 3T3-L1 mouse
adipocytes (MAS). If these active substances were used to treated HAS alone, lipid accumu-
lation was reduced by 16.8%, 20.3%, and 17.4%, respectively, while combined treatment
(2:2:1) reduced lipid accumulation by 80.3%. The combination showed a greater inhibition
of lipogenesis compared with the predicted superimposed effect based on individual com-
pounds, indicating a synergistic hypolipidemic effect of a certain proportion of quercetin,
resveratrol and genistein combination therapy [69]. Similarly, to assess the synergistic



Foods 2022, 11, 2774 10 of 24

lipid-lowering effects of Hawthorn phytochemicals, Huang et al. used a combination of
quercetin, hyperoside, rutin, and chlorogenic acid (6:9:2:1). They measured the inhibition
of 3-hydroxy-3-methylglutaric acid monoacyl coenzyme A reductase before and after treat-
ment with this combination therapy. The results showed that the inhibition rate of the
combination was 58.9% higher than the sum of their individual inhibition rates, indicating
that there was indeed a synergistic effect between the four active ingredients [70].

In addition, kaempferol, a flavonol in edible plants, has various effects such as antiox-
idant, anti-inflammatory and hypolipidemic effects, and it can be used as a therapeutic
agent for diabetes and cardiovascular diseases [86]. Cinnamaldehyde, a natural flavor-
ing, inhibits glycolysis while enhancing glucose storage [87]. Their combination has been
reported to significantly reduce serum TC, TG and LDL-C levels and increase HDL-C
levels in mice [71]. The nontargeted metabolomics results also confirmed the simultaneous
obstruction of glucose and amino acid metabolism by kaempferol and cinnamaldehyde,
showing synergistic hypolipidemic effects.

3.2. Synergistic Hypolipidemic Effects of Polysaccharides with Other Categories of Phytochemicals

It has been reported that polysaccharides and polyphenols in green tea can effectively
reduce serum leptin levels and inhibit fatty acid absorption in rats, and the combination
can reduce lipid accumulation more than their individual effects, which implies that
polysaccharides and polyphenols may have synergistic effects in lowering blood lipids [72].
In addition, pumpkin polysaccharides and puerarin both showed lipid-lowering activity
by lowering TC, TG and LDL-C levels and improving HDL-C levels [88,89]. Chen et al.
investigated the hypoglycemic and hypolipidemic effects of pumpkin polysaccharides
and puerarin in the type II diabetes mellitus mice model. After eight weeks of treatment,
blood samples were taken from the tail vein of mice that had fasted overnight for the study.
The results showed that pumpkin polysaccharide, gerberoside and their combination all
improved the blood glucose levels in diabetic mice. Furthermore, compared with pumpkin
polysaccharide and puerarin alone, the combination (2:1) treatment more significantly
reduced serum TC, TG and LDL-C levels and increased serum HDL-C levels, indicating
that they have synergistic hypoglycemic and hypolipidemic potential [73].

In addition, oat β-glucan and phytosterols have been recognized as adjunct or alter-
native lipid modulating therapies for optimizing dyslipidemia control as they are safe,
effective and easily compliable for individuals with dyslipidemia [90,91]. Ferguson et al.
reported that oat β-glucan and phytosterols can reduce blood cholesterol levels through
different mechanisms and have the potential synergistic hypolipidemic effects. This has
also been demonstrated through clinical studies that high molecular weight oat β-glucan
and phytosterols have synergistic effects in lowering cholesterol in hypercholesterolemic
adults. Specifically, TC and LDL-C decreased significantly by 11.5% and 13.9% (p < 0.0001),
respectively, after their combined treatment, but they were significantly higher than phytos-
terols, which were 4.6% and 7.6% (p < 0.05), and oat β-glucan, which were 5.7% and 8.6%
(p < 0.01) [74].

3.3. Synergistic Hypolipidemic Effects of Polyphenols with Other Categories of Phytochemicals

Apples are rich in polyphenols and pectin. In order to determine the role of apple
components in lipid lowering, mice were fed diets containing 5 g/100 g apple pectin
and 10 g/100 g high polyphenol freeze-dried apples or both. The combination was more
effective in reducing circulating cholesterol and triglyceride concentrations than feeding
alone, suggesting a positive interaction between apple pectin and polyphenols on lipid
metabolism [75]. In addition, Ker et al. reported that peeled apples contain a large amount
of inositol and uronic acid, which may play a synergistic role in lowering blood lipids, and
suggested that phenolics may also have a potential contribution [92].

Epigallocatechin-3-gallate (EGCG) is the main polyphenol in green tea and has high
antioxidant, hypolipidemic and anti-inflammatory activities [93,94]. Yang and Zhu et al.
found that the combination of EGCG and caffeine was more effective in inhibiting fat
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accumulation than the same dose alone [95]. In another experiments, they demonstrated
that the combination of low-dose EGCG and caffeine (2:1) had synergistic lipid-lowering
effects. Specifically, mice were fed with low-dose EGCG (40 mg/kg/d), low-dose caffeine
(20 mg/kg/d), high-dose EGCG (160 mg/kg/d), and a combination (40 mg/kg/d EGCG
and 20 mg/kg/d caffeine). Compared to single treatment, the combination had more
significant effects in reducing hepatic TC and TG levels, preventing weight gain, and
inhibiting perirenal and epididymal fat accumulation. In addition, the combination of low-
dose EGCG and caffeine resulted in better lipid-lowering effects than high-dose EGCG [76].
Similarly, Sugiura et al. reported that combined treatment with EGCG and caffeine (2:1) had
overall stronger inhibitory effects on fat accumulation in mice than either alone [96]. In
addition, a recent study reported that the combination of hydrophilic EGCG and lipophilic
lycopene synergistically reduced TG and TC levels in serum and liver [77].

Curcuminoid is a natural polyphenol compound, which has good anti-inflammatory
and hypolipidemic effects [97,98]. Hasimun et al. evaluated the effects of curcuminoid,
S-methyl cysteine and their combination on the regulation of cholesterol levels in serum,
liver, and feces. They established an animal model of rats with cholesterol metabolism
abnormality induced by propylthiouracil for 7 days. The results showed that curcuminoid,
S-methyl cysteine and their combination (1:1) could maintain the normal level of serum
cholesterol by inhibiting the absorption of liver cholesterol. Furthermore, the combination
resulted in the conversion of cholesterol into feces at a rate three times higher than that
of the control group, which was superior to the effect of curcumin and S-methyl cysteine
alone. This demonstrated that the combination of curcumin and s-methyl cysteine had
synergistic hypolipidemic effects [78].

3.4. Synergistic Hypolipidemic Effects of other Different Categories of Phytochemicals

Ursolic acid is a naturally occurring triterpenoid found in many plants which has anti-
oxidative, anti-inflammatory and hypolipidemic properties [99]. Artesunate is one of many
derivatives of artemisinin extracted from Artemisia annua. Researchers investigated the
hypolipidemic effects of ursolic acid and artesunate in rabbits with Western-diet induced
hyperlipidemia. Rabbits received ursolic acid (25 mg/kg) or artesunate (25 mg/kg) alone or
in combination (12.5 + 12.5 mg/kg). The results showed that ursolic acid or artesunate alone
significantly reduced plasma triglyceride levels but had no effect on cholesterol levels. The
combination reduced triglyceride and cholesterol levels with stronger synergistic effects
than their individual effects [79]. This synergistic effect may be attributed to the different
hypolipidemic mechanisms of artesunate and ursolic acid [100].

In addition, both policosanol and 10-dehydrogingerdione are natural phytochemicals
and have shown the ability to lower the level of blood lipids [101,102]. It has been reported
that the combination (1:1) significantly decreased serum levels of TC, LDL-C and TG
and increased HDL-C levels in mice compared to single treatment, indicating synergistic
hypolipidemic effects [80].

4. The Synergistic Hypolipidemic Mechanisms

The hypolipidemic effects of phytochemicals are closely related to lipid metabolism
disorder, making understanding the formation process of lipid metabolism necessary for the
phytochemicals synergistic study. The regulation of lipid metabolism is a complex process
involving multiple pathways and targets. Currently, researchers mainly investigate their
hypolipidemic mechanism by inhibiting the absorption of exogenous lipids, synthesis of en-
dogenous lipids, and regulating lipid transport and metabolism [103]. As for the regulation
of lipid metabolism, it focuses on the regulation of total cholesterol metabolism, but there
are few studies on triglyceride. The cholesterol metabolism mainly includes some important
molecular mechanisms, such as the increase in reverse cholesterol transport, the inhibition
of intestinal cholesterol absorption, the acceleration of liver cholesterol excretion, and the
decrease in cholesterol synthesis [14]. According to previous studies, the absorption, synthe-
sis, transport and metabolism of lipids mainly involve the following pathways or targets:
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niemann-pick protein C1 (NPC1) [104], ATP-binding cassette protein A1 (ABCA1) [105],
LDL receptor protein (LDLR) [106], 3-hydroxy-3-methylglutaryl coenzyme A reductase
(HMGCR) [107], sterol-regulatory element binding protein 2 (SREBP-2) [108], ATP citrate
lyase (ACLY) [109], peroxisome proliferator activated receptor (PPAR) [110], cholesteryl
ester transfer protein (CETP) [111], cholesterol-7α-hydroxylase (CYP7A1) [112], fatty acid
synthetase (FAS) [113], acetyl-CoA carboxylase (ACC) [114], 5′-monophosphate-activated
protein kinase (AMPK) [115], carnitine palmitoyltransferase1A (CPT1A) [116], carbohydrate
responsive element-binding protein (ChREBP) [117], hormone-sensitive lipase (HSL), adi-
pose triglyceride lipase (ATGL) [118], and liver x receptor alpha (LXRα) [119]. Figure 4 shows
some important targets or pathways for the phytochemicals regulation of lipid metabolism.
Figure 5 shows the fatty acid metabolism mechanism and some important targets.
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4.1. The Synergistic Hypolipidemic Mechanisms Based on the Pathway Analysis
4.1.1. Synergistic Hypolipidemic Mechanisms Based on the Same Pathway

5′-monophosphate-activated protein kinase (AMPK) is regarded as the main energy
sensor to maintain the energy homeostasis of cells [90]. The pathways modulated by
AMPK are grouped into four general categories, including protein metabolism, lipid
metabolism, glucose metabolism, autophagy and mitochondrial homeostasis. The acti-
vated AMPK can reduce lipid synthesis by inhibiting the expression of downstream targets
(Figure 6) [120–122]. Many studies have shown that natural phytochemicals such as resvera-
trol, epigallocatechin gallate, berberine and quercetin can inhibit lipid metabolism disorders
by regulating AMPK activity and its related pathways [123,124]. For example, to investigate
the hypolipidemic effects of the combination of kaempferol and cinnamaldehyde, Gao et al.
used untargeted metabolomics to reveal the cross-links of metabolic pathways affected by
them. Then, the energy state was reflected by indexes such as the contents of adenosine
triphosphate (ATP) and adenosine monophosphate (AMP) and the phosphorylation of
AMPK. When using the combination of kaempferol and cinnamaldehyde, the synergistic
effects will lead to a shift toward catabolic lipid metabolism as the main source of energy
supply and an increase in the AMP/ATP ratio, which is due to the hindrance of kaempferol
on glycolysis and the effect of cinnamaldehyde on amino acid metabolism. AMPK also
acts as an energy receptor of the body, which is activated by an increase in the AMP/ATP
ratio. Then, activated AMPK inhibits the synthesis of fatty acids by inhibiting key enzymes
such as acetyl-CoA carboxylase, promoting the catabolism of lipids and thus increasing
the production of ATP. The results confirmed that the combination of kaempferol and
cinnamaldehyde ameliorated glucose and lipid metabolism disorders by enhancing lipid
metabolism via the activation of AMPK pathway [71].
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Furthermore, it has also been reported that the combination of quercetin and resvera-
trol reversed the HFD-induced inhibition of 5’-adenosine monophosphate activated protein
kinase α1 (AMPKα1) phosphorylation and sirtuin 1 (SIRT1) expression in the epididyotic
adipose tissue of mice, suggesting that the combination may inhibit obesity and associated
inflammation in rats fed with an HFD through the AMPKα1/SIRT1 signaling pathway [125].
Since both resveratrol [126] and quercetin [127] can individually regulate this signaling
pathway, the synergistic effect of resveratrol and quercetin at least results from the common
AMPKα1/SIRT1 signaling pathway [23]. It has also been reported that the combination
can regulate lipid metabolism by inhibiting the activity of ACC [83].

In conclusion, the AMPK pathway is the signal pathway most closely related to the
synergistic hypolipidemic effect of phytochemicals.
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4.1.2. Synergistic Hypolipidemic Mechanisms Based on Different Pathways

The synergistic hypolipidemic mechanism of phytochemicals in different pathways
has been well studied. For example, some studies have revealed the synergistic hypo-
glycemia mechanism with pumpkin polysaccharides and puerarin through upregulating
the expression of critical proteins in the nuclear factor E2 related factor 2 (Nrf2) and
phosphoinositide-3-kinase (PI3K) signaling pathways [73].

Oat β-glucan as the main soluble fiber found in oat [128] can increase the excretion
of cholesterol by inhibiting bile acid reabsorption [129], while phytosterols reduce the
absorption of intestinal cholesterol, which leads to an increased excretion of cholesterol
in the feces [130]. Thus, oat β-glucan and phytosterols have two different mechanisms
in cholesterol metabolism, which complement each other so effectively that they amplify
the reduction in plasma LDL-C [74]. Similarly, Hannan et al. suggested that oligomeric
proanthocyanidins, pterostilbene, and niacin have hypolipidemic effects by up-regulating
CYP7A1 to induce bile acid secretion and fairly low-density lipoprotein (VLDL) secretion
from the liver, up-regulating PPAR to promote cholesterol metabolism, and inhibiting
cellular TG and free fatty acid synthesis, respectively. The synergistic lipid-lowering effects
can be observed with the combination of the three, and low-dose mixed treatment has been
proved more effective than a single high dose [35].

In addition, combined treatment with crocin, chlorogenic acid, geniposide and quercetin
increased ABCA1, CYP7A1 and AMP-activated protein kinase 2α(AMPKα2) mRNA ex-
pression while decreasing SREBP2 and LXRα mRNA expression [24]. This result suggests
that their synergistic hypolipidemic effects seem to be achieved through different path-
ways, such as the regulation of AMPK, LXRα and involvement during cholesterol synthesis
and metabolism.

Nowadays, EGCG is the most widely used in the studies on the synergistic lipid-
lowering mechanism of phytochemicals. Zhu et al. proposed that the combination of
EGCG and caffeine could target different lipid-lowering pathways, which may be the
basis for their synergy [76]. They also found significant synergistic effects from many
aspects of the combination-treated mice, such as increased fecal acetate, propionic acid
and short-chain fatty acids leading to decreased expression of G protein-coupled receptors
(GPRs) and increased fecal bile acid loss. Furthermore, combined treatment with EGCG
and caffeine could have synergistic effects on increasing hepatic G protein-coupled bile
acid receptor 1 (TGR5) expression and decreasing intestinal farnesoid X receptor (FXR)
and fibroblast growth factor 15 (FGF15) expression, leading to increased hepatic CYP7A1
expression. It has also been reported that the combination of catechins and caffeine can
inhibit fat accumulation by suppressing fatty acid synthesis and up-regulating enzymatic
activities involved in β-oxidation of fatty acid in the liver, but the combination of EGCG
and caffeine did not show the same effect [96]. In addition, Wang et al. demonstrated that
the combination of EGCG and lycopene could synergistically lower lipids through different
pathways, including HMGCR, LDLR, PPAR, and AMPK at both mRNA and protein levels,
and the synergistic hypolipidemic effects could be achieved mainly through the activation
of the AMPK pathway [77].

In addition, sea buckthorn flavonoids have been shown to be a potential nutrient for the
prevention of cognitive impairment caused by high-energy-density diets, because they can acti-
vate different signaling pathways to inhibit inflammation and regulate lipid metabolism [131].
Network pharmacology analysis indicated that sea buckthorn flavonoids improved hyper-
lipidemia by regulating multiple pathways, such as cholesterol metabolism, fat digestion
and absorption, the PPAR signaling pathway, the AMPK signaling pathway, and insulin
resistance [32]. Specifically, quercetin, hesperidin, and catechin induced LXRα, ABCA1, and
apolipoproteins A1 expression to increase cholesterol efflux, quercetin, hesperidin, catechin
and isorhamnetin inhibited SREBP-2 and its target gene LDLR to decrease cholesterol de novo
synthesis, and hesperidin and catechin up-regulated CPT1A to accelerate fatty acids oxidation
(Figure 7). These results suggest that the effects of sea buckthorn flavonoids on improving
hyperlipidemia are actually the synergistic effects of different phytochemicals.
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4.2. Target-Based Analysis of Synergistic Mechanisms
4.2.1. Synergistic Hypolipidemic Effects Based on the Same Target

Different phytochemicals with similar structures can be combined with the same target
to produce superimposed or enhanced synergistic hypolipidemic effects. For example,
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is a regulatory enzyme
involved in liver cholesterol biosynthesis, which is the target enzyme of anti-hyperlipidemia
drugs [132,133]. The commonly used statins achieve its lipid-lowering effect through
inhibiting HMGCR [134]. Quercetin, hyperoside, rutin and chlorogenic acid from hawthorn
have been reported to inhibit HMGCR activity, and there are synergistic effects between
the monomers after the combination [70]. Furthermore, Susilowati et al. demonstrated
that quercetin, chlorogenic acid, epicatechin and catechin from apple peel have inhibitory
effects on HMGCR targets by molecular docking tests and in vitro experiments, leading to
a combined inhibition of cholesterol synthesis [135].

Cholesterol ester transfer protein (CETP) plays a significant role in high-density
lipoprotein metabolism and reverse cholesterol transport [111,136]. The results showed
that both policosanol and 10-dehydrogingerdione could prevent hyperlipidemia by in-
hibiting the activity of the CETP target, reducing serum TG level and increasing HDL-C
content [137,138], and the combination of these two phytochemicals could lead to a fur-
ther enhancement of HDL-C elevation [80]. In our previous study, we found that both
biochanin A and chickpea peptide Cpe-III could exert hypolipidemic effects based on the
target CETP [139]. Further investigation has demonstrated that the synergistic mechanism
between these two may be related to the regulation of gene expression related to lipid
synthesis, metabolism, and oxidation [140].

4.2.2. Synergistic Hypolipidemic Effects Based on Multi-Target

Synergistic multi-target effects refer to the synergistic effect of multiple phytochem-
icals on different targets, which is considered as a mechanism of synergistic effect [141].
Combined phytochemicals can target different biomarkers, resulting in synergistic hy-
polipidemic effects, such as direct interactions with different target proteins in the same
metabolic pathway [22]. The active components in the combination may affect several
targets in the hypolipidemic pathway, such as transporter proteins, receptors, and enzymes.
Fatty acid synthase (FAS) is considered as the key enzyme to catalyze fatty acid synthe-
sis [142]. Sterol regulatory element-binding protein-1c (SREBP-1c) mainly regulates the
biosynthesis of fatty acids, triglycerides and cholesterol [143,144]. Li et al. found that the
expression of SREBP-1c and FAS reduced by 1.67-fold and 0.62-fold, respectively, in mice
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fed with the combination of soluble dietary fiber and insoluble dietary fiber compared with
the control group, suggesting that the combination could regulate fatty acid synthesis by
down-regulating the expression of FAS and SREBP-1c [34].

Peptide transporter 1 (PepT1) is one of the key targets for the absorption of hypolipi-
demic drugs into the bloodstream, and it is mainly found in the small intestine [145].
Peroxisome proliferator-activated receptor alpha (PPARα) is a classical lipid-lowering
target, and PPARα agonists can exert lipid-lowering effects by regulating the metabolic
pathways of blood lipids [146]. PPARα has been found to regulate the expression of various
intestinal transporters, especially PepT1, and some PPARα agonists have shown the ability
to promote the uptake of PepT1 substrates [147]. Qiao et al. suggested that the combination
of Panax notoginseng and Salvia miltiorrhiza containing active components could activate
both PepT1 and PPARα targets, which may be the basis for their synergistic hypolipidemic
effects [148].

In addition, Shimizu et al. also found that the combination of flavonoids contained
in Scutellaria root inhibited inflammation better than using flavonoids alone, and the
synergistic effect of the flavonoid combination was actually the sum of the effects of the
flavonoids inhibiting different targets [149]. Furthermore, Ma et al. selected the combination
of acacetin and apigenin (1:1) from 12 flavonoid compounds of Artemisia sacrorum. The
combination showed significant synergistic inhibition of various genes or proteins related
to lipid synthesis (SREBP1c, FAS, PPAR), and this combination synergistically promoted
the phosphorylation of AMPK and ACC1 [30].

4.3. Other Mechanisms

The hypolipidemic interactions between different phytochemicals may increase their
bioavailability in vivo [26]. Therefore, synergistic effects based on improved solubility and
absorptivity to enhance the bioavailability of phytochemicals have drawn the interest of
researchers [141]. The bioavailability of phytochemicals is a critical factor for functional
foods and health claims related to food ingredients, leading to an understanding of the
mechanisms of action associated with benefits [21]. For example, studies have shown a
154% increase in the bioavailability of curcumin in rats given both piperine and curcumin
(10:1) and a staggering 2000% increase in humans treated with both [150]. This is most
likely the result of piperine inhibiting the glucuronidation of curcumin, as curcumin is fully
metabolized in the form of glucuronic acid before reaching the plasma [151]. Zhao et al.
found that the bioavailability of quercetin increased in the presence of proanthocyanidins,
which was possibly because it effectively improved the chemical stability of quercetin
by preventing quercetin oxidation and increasing solubility [152]. In addition, a study
reported that the substantial interaction between cocoa flavanols and methylxanthines
existed at the level of absorption, in which the methylxanthines mediated an increased
plasma concentration of epicatechin metabolites and synergistically enhanced the anti-
hypertensive effect of epicatechin [153].

In addition, a recent study reported that EGCG and caffeine exhibited synergistic
hypolipidemic effects in altering gut microbiota, including decreased Firmicutes level and
increased Bifidobacterium level in mice [76]. This synergistic effect may be due to the
regulation of the gut microbiota and bile acid metabolism by the combination treatment.

5. Conclusions and Future Directions

The phytochemicals in food are diverse in variety, numerous in structure, and com-
plexly interact with each other. As an effective initiative to protect and improve the activity
of phytochemicals, the concept of “synergy” and its application are highly sought after
in the development of hypolipidemic functional foods. Based on the complexity of the
regulatory network of lipid metabolism, synergistic therapy has shown to be superior to
monotherapy [154]. There is a lot of evidence that plant extracts show better results than
isolated individual phytochemicals in lipid-lowering. For example, Hannan et al. reported
that low-dose combination therapy was more effective in lipid-lowering than individual
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bulk dose in rabbits fed with a high-cholesterol diet [35]. Single lipid-lowering substances,
whether drugs or natural active substances, are increasingly showing their own limitations
in practical application. On the one hand, a single substance given in high doses may
become toxic rather than beneficial. On the other hand, the effect of lipid-lowering levels
was significant at lower doses, but this effect was not as significant as predicted at higher
doses, indicating a ceiling effect.

Phytochemicals are an important source of therapeutic agents for hyperlipidemia. In
particular, synergistic interactions between phytochemicals provide an interesting approach
to achieve lipid-lowering effect in human. The regulation process of lipid metabolism
and multi-target intervention by phytochemicals occurs during the absorption, synthesis,
transport and metabolism of lipids, and synergistic regulatory effects may be essential
in regulating these pathways. HMGCR, LDLR, AMPK, ABCA1, CYP7A1, CETP, SREBP
and PPAR remain the key molecules involved in these synergistic processes. In addition,
there are a variety of phytochemicals that have been shown hypolipidemic effects. How-
ever, studies of synergistic effects have been focused on flavonoids, polysaccharides, and
phenols in the phytochemicals. In general, phytochemicals may work together to prevent
hyperlipidemia by regulating different metabolic pathways or targets.

There are still some urgent issues to be solved. For example, although some plant
extracts or foods have been shown to have synergistic hypolipidemic effects, the structure
of most phytochemicals and their structure–activity relationships have not been determined
due to limitations in research methods and techniques, which makes it difficult to study
the mechanism of synergy. In fact, the study on hytochemicals synergy is closely related
to its own molecular structure. For example, quercetin is a flavonoid compound with a
variety of active structures [155]. These special active structures make it possible to create
synergies with other phytochemicals, and phytochemicals with similar structure may have
similar, overlapping or complementary roles in their lipid-lowering activities. However,
suitable methods to understand these interactions are needed. Molecular simulation
and molecular docking are considered to be important methods for the discovery and
design of synergistic interactions between phytochemicals due to their advantages of
rapidity and high accuracy [156,157]. Molecular simulation and molecular docking reveal
binding information between candidate molecules and enzymes and obtain interaction
trajectories to better understand biological processes, which is considered as a general
approach to study the interactions and conformational stability of biomolecules [158]. In
addition, the application of network pharmacology and metabolomics has also made a
positive contribution to the discovery of synergistic active components in plants. Network
pharmacology can transform the study of disease from a “one-target, one-drug” model to a
“network-target, multi-component-treatment” model [159]. Metabolomics can be used to
elucidate changes in metabolites following endogenous or exogenous perturbations in vivo
and to search for biomarkers and pathways in plasma and liver samples [160,161], which
are important for screening active compounds in plants, discovering targets and exploring
mechanisms of action. For example, based on the results of a network pharmacology and
metabolomics studies, Wang et al. found quercetin and aloin as potential active ingredients
that may exert synergistic efficacy in the treatment of hyperlipidemia [162]. In short, in order
to study the synergistic hypolipidemic effects among phytochemicals better, we should
establish a comprehensive model, which should have the roles of screening of synergistic
substances, quantification of synergistic effects, and evaluation of synergistic mechanisms.

In conclusion, increasing evidence suggests that phytochemical combinations are a
practical approach to preserve and improve the health-promoting effects of functional
ingredients. The concept of synergistic hypolipidemic provides a theoretical basis for the
development of phytochemicals with synergistic effects for the treatment of hyperlipidemia
and its complications. It is expected that improvements in synergistic research models
and complex mixture analysis techniques will help us to better explore the synergistic
therapeutic potential between phytochemicals in the near future. The concept of synergistic
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effects of phytochemical combinations is also a guideline for the design of functional foods
for hypolipidemic.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11182774/s1, Figure S1: Basic structures of other phyto-
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