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Abstract

This paper investigates a brain-based approach for visual merchandising display (VMD)

in fashion stores. In marketing, VMD has become a research topic of interest. However,

VMD research using brain activation information is rare. We examine the hemodynamic

responses (HRs) in the prefrontal cortex (PFC) using functional near-infrared spectroscopy

(fNIRS) while positive/negative displays of four stores (menswear, womenswear, under-

wear, and sportswear) are shown to 20 subjects. As features for classifying the HRs, the

mean, variance, peak, skewness, kurtosis, t-value, and slope of the signals for a 20-sec

time window for the activated channels are analyzed. Linear discriminant analysis is used

for classifying two-class (positive and negative displays) and four-class (four fashion stores)

models. PFC brain activation maps based on t-values depicting the data from the 16 chan-

nels are provided. In the two-class classification, the underwear store had the highest aver-

age classification result of 67.04%, whereas the menswear store had the lowest value of

64.15%. Men’s classification accuracy for the underwear stores with positive and negative

displays was 71.38%, whereas the highest classification accuracy obtained by women for

womenswear stores was 73%. The average accuracy over the 20 subjects for positive dis-

plays was 50.68%, while that of negative displays was 51.07%. Therefore, these findings

suggest that human brain activation is involved in the evaluation of the fashion store dis-

plays. It is concluded that fNIRS can be used as a brain-based tool in the evaluation of fash-

ion stores in a daily life environment.

Introduction

Customer behavior due to marketing is strongly influenced by the perception of the surround-

ing environment as shown by dandyism [1]. Visual merchandising display (VMD) is a market-

ing strategy to develop floor plans and displays to attract, engage, and stimulate the customer

towards making a purchase. If done effectively, the marketers are able to maximize sales. It can

also help marketers develop a unique marketing identity and brand, differentiating themselves

in the market [2]. In this paper, by using functional near-infrared spectroscopy (fNIRS), we

PLOS ONE | https://doi.org/10.1371/journal.pone.0208843 December 11, 2018 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Liu X, Kim C-S, Hong K-S (2018) An

fNIRS-based investigation of visual merchandising

displays for fashion stores. PLoS ONE 13(12):

e0208843. https://doi.org/10.1371/journal.

pone.0208843

Editor: Nobuyuki Sakai, Tohoku University, JAPAN

Received: August 16, 2018

Accepted: November 25, 2018

Published: December 11, 2018

Copyright: © 2018 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This research was supported by the

China Scholarship Council (grant no.

201408260012) and the National Research

Foundation of Korea under the auspices of the

Ministry of Science and ICT, Republic of Korea

(grant no. NRF-2017R1A4A1015627).

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-8528-4457
https://doi.org/10.1371/journal.pone.0208843
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208843&domain=pdf&date_stamp=2018-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208843&domain=pdf&date_stamp=2018-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208843&domain=pdf&date_stamp=2018-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208843&domain=pdf&date_stamp=2018-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208843&domain=pdf&date_stamp=2018-12-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208843&domain=pdf&date_stamp=2018-12-11
https://doi.org/10.1371/journal.pone.0208843
https://doi.org/10.1371/journal.pone.0208843
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


investigate the brain activation of potential customers when viewing various VMDs of four

fashion stores.

From the early twenty-first century, VMD has become a science and one of the main tools

for increasing sales. A good display can attract the consumer’s attention, which is essential in

the decision-making process leading to a purchase. To capture a consumer’s mind, the needs of

the consumer when viewing the VMD should be considered. Law et al. [3] investigated, from a

psychological perspective, the affective responses of the consumers to visual stimuli in stores by

considering the aesthetic and symbolic aspects of function-oriented products. The conformity

between the preconceived fashion image and the image projected from a fashion store works as

a mediator that affects the actual purchase decision. Shin et al. [4] investigated the benefits of

eco-friendly VMDs on satisfaction as well as the effect of satisfaction on store displays. They

demonstrated experimental evidence that psychological and social satisfaction play a fundamen-

tal role in the benefit of eco-friendly VMDs leading to positive store characteristics. Such results

indicate that social information results in positive psychological and emotional satisfaction,

which consequently leads to a positive view of the store for retail customers.

Currently, VMD studies of the influence of brain activity from a visual stimulus has become

an important research issue. To investigate the activated brain region when viewing positive

and negative stimuli, Zhang et al. [5] used functional magnetic resonance imaging (fMRI) and

reported that the local connections in the brain increased while viewing affective pictures. In

the positive emotional network, a positive affect score was correlated with the betweenness

value of the right orbital frontal cortex (OFC) and the right putamen, while in the negative

emotional network, a negative affect score was correlated with the betweenness value of the

left OFC and the left amygdala. Local efficiencies in the left superior and inferior parietal lobes

were correlated with the subsequent arousal ratings of the positive and negative pictures,

respectively. Metereau et al. [6] found that the activities in the medial OFC and the ventrome-

dial prefrontal cortex (PFC) were correlated positively in terms of the expected values of the

cues in anticipation of rewards and punishments. This finding indicates that the medial OFC

and the ventromedial PFC encode a generally unsigned anticipatory value signal, regardless of

the valence of anticipation (positive/negative) and type (appetitive/aversive events). Bercik

et al. [7] investigated the impact of color illumination (an essential factor in food shoppers’

perception) using EEG. Schmeichel et al. [8] found that exercising (vs. not exercising) self-con-

trol increases left frontal cortical activity during picture viewing, particularly among individu-

als with a relatively more active behavioral activation system than behavioral inhibition

system, and particularly when viewing positive pictures. A similar but weaker pattern emerged

when viewing negative pictures. Using fNIRS to measure the brain hemodynamic responses

(HRs), the finding from Kreplin et al. [9] indicated that the right PFC was involved in positive

evaluation of visual art that may be related to the judgment of pleasantness or attraction. This

result suggests that emotional processing takes precedence over digressing viewing discipline

during visual deliberation of art. In this case, the emotional nodule was brought to the begin-

ning because of the participant’s search for a personal association with the art images. Hence,

participants relied on their own judgement and personal relationship with the art to make a

subjective evaluation of the price.

In this work, fNIRS, an optical imaging method [10–17] is used to obtain brain signals.

fNIRS offers several advantages over other modalities, such as being non-invasive, portable,

no-noise, harmless, and inexpensive [18–22]. fNIRS can measure the light intensity changes in

near-infrared lights of wavelength between 650 nm and 1,000 nm [23] and monitors the varia-

tion in regional cerebral blood flow. These changes are caused by concentration variations in

oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) from neural activity.

The principles and practical applications of fNIRS were described in detail previously [10].

fNIRS-based investigation of VMD for fashion stores
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In this paper, the HRs evoked by viewing positive and negative pictures of four different

store categories (menswear store, womenswear store, underwear store, and sportswear store)

are measured. The obtained results are portrayed in brain activation maps using the t-values of

the measured HRs and the desired HRs [24]. Two-class and four-class linear discriminate anal-

ysis (LDA) [25] classifiers are used to distinguish the HRs from different picture stimuli, for

which seven features (mean, peak, variance, skewness, kurtosis, t-value, and slope) are utilized.

Materials and methods

Ethics statement

The experiment was conducted upon the approval of the Pusan National University Institu-

tional Review Board. Written consent was obtained from all subjects prior to starting. The

experimental procedure was conducted in accordance with the ethical standards described in

the latest Declaration of Helsinki.

Participants

Twenty healthy subjects (age 28 ± 3, all right handedness, 10 males and 10 females) partici-

pated in this experiment. All of them were healthy with no previous history of neurological dis-

orders. All participants were informed about the procedure and operation of the fNIRS system

prior to providing written consent. They were asked to avoid body motion and remain relaxed

during the experiment. When viewing the stimuli, the subjects were asked to focus on each

picture presented on the computer screen and indicate either like or dislike.

Visual stimuli

The visual stimuli were projected onto a monitor screen (Samsung LED Model: LS24A300) in

front of the participants. The viewing distance to the screen was approximately 50 cm. The size

of screen is 23 inch (16:9) and the resolution is 1,980 × 1,080 pixels. Four categories of fashion

stores (menswear, womenswear, underwear, and sportswear) were shown on the screen to

prompt negative and positive images. One trial consists of a 15 sec picture stimulus followed

by a 30 sec rest for individual categories as shown in Fig 1. One session includes an initial 60

sec baseline correction period and a 450 sec task period (5 trials of positive and negative images

in random order). The entire experiment for 4 categories takes a total of 2,040 sec.

Stimulation picture selection

The pictures used in this work were initially attained from the Internet (from a collection of

standardized photographic materials) by typing “menswear store display,” “womenswear store

display,” “underwear store display,” and “sportswear store display” into http://google.com [26,

27]. Only those pictures with good resolution were first screened. To narrow down the number

of pictures to be used for experiment, an online survey was performed, in which two hundred

sixteen people participated. In this survey, students and workers (all participants are adults)

with different majors and positions were invited, yielding a total of 216 answers. In evaluating

the quality of the pictures, a 10 points scale was used (10 means the most positive, and 1 means

the most negative), see Fig 2 for instance. Lastly, 10 pictures (5 positive, 5 negative) were

selected for each category, which resulted in a total of 40 pictures for 4 categories (menswear,

womenswear, underwear, sportswear). It is noted that the scores of the selected 5 positive pic-

tures ranged from 8 to 10 on average, and those of the 5 negative pictures ranged from 1 to 3.

It is also remarked that four out of 10 underwear pictures were from men’s, and six out of 10
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sportwear pictures were from women’s. Fig 3 shows typical examples of positive and negative

images from the four categories.

Signal acquisition and processing

To measure brain activity, a multi-channel continuous fNIRS imaging system (DYNOT:

Dynamic Near-infrared Optical Tomography; two wavelengths: 760 and 830 nm; NIRx Medi-

cal Technologies, NY) with a sampling rate of 1.81 Hz was used. A 16-channel probe configu-

ration was placed on the prefrontal cortex [28–30] aligned to the locations of Fp1 and Fp2 in

the International 10–20 System as shown in Fig 4.

To investigate the fNIRS data, the open source software NIRS-SPM [31] was used together

with our own MATLAB codes (Mathworks, USA). The obtained intensity signals of near-

infrared lights were first converted to HbO and HbR concentration changes using the modi-

fied Beer-Lamberts law.

DCHbOðtÞ

DCHbRðtÞ

" #

¼
aHbOðl1Þ aHbOðl2Þ

aHbRðl1Þ aHbRðl2Þ

" #� 1
DAðt; l1Þ

DAðt; l2Þ

" #
1

l � d
; ð1Þ

where ΔA denotes the variation in the optical density of the near-infrared light emitted at

wavelength λj, αHbX(λ1) refers to the extinction coefficient of HbX in μMmm−1, d denotes the

differential path length factor (DPF) that is unitless, and l indicates the emitter-detector dis-

tance (in mm). To remove the physiological noise related to respiration and cardiac signals, a

4th order Butterworth low-pass filter with a cutoff frequency of 0.15 Hz was used [32]. Addi-

tionally, to eliminate drift in the signal, de-trending was carried out inside the NIRS-SPM soft-

ware [33].

Regions of interest

To visualize the brain activity from fNIRS data, t-value maps are the most intuitive method. In

this paper, the t-values were computed by using the robustfit function available in MatlabTM,

which is an iterative reweighted least squares estimation algorithm with a bisquare weighting

Fig 1. The experimental paradigm for ten trials of positive and negative store images: One trial includes a 15-sec stimulus followed by a 30-sec rest, and then a

60-sec baseline correction is performed followed by five trials of positive/negative images are randomly exhibited.

https://doi.org/10.1371/journal.pone.0208843.g001

fNIRS-based investigation of VMD for fashion stores

PLOS ONE | https://doi.org/10.1371/journal.pone.0208843 December 11, 2018 4 / 19

https://doi.org/10.1371/journal.pone.0208843.g001
https://doi.org/10.1371/journal.pone.0208843


function. Let yji 2 RN�1 be the measured data at the i-th channel for the j-th stimulus (i.e., 10

stimuli for one category), and let N be the data size per stimulus (in this study, N = 64 since 15

sec stimulus and 20 sec rest were adopted using a sampling frequency of 1.81 Hz). It is noted

that out of the 30 sec rest period, only 20 sec data were used. Then, the linear regression model

is defined as follows [24].

yji ¼ b
j
iXr þ a

j
i � 1þ εj

i ð2Þ

where Xr2RN×1 is the expected hemodynamic response upon viewing the given stimuli,

12RN×1 is a column vector made of 1’s to correct the offset of the baseline, β is the unknown

coefficient indicating the activity strength of the expected hemodynamic response, and

ε2RN×1 denotes white Gaussian noise. The following equations describe the steps to obtain the

Fig 2. The example of the survey.

https://doi.org/10.1371/journal.pone.0208843.g002
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t-values.

½b̂
j
i; stats� ¼ robustfitðXr; y

j
iÞ; ð3Þ

tji ¼
b̂

j
i

SEðb̂ j
iÞ
; ð4Þ

where b̂
j
i indicates the estimate of b

j
i and stats refers to the statistical data including t-value,

p-value, standard error (SE) of the estimated coefficient.

The brain activity-related coefficient was related to the t-value to determine if its value was

statistically greater than the t-critical (tcrt) value. The tcrt value depends on the degrees of free-

dom (i.e., 63, which is N—1), and it is 1.67 in this case. If the shape of the HbO response is

closer to that of the expected HR (yr), the t-value is high. If the HbO response is different, the

t-value is low (or negative). If a channel with the computed t-value is greater than tcrt, the

channel is considered active. After obtaining all the t-maps from the 4 categories, the regions

of interest (ROIs) [34, 35] for individual categories are investigated through the maps. The

ROI denotes the area where the t-value(s) are higher than tcrt.

Fig 5 depicts the averaged brain activation maps over five trials for 20 subjects, in which

MP, MN, WP, WN, UP, UN, SP, and SN stand for menswear positive, menswear negative,

womenswear positive, womenswear negative, underwear positive, underwear negative, sports-

wear positive, and sportswear negative, respectively. Fig 6A compares the positive and negative

maps averaged over all 20 subjects, Fig 6B contrasts those averaged over ten male subjects, and

Fig 6C analyzes those averaged over 10 female subjects. As seen in Fig 6A, 6B and 6C, the ROIs

when viewing positive/negative displays from the four categories are clearly different. For fur-

ther analysis of feature selection and classification, only the active channels from each ROI

were used because using the signals only from the associated ROI (rather than using the data

from all channels) results in better classification accuracy [36, 37].

Fig 3. Examples of positive and negative displays: Four categories.

https://doi.org/10.1371/journal.pone.0208843.g003
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Feature extraction and classification

In this study, the averaged HbO signals from the active channels were considered for classifica-

tion [38, 39] (see Fig 7 and Fig 8). For features, the following seven statistical signal properties

(mean, peak, variance, skewness, kurtosis, t-value, and slope) were considered [22, 40].

• Mean: the average signal value (for 20 sec from the start of the display),

• Peak: the maximum value of the selected window (for 20 sec),

• Variance: a measure of the signal spread (for 20 sec),

• Skewness: a measure of the asymmetry of the signal around its mean relative to a normal

distribution,

Fig 4. Optode arrangement in the prefrontal cortex: Squares and circles are the detectors and emitters, respectively, and Fp1 and Fp2

denote the reference points from the International 10–20 System.

https://doi.org/10.1371/journal.pone.0208843.g004
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• Kurtosis: a measure for the sharpness of the peak relative to a normal distribution,

• t-value: a measure of a test statistic for the difference between the dataset and the expected

HR,

• Slope: the value that fits a regression line to the given data set.

To enhance the classification accuracy, a 20 sec window signal was used rather than using

the entire 45 sec task-rest period. The previous study [41] used a 2–7 sec time window for a 10

sec stimulus for classification purposes of brain-computer interface (BCI) based on two fea-

tures: mean and slope. However, in this study, we applied a different stimulus period (15s)

with different features selection. Therefore, a 20 sec time window is selected for further classifi-

cation. Additionally, the feature values have been rescaled between 0 and 1 using the following

equation.

z0 ¼
z � minz

max z � min z
; ð5Þ

where z2Rn, z0 is the rescaled value between 0 and 1, min z is the smallest value, and max z is

the largest value. For efficient classifications, several classifiers have been discussed in the liter-

ature [42–48]. Here, we used an LDA classifier to verify the HbO signals.

Fig 5. Brain activation maps (averaged over 5 trials) from 20 subjects based on t-values: Positive and negative displays for the four categories

(MP: Menswear positive, MN: Menswear negative, WP: Womenswear positive, WN: Womenswear negative, UP: Underwear positive, UN:

Underwear negative, SP: Sportswear positive, SN: Sportswear negative).

https://doi.org/10.1371/journal.pone.0208843.g005
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Results

Fig 5 shows all brain activation maps from 20 participants for menswear, womenswear, under-

wear, and sportswear by projecting positive and negative pictures of store displays and whose

data were obtained from the prefrontal cortex. There is some similarity across the subjects for

a given category. Therefore, using the data from the ROI of each experiment, the averaged

brain activation maps for the 20 subjects were obtained as shown in Fig 6A. In Figs 6B and 6C,

the gender-based brain activation maps are drawn.

In the menswear experiment shown in Fig 6A, channels 1, 5, 8, 10, 11, 12, 13, 14, 15, and 16

were activated when viewing positive displays, and channels 12, 14, and 16 were activated

when viewing negative displays. In the womenswear experiment, channels 3, 6, 8, and 14 were

activated when viewing positive displays, and channels 1, 9, 10, 13, 14, and 15 were activated

when viewing negative displays. In the underwear experiment, only channel 16 was activated

when viewing both positive and negative displays. In the sportswear experiment, channels 2, 5,

10, 11, and 14 were activated when viewing positive displays, and channels 1, 2, 7, 12, and 16

were activated when viewing negative displays. Figs 6B and 5C present the male and female

PFC activation maps. For male subjects, all channels with MP display stimulation were acti-

vated. Channel 8, 9, 10, 11, 12, 16 were activated by UP displays. In other stimulations, a few

channels were activated (WP: channel 8, SP: channel 11, MN: channels 12 and 16, WN: chan-

nels 13 and 14, UN: channels 8 and 10, SN: channels 10 and 12). For female subjects, MP, WP,

WN, and SP showed a large number of activated channels. Conversely, no channels were acti-

vated in UP, and only channel 16 was activated in UN. Based on averaging the activated

Fig 6. The averaged maps (over 20 subjects) for 4 categories of positive and negative displays.

https://doi.org/10.1371/journal.pone.0208843.g006
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channels, either among all subjects or by gender, through the intuitive observation a significant

asymmetry of the t-maps is shown in the prefrontal cortex.

Fig 7. Comparison of the averaged HRs of positive and negative displays (the x-axis indicates the time series, in which 0–15 sec is the

stimulus period and 16–35 sec is the rest period; the y-axis indicates the magnitude of HbO).

https://doi.org/10.1371/journal.pone.0208843.g007

Fig 8. Comparison of the averaged HRs (over 5 trials and 20 subjects) of positive and negative displays for the 4 categories.

https://doi.org/10.1371/journal.pone.0208843.g008
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Fig 7 compares the average HbO signals over time and their standard deviations over 20

participants for the four categories. The following findings can be summarized as follows. i)

For menswear, the peak HbO values from positive stimuli were higher than those of negative

stimuli. ii) In contrast, the peak value of positive displays of underwear and sportswear were

lower than that of negative displays. iii) However, peak values of positive/negative displays of

womenswear were not distinguishable. Overall, out of four categories, the negative sportswear

display was the most influential to the customer, showing the highest HbO response at its peak

value. Fig 8 compares all the HbO responses of positive/negative displays from the four catego-

ries. We conclude that the order of hemodynamic activation levels for positive displays are

sportswear, womenswear, menswear, and underwear.

Table 1 shows the two-class classification accuracies of all feature combinations (averaged

over 20 subjects). In individual positive and negative classifications, the highest accuracies are

marked in bold (blue): 64.15% (menswear), 64.95% (womenswear), 69.12% (underwear), and

66.27% (sportswear). Based on these best accuracies, Table 2 lists the subject-wise results of

two-class classifications between positive and negative displays, in which good/bad looking

underwear stores were classified most accurately, at 67.04%, and menswear stores were classi-

fied least accurately at 64.15%. Table 3 compares the four-class classification accuracies based

on the average of 20 subjects with all feature combinations. In classifying four-store positive

displays, the highest accuracy was 50.70%. In the case of negative displays, the highest accuracy

was 51.10%. Table 4 shows the subject-wise four-class classification accuracies. The accuracy

averaged across 20 subjects for the four positive displays was 50.68% (Sub.10 shows the highest

accuracy of 76.67%). In the case of negative displays, the averaged accuracy was 51.07% (Sub.7

had 66.95%). Table 5 shows the gender-based two-class and four-class classification accuracies.

For male subjects, the best classification category was underwear (71.38%), and the

Table 1. Feature-wise two-class classification of positive and negative displays averaged over 20 subjects (%) (MP/

N: Menswear pos./neg., WP/N: Womenswear pos./neg., UP/N: Underwear pos./neg., SP/N: Sportswear pos./neg.).

Feature Combination MP vs. MN WP vs. WN UP vs. UN SP vs. SN

Mean-Peak 53.06 64.95 53.15 54.30

Mean-Variance 52.43 50.53 55.30 44.40

Mean-Skewness 55.73 53.67 60.86 51.89

Mean-Kurtosis 53.21 53.59 53.21 46.77

Mean-t value 50.18 50.44 54.20 45.28

Mean-Slope 54.14 54.45 56.41 56.35

Peak-Variance 44.58 49.01 36.67 35.68

Peak-Skewness 57.29 53.39 50.76 46.76

Peak-Kurtosis 41.00 47.44 38.76 43.13

Peak-t value 39.77 47.80 45.58 42.66

Peak-Slope 63.07 63.05 49.66 60.52

Variance-Skewness 51.57 50.28 54.81 47.81

Variance-Kurtosis 42.31 45.19 41.79 43.57

Variance-t value 44.44 47.81 45.76 46.35

Variance-Slope 64.15 60.91 58.65 66.27

Skewness-Kurtosis 53.21 58.68 60.60 60.18

Skewness-t value 49.74 49.07 69.12 47.13

Skewness-Slope 62.88 64.16 65.77 58.54

Kurtosis-t value 47.67 50.95 48.70 44.29

Kurtosis-Slope 62.44 60.99 46.22 61.71

t value- Slope 55.61 53.51 54.02 49.46

https://doi.org/10.1371/journal.pone.0208843.t001
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Table 2. Subject-wise two-class classification of positive and negative displays based on best feature combination (%).

No. MP vs. MN WP vs. WN UP vs. UN SP vs. SN

1 75.00 54.03 66.67 83.33

2 66.67 60.00 83.33 66.67

3 66.67 50.00 83.33 75.00

4 (42.86) 60.00 66.67 55.00

5 50.00 80.00 57.14 66.67

6 66.67 (40.00) 60.00 83.33

7 50.00 50.00 66.67 66.67

8 50.00 60.00 80.00 66.67

9 57.14 50.00 66.67 60.00

10 60.00 75.00 83.33 60.00

11 83.33 66.67 50.00 57.14

12 66.67 83.33 75.00 75.00

13 75.00 83.33 60.00 83.33

14 60.00 50.00 66.67 57.14

15 83.33 83.33 57.14 50.00

16 66.67 80.00 50.00 (42.74)

17 71.43 66.67 66.67 50.00

18 50.00 66.67 75.00 75.00

19 75.00 75.00 80.00 66.67

20 66.67 75.00 66.67 60.00

Avg. ± Std. 64.15 ± 11.51 65.45 ± 13.54 67.04 ± 10.55 65.54 ± 11.62

https://doi.org/10.1371/journal.pone.0208843.t002

Table 3. Feature-wise four-class classification of positive and negative displays averaged over 20 subjects (%).

Feature Combination Positive Display Negative Display

Mean-Peak 30.59 44.53

Mean-Variance 37.54 44.71

Mean-Skewness 49.63 40.53

Mean-Kurtosis 45.13 36.07

Mean-t value 37.10 44.08

Mean-Slope 31.53 41.46

Peak-Variance 30.58 28.66

Peak-Skewness 32.05 39.65

Peak-Kurtosis (21.72) 39.60

Peak-t value 32.30 47.47

Peak-Slope 47.07 40.61

Variance-Skewness 44.56 40.70

Variance-Kurtosis (22.85) 29.70

Variance-t value 33.34 49.19

Variance-Slope 50.62 40.03

Skewness-Kurtosis 48.54 35.79

Skewness-t value 35.56 40.36

Skewness-Slope 50.41 38.46

Kurtosis-t value 36.36 51.10

Kurtosis -Slope 39.26 39.73

t value–Slope 50.70 39.49

https://doi.org/10.1371/journal.pone.0208843.t003
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classification accuracy for four-class positive displays was 51.69%. The order of classification

accuracies was underwear (71.38%), sportswear (68.33%), menswear (58.50%), and women-

swear (p = 0.069 is considered to be not statistically significant). For female subjects, the

womenswear display showed the best classification accuracy (73.00%). The order was women-

swear (73.00%), menswear (69.81%), underwear (64.71%), and sportswear (61.70%). For four-

store classification, negative displays had 52.34% classification accuracy, and positive displays

had 49.67% accuracy. For the statistical test, the one-sample t test was applied to evaluate the

accuracies based on its chance levels (Table 6).

Discussion

In the present study, the authors used fNIRS to monitor brain signals for visual merchandising

displays because the fNIRS machine is portable, silent, noninvasiveness, and low cost and

allows an experiment comparable to fMRI. The adopted fNIRS technique has high potential as

Table 4. Subject-wise four-class classification of positive vs. negative displays based on best feature combination

(%).

No. Positive Display Negative Display

1 51.90 48.33

2 31.67 44.67

3 51.00 51.24

4 60.76 44.67

5 42.38 31.33

6 38.52 54.67

7 60.00 55.00

8 50.00 51.00

9 54.00 62.38

10 76.67 54.67

11 40.00 66.95

12 40.76 63.33

13 65.95 54.67

14 64.57 50.00

15 48.33 48.14

16 42.00 44.33

17 46.10 42.74

18 44.38 51.00

19 45.57 59.55

20 59.00 42.67

Avg. ± Std. 50.68 ± 11.08 51.07 ± 8.37

https://doi.org/10.1371/journal.pone.0208843.t004

Table 5. Gender-specific classification accuracies (%).

Class Category Male Female

Two class MP vs. MN 58.50 ± 10.21 69.81 ±10.22

WP vs. WN 57.90 ± 12.10 73.00 ±10.68

UP vs. UN 71.38 ± 10.13 64.71 ±10.38

SP vs. SN 68.33 ± 9.56 61.70 ±13.01

Four class Positive Display 51.69 ± 12.67 49.67 ± 9.81

Negative Display 49.80 ± 8.38 52.34 ± 8.61

https://doi.org/10.1371/journal.pone.0208843.t005
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a brain imaging modality. In examining the brain activation, the maps and classification

results were discussed in relation to the types of stores and genders. In this study, positive and

negative displays from four categories (menswear store, womenswear store, underwear store,

and sportswear store) were investigated. Gender-based classification was typically distinguish-

able in the categories of womenswear and sportswear.

We found that the activated brain regions were asymmetrical across subjects (see Figs 5 and

6). This kind of asymmetry in functional responses in the prefrontal cortex was observed in

other reports as well [5, 8, 49]. The results from Achterberg et al. [49] showed more activation

in the right dorsal lateral PFC during negative social pictures. Our results are consistent with

their report since the negative displays of three of four categories (menswear, womenswear,

and sportswear) showed higher activation in the right PFC (see Fig 6A), which illustrates the

asymmetry of brain responses. The activation channel number based on t-test analysis shows

that the number of positive display channels is greater than that of negative displays in the

menswear and sportswear cases. Some previous studies [50, 51] reported that activation in the

PFC is positively correlated with positive and negative art picture stimulation. Vessel et al. [51]

found greater activation in the PFC for esthetically pleasing images. The gender-based t-maps

were different (Fig 6B and 6C). This conclusion is consistent with previous research [52].

There are more active channels in menswear and underwear displays in the case of male sub-

jects. Very few active channels were found in the womenswear displays. However, in the case

of female subjects, womenswear displays produced more activated channels. Underwear dis-

plays yielded the poorest activation (see Fig 6C). The active brain region was asymmetrical in

gender-based maps as well.

We applied an LDA classifier to the two-class classification problem of positive and negative

displays (in which 21 different feature combinations were examined) and to the four-class clas-

sification problem with four stores. In classifying positive and negative menswear stores (see

Table 1), the best accuracy was obtained from the combination of variance and slope, which

Table 6. Statistical testing for comparison of classification accuracy: aOne sample t-test: � and �� indicate p< 0.05 and p< 0.01, respectively.

Class Category Subject Accuracy

(mean ± SD)

t-value p-valuea

Two-class MP vs.MN All 64.15 ± 11.51 5.4957 0.00��

Male 58.50 ± 10.21 2.6327 0.0272�

Female 69.81 ± 10.22 6.1296 0.0002�

WP vs.WN All 65.45 ± 13.54 5.103 0.00��

Male 57.90 ± 12.10 2.0646 0.069

Female 73.00 ± 10.68 6.8101 0.00��

UP vs.UN All 67.04 ± 10.55 7.2232 0.00��

Male 71.38 ± 10.13 6.6742 0.00��

Female 64.71 ± 10.38 4.4814 0.0015�

SP vs.SN All 65.54 ± 11.62 5.9808 0.00��

Male 68.33 ± 9.56 6.0632 0.0002�

Female 61.70 ± 13.01 2.8439 0.0193�

Four-class Positive All 50.68 ± 11.08 10.365 0.00��

Male 51.69 ± 12.67 6.6615 0.00��

Female 49.67 ± 9.81 7.9524 0.00��

Negative All 51.07 ± 8.37 13.9293 0.00��

Male 49.80 ± 8.38 9.3585 0.00��

Female 52.34 ± 8.61 10.0414 0.00��

https://doi.org/10.1371/journal.pone.0208843.t006
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was 64.15%. In the case of womenswear, the best accuracy was achieved from the combination

of mean and peak values. In the case of underwear, the combination of skewness and t-value

resulted in the highest accuracy, and lastly, in the case of sportswear, the combination of vari-

ance and slope gave the highest accuracy. It is noted that no common feature combination

covering all four categories was found. However, as seen in Table 2, all averaged accuracies

were higher than chance level (50%). Some subjects (subs. 11 and 15) had very high accuracy,

up to 83.33%. Additionally, some subjects’ data showed poor accuracy lower than the chance

level, which are marked in parentheses.

In the case of four-class classification for the four different stores, the results are more

meaningful because the accuracies are much higher than the chance level (25%). Furthermore,

gender-based classification accuracies provide a direct indication of vulnerable categories:

females are sensitive to womenswear displays, men are sensitive to underwear displays, and

both males and females are less emotional with menswear and sportswear displays. Based

upon classification accuracies and activation maps, it is concluded that gender-specific store

displays should be pursued. Positive and negative displays for different products are conveyed

differently to the customer by different emotions [52, 53]. Such brain responses are recognized

differently, as seen in the maps. From this view, the overall intensity of a map may be related

to the customer’s interest. Therefore, the brain response from the PFC related to emotion or

pleasantness by viewing positive or negative store pictures can be scrutinized in the early stages

of interior design. This study indicates that the examination of brain activation will help fash-

ion marketing in the future.

Even though some conclusions like the above can be made, current research reveals that the

relationship between VMD and brain signals is still vague. There are only a few papers report-

ing the effectiveness of brain-based approaches. This lack of research is not because VMDs do

not influence consumers, but because the machines to measure brain signals do not provide

enough data. Therefore, a new technique to investigate VMDs and brain activation should be

developed for neuro-marketing applications.

There are some factors that influence classification accuracy. i) Signal strength variation is

due to several factors, including skull scalp thicknesses and hair pigment. ii) In the present

study, we measured the PFC as a brain region without hair, but a more emotion-related brain

region needs to be investigated. iii) A subject’s concentration level is another important factor

to consider. During the experiment, some subjects reported that they felt sleepy and fatigued

during the experiment closer to the end. Therefore, minimizing such subject-wise variation is

another issue to consider. iv) Additionally, the surrounding environments also should be con-

sidered, such as machine noise. v) In this work, the pictures used in the experiment were

obtained from the Internet. However, pictures attained from a planned store will provide a

direct evaluation of the planned store. Finally, vi) cognitive effects between fixed and moving

displays would be interesting [54].

Conclusions

In this study, we examined the possibility of using fNIRS as a brain-based tool to investigate

the consumer’s response for fashion store displays. The hemodynamic responses from the pre-

frontal cortices of twenty subjects were quite distinctive when viewing positive and negative

store images. This finding implies that consumer responses to tentative plans of new stores can

be evaluated in advance using fNIRS. Because new interior design costs a lot of money, the

proposed brain-based approach can reduce total expenditure and construction time. In this

study, even though hemodynamic responses to general (uncoordinated) store displays were

examined, the hemodynamic responses of coordinated displays for a planned item would
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provide more design-specific evaluation for prospective consumers. Overall, consumer behav-

ior analysis related to VMDs deserves to be evaluated using fNIRS. Future research should

include a design-specific evaluation of VMDs focusing on store layouts, mannequins, light,

points of purchase displays, colors, atmospherics, exterior displays, and others. As fashion

changes quickly, to follow the directions of consumer behaviors, it is expected that we will see

a rapid growth in interdisciplinary research and subsequent development of VMDs utilizing a

brain-based approach in fashion marketing.
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