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Abstract

Background: It is difficult to identify copy number variations (CNV) in normal human genomic data due to noise and non-
linear relationships between different genomic regions and signal intensity. A high-resolution array comparative genomic
hybridization (aCGH) containing 42 million probes, which is very large compared to previous arrays, was recently published.
Most existing CNV detection algorithms do not work well because of noise associated with the large amount of input data
and because most of the current methods were not designed to analyze normal human samples. Normal human genome
analysis often requires a joint approach across multiple samples. However, the majority of existing methods can only
identify CNVs from a single sample.

Methodology and Principal Findings: We developed a multi-sample-based genomic variations detector (MGVD) that uses
segmentation to identify common breakpoints across multiple samples and a k-means-based clustering strategy. Unlike
previous methods, MGVD simultaneously considers multiple samples with different genomic intensities and identifies CNVs
and CNV zones (CNVZs); CNVZ is a more precise measure of the location of a genomic variant than the CNV region (CNVR).

Conclusions and Significance: We designed a specialized algorithm to detect common CNVs from extremely high-
resolution multi-sample aCGH data. MGVD showed high sensitivity and a low false discovery rate for a simulated data set,
and outperformed most current methods when real, high-resolution HapMap datasets were analyzed. MGVD also had the
fastest runtime compared to the other algorithms evaluated when actual, high-resolution aCGH data were analyzed. The
CNVZs identified by MGVD can be used in association studies for revealing relationships between phenotypes and genomic
aberrations. Our algorithm was developed with standard C++ and is available in Linux and MS Windows format in the STL
library. It is freely available at: http://embio.yonsei.ac.kr/,Park/mgvd.php.
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Introduction

Copy number variations (CNVs) are a type of the human

genomic structural variation. CNVs are now recognized as a

major source of human genetic variability, occupying a larger

proportion of the genome than single nucleotide polymorphism

(SNP) [1]. CNV is causative of various genetic diseases including

cancer, and therefore the majority of previous association studies

have focused on domains related to cancer [2], [3]. However,

CNVs in normal human genomic structure also should be

analyzed because CNVs can exhibit different phenotypes in

different ethnic groups, sexes, or even family groups. The human

germline has been shown to possess copy number variations

despite a normal phenotype [4]. Although the mechanisms and

medical relevance of CNVs in the human genome are not yet fully

understood, a recent study focused on the relationships between

CNVs and genes as well as SNPs and genes [5].

Various CNV detection algorithms have been proposed in the

past. [6] proposed a circular binary segmentation (CBS) algorithm

that is one of the best performing algorithms with high accuracy.

However, CBS has high time complexity and was mainly designed

for cancer cell analysis. [7] provided a sensitive and robust

analytical approach for detecting CNVs but it was also designed

for cancer cells analysis with a simple threshold to determine

putative CNVs. Few algorithms have been designed for CNV

detection in normal human genomes [8], [9] although the

importance of CNV in normal human variation has been

confirmed in 2004 [10].

The resolution of most cancer and normal data used to be low.

The length of CNV is able to be several kilo base pairs or less than

it, which can be composed of only one probe in low-resolution

data while several probes in high-resolution data. Therefore,

algorithms that were designed to find CNVs based on these low-

resolution data were only suitable for identifying large-sized
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CNVs. The currently known common human CNVs are likely

smaller than previously thought [11]. Therefore, CNV detection

algorithms have to be modified to locate small-sized CNVs. In

recent years, several algorithms have been proposed for higher

resolution data. An integrated hidden Markov model was designed

by [12] for high resolution SNP genotyping data at a kilo-level

resolution. However, this algorithm is not suitable for aCGH data

which are even higher resolutioned.

One of the best solutions for detecting small-sized CNVs is

based on high-throughput, short-read sequence data [13], [14],

[15]. However, personalized, high-throughput sequencing is still

experimentally costly. Moreover, short read alignment-based

approaches to detect CNV require extensive coverage, such as

more than 10 coverages, which can increase the cost further. For

example, 1000 genome project carried out whole genome

sequencing with from 2 to 4 coverages for 179 individuals [16],

which is not sufficient to detect CNVs. And most of the

approaches to detect CNVs with short-read sequence use an

alignment method, which requires long computational time in

building index and matching to reference. Alternatively, a few fast

and efficient methods for aCGH have been published [17], [18],

[19]. A more practical solution to detect small-sized CNVs is to

shorten the length of each probe, in other words, to increase the

resolution of the aCGH. The Wellcome Trust Sanger Institute

recently published high-resolution aCGH data. To generate this

data, the institute used 42 million probes spread across 2.1 million

probe arrays, with an average probe length of 50 bp. The

Wellcome Trust Sanger Institute published normalized intensity

data and the additional information for this dataset (http://www.

sanger.ac.uk/humgen/cnv/42mio/). All CNVs can theoretically

be detected as long as the length of each probe is less than 1 Kb,

because CNVs are defined as the gain or loss of size fragments that

are greater than 1 Kb in length [20]. Most existing CNV detection

algorithms cannot be applied to this high-resolution aCGH dataset

without modification, primarily because of their unfeasibly long

runtimes.

In aCGH data, the relationship between signal intensity and

genomic copy number is not always linear and can vary widely

according to the total DNA dosage [21]. To detect true CNV

signals, frequent random noise should be excluded and the

experimental error of the microarray should also be removed. This

is one of the limitations of aCGH data compared to sequencing

data. In particular, oligonucleotide-based high-resolution DNA

microarray are known to have a low signal to noise ratio (SNR)

[22]. Although a few of the existing CNV detection algorithms are

robust to error, they are still best suited for analyzing low

resolution data.

The aCGH data also has fundamental limitations because of its

experimental principles. In aCGH, genomic comparative hybrid-

ization is performed using two human genomes: a reference

sample and a test sample. The reference sample most commonly

used for aCGH up to this point is NA10851, which is assumed to

be normal. However, if a reference sample contains genomic

variations, then the ratio of the genomic hybridization cannot be

measured accurately. For example, if the reference sample has a

copy number loss, then the test samples would be reported as

having a gain in this area. In general, it has been assumed that the

reference sample reflects the absolutely normal and standard

status. Recently, copy number information from the reference

sample was directly used to consider the abnormality of the

reference sample [23]. By aligning short read fragments of the

NA10851 reference to a human reference genome (hg18), the

reference copy number status was inferred, and this was used to

determine the final CNVs. However, to detect real CNVs, the

authors used only 1007 candidate CNV areas from 70 individuals

composed of 42 M high-resolution aCGH results for 40

individuals [24] and 24 M aCGH results for 30 Asian individuals.

An algorithm that takes multiple samples and the effects of a

reference sample into account simultaneously has also recently

been proposed. This new, multiple sample-based approach, uses a

sparse Bayesian prior and expectation maximization algorithm to

fit the model [25].

It is increasingly important to investigate multiple human

genomes for determining genetic variations between some groups,

including different ethnic groups. There are algorithms that have

been used to detect common CNVs using a statistical frame work

[26] [27]. [26] adopts a two-step strategy that calls CNVs for

individual samples prior to cross-sample analysis. The recurrent

CNV calling approach [28] [29] [30] [31] has been criticized

based on the fact that the focus of this approach is the analysis of

high-resolution tumor-related data. Recently, whole genome

association studies have been carried out. It is essential to identity

common CNV which is altered simultaneously across multiple

samples for those association studies. We defined this common

CNV as CNVZ (CNV zone). CNVZ is slightly different from the

CNV region (CNVR) which is an area of CNVs that overlap at

least by 1 bp among all the test samples. We considered multiple

samples to be a group and analyzed the signals from all of the

samples, and then reported the identified CNV sites as CNVZs. In

other words, a CNVZ is an area that has a genomic aberration

and is determined not just by the simple union of the CNVs

detected in each sample. The main conceptual difference between

CNVR and CNVZ is the way that the boundary of the copy

number loci is defined. Conceptually, a CNVZ is a subset or

superset of a CNVR. Figure 1 shows the differences between

CNVR, CNVZ, and CNVE, as defined by [24].

In this study, we propose a novel, multi-sample-based, genomic

variation detector (MGVD) that successfully handles the huge

complexity associated with high-resolutions and the limitations of

aCGH. The proposed method identifies CNVZ using multiple

samples as a whole, and identifies CNVs from the CNVZs in

contrast to existing CNV detection methods. The key features of

MGVD are that: 1) it can be applied to both high-resolution and

low-resolution data with a reasonable runtime, 2) it directly

provides CNVZs throughout the human genome by variation

analysis, 3) it has a low false positive and negative rate, as

compared to the other algorithms used for analysis of high-

resolution aCGH data, and 4) it can be used to determine

aberrations of the reference sample by comparative assays of all

test samples.

Results

MGVD targets high resolution aCGH data, including the data

published by the Wellcome Trust Sanger Institution, which is

composed of 20 European females and 20 African females. This

data consists of 42 million probes of whole chromosomes, and is

augmented approximately 1,600 times of the first 270 array-based

HapMap samples. The machine we used for our experiments

comprised an AMD PhenomTM II X2 545 processor, 3.0 GHz,

4 GB RAM and a 32-bit Windows 7 operating system. MGVD

was implemented in C++ with STL in Visual Studio 2005. To

determine the accuracy and runtimes of the existing algorithm,

simulated data created by [32] was used. However, this data was of

very low resolution compared to real high-resolution data. Because

MGVD is specialized for high-resolution data, the available

simulated data is not adequate for testing MGVD. We therefore

did not use Willenbrock’s simulated data to estimate the optimal
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parameters or compare our algorithm with other algorithms;

however, we did use Willenbrock’s simulated data to prove that

MGVD works well, regardless of the resolution of the data.

Capturing the features of high resolution data and simulating the

effects of noise are some of the challenges associated with

simulation of high-resolution data. Furthermore, validation

techniques for high resolution simulated data have not yet been

established. For most of the comparisons we made, we therefore

used real data - 40 HapMap samples from the Sanger Institute and

the first Korean genome, AK1, published by the Genomic

Medicine Institute-Seoul National University. And we also used

aCGH data from 30 normal human Asian genomes [23]. The

AK1 and 30 Asian aCGH dataset are available at: http://www.

gmi.ac.kr/.

Performance of MGVD with high-resolution aCGH data
MGVD has two main parameters, hdist and hcnvz. These two

parameters were used as the cutoff threshold in each phase noted

in the Method section of this paper, and the optimal values for the

two parameters were obtained using a repetitive permutation test.

However, each chromosome had a different mean and standard

deviation of the log ratio profile and different fluctuations,

indicating that it is not reasonable to apply one static threshold

to all chromosomes. We therefore used optimal parameter values

for each chromosome that we determined by comparing the

results of our experiment with the validated results of [24].

The biologically validated results presented in [24] were based

on 40 high-resolution array CGH samples. In this study, the areas

of overlapping CNVs were merged into a CNVE if they had at

least a 51% reciprocal overlap. [24] detected 11,700 CNVs that

were greater than 443 bp, and 8,599 of these CNVEs have been

validated independently. The preliminary false discovery rate was

,20%, which was regarded as the algorithmic false rate in [24].

We also used these 40 high-resolution datasets for MGVD. We

inferred the performance of our algorithm from the validated

results based on the assumption that the 8,599 validated CNVEs

represent the true answer set.

However [24], used the genomic alteration detection algorithm

(GADA), which was proposed by [19] to detect CNVs and

biologically validated the found CNVs. Therefore, these validated

results are contingent upon the GADA. To overcome this

limitation, we compared MGVD with other algorithms using the

40 sample high-resolution dataset and also compared MGVD and

GADA with a simulated dataset and AK1 high-resolution aCGH

data. Details of these two experiments are provided in the next

sub-section.

For performance comparison of the algorithms, we calculated

the false discovery rate (FDR) and sensitivity for each chromosome. The

answer set was dependent on the dataset used. We defined these

measurements, as follows:

Sensitivity recallð Þ~ TPBasePairs

FNBasePairszTPBasePairs

� �

FDR 1{precisionð Þ~ FPBasePairs

FPBasePairszTPBasePairs

� �

where True Positive (TP) are called when the base pairs of

identified CNVZs overlap with the base pairs of the answer set,

and False Positive(FP) are called if the base pairs of identified

Figure 1. The conceptual difference between CNVR, CNVE, and CNVZ. For three samples, the early methods detected all of the CNVs for
three samples individually. The CNVR or CNVE were determined after the CNVs were detected. The CNVR is the union of overlapping CNVs [20] and a
CNVE exists if the CNVs reciprocally overlap by more than 51% [23]. In this Figure, ‘‘CNV (s2: q)’’ represents the second CNV of sample 2. The CNVZ is
not built from individual CNVs. The start and end positions of the CNVZ are determined by the breakpoint (BP) of the segment, which is identified
from the consistency of all the samples. We defined a CNVZ as a locus where the consistency of the log ratio across all of the samples was broken and
where samples that were highly positive or negative were present.
doi:10.1371/journal.pone.0026975.g001
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CNVZs do not overlap with the base pairs of the answer set. The

true base pairs that are not detected are False Negative (FN). The

base pairs for which no CNVZs are detected and there are also no

copy number variants present in the answer set are True Negative

(TN). The distinguishing feature of our measurements is that they

are calculated using base pairs. Most previous methods used the

number of CNVs that overlapped by more than 50% with one of

the answer CNVs. However, by using a base pair approach, both

the sensitivity and FDR of the algorithm can be calculated precisely,

because only the overlapping base pairs between the CNVZ and

the answer set are considered. For example, if the CNVZ and the

true copy number of the answer set overlap by more than 50%, we

do not determine it as 1. We calculate the amount of overlapping

base pairs between them. FDR is the proportion of falsely detected

base pairs of MGVD compared to the entire number of base pairs

detected by MGVD. Sensitivity is the proportion of base pairs that

are truly detected by MGVD as compared with the true answer

set, i.e. CNVE. CNVZ and CNVE are conceptually similar. Both

indicate relatively common aberrant areas across multiple samples.

The experimental results of repetitive permutation tests to

obtain optimal values for the two parameters, hdist and hCNVZ, for

chromosome 22 are shown in Figure 2. In Figure 2, the two

parameters that control the trade-off between sensitivity and FDR

are adjusted in MGVD by precision versus recall operation

curves (PROC). The experimental results obtained for five

existing algorithms using their default parameters are also shown

in Figure 2. In Figure 2, the lines from MGVD_P1 to MGVD_P9

indicate the results for each parameter set. Each parameter set,

e.g. P1, P2, etc., is composed of a constant hdist value and 10

different hCNVZ values. For example, P1 has a value of 0.025 for

hdist and 10 values from 0.05 to 1.4 with intervals of 0.15 for

hCNVZ. There were nine parameter sets in total. We therefore

carried out a total of 90 different experiments by changing each

parameter.

For chromosome 22, the best parameter set was 0.5 and 0.075

for hcnvz and hdist, respectively. We found 412 CNVZs and

determined that their average length was approximately 8,410 bp

using the optimal parameter set. The largest CNVZ was

454,258 bp, and the smallest one was 506 bp. An example of

one of the CNVZ results is provided in Figure 3. This CNVZ starts

at position 22,599,808 and ends at position 22,600,400, and 13

samples participate strongly in this CNVZ.

Figure 2. PROC operational curves with 90 parameter sets for real high resolution data for chromosome 22. By varying two parameters
of MGVD, 90 different results were generated. Results for the five existing algorithms were obtained using default parameters. MGVD_P5 contains the
best parameter set.
doi:10.1371/journal.pone.0026975.g002
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Performance comparison with 7 algorithms
We compared MGVD with the seven algorithms implemented

in CGHWeb [33], namely CBS [6], FASeg [34], cghFLasso [35],

CGHseg [36], Quantreg [37], GLAD [38], and BioHMM [39].

We ran these algorithms on chromosome 22 only, as this is the

smallest chromosome, because all seven algorithms terminated

after several days when run on data from all chromosomes. For

each algorithm, we built CNVEs from the CNVs identified from

the 40 samples. For MGVD, we did not build the CNVE, but,

instead, we used the CNVZ. The results are shown in Table 3.

The GLAD and BioHMM terminated after several days, even

when data from chromosome 22 only was used. Therefore, we

were not able to calculate the FDR and sensitivity for these two

methods, which is indicated by non/applicable (N/A) in the figure

legends. When we considered FDR and sensitivity together, then

MGVD generally outperformed the other algorithms. MGVD also

had an outstanding run time compared to the other algorithms.

MGVD processed 502,117 probes approximately 6-times faster

than the fastest of the other seven algorithms with a better FDR

and sensitivity. Furthermore, even through MGVD had the lowest

FDR, it did not have the lowest sensitivity. A low FDR indicates that

MGVD identified most of the CNVEs that were detected by the

Sanger Institute.

While CNVs are known to cover 12% of the entire genome

[20], the CNVEs that the Sanger Institute identified cover much

less, approximately 4%. Therefore, the low sensitivity and high FDR

of our algorithm are reasonable according to the Sanger Institute

findings. The low sensitivity and high FDR values that we obtained

for our algorithm indicates that it detected aberrant regions that

were not identified by [24]. However, these results do not

guarantee convergence to the correct answer, because a high FDR

can indicate an absolutely incorrect result. To compare the

performance of our algorithm with the other algorithm, we

assumed that the results obtained by [24] were the true results and

evaluated the F1 score, which is a measure of accuracy. Figure 4

shows the F1 score, sensitivity and FDR of MGVD and five other

algorithms for chromosome 22. Default parameters were used for

five other algorithms. The F1 score of MGVD was the best among

the six methods evaluated when the optimal parameters of

hdist = 0.075 and hCNVZ = 0.5 were used. Figure 5 shows the

maximum F1 score when we changed the hCNVZ and fixed the hdist

to the value of the x-axis. In File S1, Table 1, we present the

optimal parameter set and its F1 score and the quantitative

findings for each chromosome. We also present the experimental

results of MGVD and the five other methods for chromosome 21

in Figure S4.

Performance comparison with GADA
We compared our results with those obtained using GADA,

which is one of the fastest and recent CNV detection algorithms

with a high accuracy. We used a console version of GADA

implemented in standard C that was updated on February 11,

2008. We compared the FDR, sensitivity, and computational

runtime of the different CNV detection algorithms. Because [24]

used GADA for CNV detection before validation, the FDR and

sensitivity comparisons with our algorithm are highly dependent on

GADA. Therefore, we were not able to use the 40 high-resolution

samples for the FDR and sensitivity comparisons, but were able to

make runtime comparisons. To compare the FDR and sensitivity of

our algorithm and GADA, we ran both algorithms on the

Figure 3. An example of the CNVZ results obtained chromosome 22 using optimal parameters. The graph shown in the left-panel
indicates the raw log ratio profile pattern of CNVZ. In the left-panel and right-panel, the colored lines indicate the samples that participate in the
CNVZ. The right-panel only shows the samples that participate in the CNVZ. Among 40 samples, 13 samples are turned out to be CNVs in this result.
doi:10.1371/journal.pone.0026975.g003
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simulated dataset used by [32] and a Korean individual genome

published by [40].

The simulated genome was constructed using statistical

information, such as the mean and standard deviation of the log

ratio profiles, and had several breakpoints with various lengths.

However, this simulated genomic data is shorter than real data

and does not include various complex CNV patterns that appear

in the real high-resolution aCGH data.

A Korean individual genome, known as AK1, was published

recently, representing the first whole genome analysis in Korea

and the fifth whole genome analysis in the world. To analyze the

AK1 genome, SNPs and CNVs were detected using BAC

sequencing and Agilent 24 M aCGH with Illumina BeadStudio

3.1 software.

We used the parameters reported in [24] when we applied

GADA to the simulated and AK1 datasets. We used parameter

values of hdist = 0.045 and hCNVZ = 0.57 when running MGVD on

the simulated data, and hdist = 0.08 and hCNVZ = 1.35 when running

MGVD on the AK1 data. Because MGVD was more sensitive

than GADA to the input data, we determined the best parameter

sets for these two data type. For each sample, we built CNVRs

from the CNVs GADA detected. The results are presented in

Table 4. MGVD and GADA had similar FDR values and detected

similar numbers of CNVs for the simulated dataset. The sensitivity

of GADA was higher than that of MGVD, and overall, GADA

showed better performance than MGVD for the simulate dataset.

For the AK1 datasets, GADA showed high sensitivity and FDR.

However, it detected 98% of the whole genome as CNVs while

MGVD detected only 3.4% of the whole genome as CNVs. When

we adjusted the parameter set of MGVD, the aberrant genomic

quantity became similar to that in the answer set. However, it was

not possible to find an optimal parameter set for GADA that

provided a similar genomic quantity to the answer set. We carried

out several experiments changing the parameters in GADA.

However, the identified genomic quantity was similar throughout

these experiments. GADA was not sensitive to changes in the

values of various parameters. As a result, the F1 score of GADA

was about 10 times worse than that of MGVD for the AK1 data.

The validated CNVs for the AK1 dataset cover approximately

2.75% of the entire genomic quantity of chromosome 22. This is a

relatively small portion of known CNVs and CNVE. The reason

for this is that the number of validated CNVs depends on the

algorithm or method that was used. The AK1 dataset was also

tested using 42 M aCGH data, but these results have not yet been

fully validated. There could be true CNVs that were not detected

and validated by previous studies. Furthermore, MGVD was

practically more feasible than that of GADA despite the low

number of validated CNVs that this algorithm yielded. Figure 6

shows a comparison of the computational runtimes of MGVD and

GADA for real chromosomes of various sizes.

Performance comparison with CMDS
We also compared the MGVD results with those obtained using

CMDS [28], which was recent recurrent CNV detection

algorithm. Recurrent CNVs mean the common CNVs across

multiple samples. Both MGVD and CMDS were designed to

identify common CNVs; however, CMDS did not work on 42 M

high resolution aCGH data. Therefore we used the 24 M

Figure 4. F1 score of five comparing algorithms and MGVD for chromosome 22.
doi:10.1371/journal.pone.0026975.g004
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resolution aCGH data for 30 Asian published by [23]. We

compared the performance of MGVD and CMDS in terms of

FDR, sensitivity and F1 score. The CNVE results for the 30 Asian

aCGH dataset were reported by [23] and used these results in our

performance tests. CMDS worked with default parameter set:

block size of 50, cutoff of 10, step size of 1. We also determined the

optimal parameters of MGVD. When we used hdist = 0.07 and

hCNVZ = 1.0, the identified genomic quantity was similar to that of

the CNVE results for the 30 Asian samples. The F1 score of

MGVD was relatively better than that of CMDS. The results are

presented in Table 5. However, neither of the F1 scores obtained

was very high. This is because only 116 preselected CNV regions

of [23] were biologically validated with qPCR. The compassion

results between MGVD and CMDS are presented in File S2.

Average runtime of MGVD
We ran MGVD using whole chromosomes and obtained a

practical runtime for analysis of 42 M high-resolution aCGH data.

The runtime for each chromosome was derived from the optimal

threshold test, which involved 100 iterative permutation tests for

Figure 5. Maximum F1 score of MGVD for chromosome 22 according to various values of the two parameters, hdist and hCNVZ.
doi:10.1371/journal.pone.0026975.g005

Table 1. Comparison of the performance of MGVD with those of other algorithms.

Input data
Chromosome 22
40 samples

502,117probes covering an average of 50 bp/probe.
File size of raw 40 samples is about 205 MB
(35,161,372 bp per sample).

Algorithm Parameter settings
Average runtime per
sample(sec) FDR(%) sensitivity (%)

Identified
quantity (bp)

Identification ratio
(%)

MGVD hdist = 0.075, hCNVZ = 0.5 4.72 15.40 73.55 3,476,988 9.88

Quantreg l= 1 25.06 80.32 83.67 24,793,052 80.32

cghFLasso FDR = 0.05 240.26 72.57 75.61 15,448,348 72.57

CGHseg Km = 20, S = 20.5 424.72 86.79 66.33 31,115,147 86.79

CBS a= 0.05 506.67 26.27 80.39 4,733,899 13.46

FASeg s= 0.025, d= 0.1, SR = 50 1074.84 38.79 74.35 7,015,852 19.95

GLAD Qlambda = 0.999 N/A N/A N/A N/A N/A

BioHMM Use clone distances N/A N/A N/A N/A N/A

doi:10.1371/journal.pone.0026975.t001
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two parameters. We obtained 100 different runtimes for four

phases and then took the average; the results are shown in Figure 7.

The average runtime for each chromosome was measured using

40 high-resolution aCGH datasets. The runtime was linearly

increased according to data size. All CNVZs and CNVs result for

whole chromosomes are presented in File S3.

Discussion

In this study, we developed to devise a new method to identify

CNVZs and CNVs across multiple high-resolution aCGH data

sets. We proposed a new concept, namely a common CNV

occurring area, which we called a CNVZ. Current methods detect

CNVs in various samples and then build common copy number

regions from all of the identified CNVs. However, biological

studies often require common CNV patterns detected in multiple

samples, especially when analyzing the normal human genome.

No suitable methods have been developed for this purpose, at least

not of which we are aware. By comparing all samples at a certain

locus, MGVD determines whether that locus is a genomic

aberration or not. Our experimental results demonstrated that

MGVD had an attractive computational complexity, compared

with the GADA, which is one of the fastest algorithms currently

available. The time complexity of the current methods is

proportional to the number of samples, while this is not the case

for MGVD. The sensitivity and FDR of MGVD were also

comparable with those of several other well-known algorithms.

We conducted experiments using three real datasets (the 40 high-

resolution aCGH samples, AK1 data, and Asian 30 aCGH

datasets) and one simulated dataset. MGVD is faster than the

current methods when a large number of samples are analyzed

because it uses a clustering approach, which is particularly

advantageous when detecting CNVZs using ethnic group data.

MGVD also accepts data from various platforms. For example,

MGVD can be applied to high-throughput sequencing data. To

detect CNVs using sequencing data, short reads have to be aligned

to the reference genome sequence, and then a series of alignment

scores can be obtained, similar to high-resolution aCGH data.

Materials and Methods

MGVD was designed to achieve high performance, i.e. high

accuracy and low runtime complexity, when analyzing multiple,

large, high-resolution aCGH datasets which has a low SNR, in

order to identify CNVZs across all samples at once and to identify

CNVs for each sample. MGVD consists of four major phases: (1)

smoothing the raw high-resolution aCGH data by using a moving

average during file loading, (2) making segments, (3) clustering the

samples for all of the segments, and (4) determining the CNVZs

and CNVs from the clustering results. The schematic process flow

chart of MGVD is described in Figure 8.

Notations
Table 1 summarizes some of the notations used in this paper

and provides brief descriptions of these notations. Detailed

definitions of these notations are provided in appropriate locations

in the text. Figure 9 shows several basic notations and the format

of the real data.

Raw data smoothing
High-resolution aCGH data consisting of a large number of

probes is known to have a low SNR. This results in log ratio signal

Figure 6. Comparison of the computational runtime of MGVD and GADA for five chromosomes. For each chromosome, data from 40
samples was available. We measured the total runtime with 40 samples for each chromosome. The runtimes of both MGVD and GADA increased
linearly as the data size increased. For all five various sized chromosomes of various sizes, the MGVD runtimes were shorter than the GADA runtimes.
doi:10.1371/journal.pone.0026975.g006
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patterns that are highly fluctuating; detecting genomic variation is

therefore difficult. To eliminate these fluctuations, earlier algo-

rithms generally used smoothing methods, such as the wavelet

technique. We used a moving average to smooth the log ratio

pattern with respect to position for all of the samples simulta-

neously, because of its simplicity. We identified the optimal

window size by evaluating a variety of window sizes. The

experimental results for optimal window size are provided in

Figure S1. The optimal window size was identified as 11, which is

almost equal to the expected minimum size of a CNV, 550 bp. In

high- resolution 42 M aCGH data, one probe covers approxi-

mately 50 bp. We implemented the moving average during the file

loading phase to reduce the overall runtime. This procedure is

detailed in File S1, Table 2.

Segmentation with multiple samples
The purpose of segmentation in our approach differs from that

of existing CNV detection algorithms. In most existing algorithms,

segmentation is used to find the breakpoints to identify the CNVs

for one sample. We used segmentation to identify the points that

break the continuous consistency of the log ratio pattern across all

samples by comparing Vi and Vi+1. If Vi and Vi+1 have significantly

different log ratio patterns the (i+1) position becomes a breakpoint.

Using these breakpoints, N X M is divided into numerous

segments, SEGi,j, starting from the ith position to the jth position.

To achieve this, we computed the absolute value of Pearson’s

correlation coefficient (PCC) of all adjacent positions. We also

simultaneously calculated the Manhattan Distance (MD) between Vi

and Vi+1. These two measurements are defined as follows:

pcc(Vi,Viz1)j j~

PN
j~1

(sj,i{Vi)(sj,iz1{Viz1)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j~1

(sj,i{Vi)
2 PN

j~1

(sj,iz1{Viz1)2

s
����������

����������

MD(Vi,Viz1)~
1

N

XN

j~1

sj,i{sj,iz1

�� ��
where si,j is the smoothed log ratio value, which is defined in Table 1.

The reason why we used PCC is to identify the positions that break

the consistency with respect to position. If some samples do not

follow the log ratio flow of other samples between Vi and Vi+1, then

the PCC value is close to 0. If the value of PCC is close to +1, then

Figure 7. Runtime of MGVD for 40 high resolution aCGH samples. The entire runtime increased linearly with increasing data size. During the
runtime, MGVD generated CNVZs and CNVs for each sample.
doi:10.1371/journal.pone.0026975.g007
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the log ratio pattern between Vi and Vi+1 is synchronously up or

down. However the sum of the ratio difference can be large, even if

PCC is close to +1. For example, if the PCC value of

Vi = [0,1,0,1,0,1] and Vi+1 = [0,10,0,10,0,10] is 1, the sum of the

ratio difference is 27. The position (i+1) of this example has to be the

breakpoint because the continuous consistency is broken by the 2th,

4th, and 6th samples. As a result, the PCC is a necessary condition

but not a sufficient condition. Therefore, we also applied the MD to

identify segments. Similarly, if the value of PCC is close to 21, some

of the cases cannot be broken. For example, when Vi = [4,5,4,5,4,5]

and Vi+1 = [5,4,5,4,5,4], the PCC value will be 21. However, the

actual sum of the ratio difference will not be higher than expected.

In this example, the position (i+1) does not have to be the

breakpoint. A highly negative PCC also can be used to identify

segments with MD. Therefore, we used the absolute value of the

PCC and MD to calculate the actual distance sum of Vi and Vi+1. To

determine whether this point could be broken or not, we used the

following determination rule:

pcc(Vi,Viz1)j j§hpcc and MD(Vi,Viz1)vhdist?do not break

pcc(Vi,Viz1)j jvhpcc or MD(Vi,Viz1)§hdist?break

where hPCC and hdist are the criteria for deciding break-points. While

changing the hPCC, we carried out experiments to evaluate

performance for deciding the optimal hPCC. We found that, changing

the value of hPCC had a little influence on sensitivity and FDR compared

to other parameters. Sensitivity is discussed in the Results section.

Therefore, we set hPCC to 0.8 which indicates present a highly

correlated state between Vi and Vi+1. The experimental results for hPCC

are provided in Figure S2. In conclusion, the N X M was separated into

a few sub-matrices called segments, i.e. SEGi,j, by breakpoints. This

procedure is detailed in File S1, Table 3.

Clustering for each segment
In this phase, we describe how to decide whether each segment

is candidate CNVZ or not. Samples of a segment have a

continuous and consistent log ratio. Candidate CNVZs are

determined by clustering these samples. Each SEGi,j is transformed

into an object set for clustering. The transformation is as follows:

Figure 8. Schematic Process Flow Chart of MGVD for high resolution aCGH data. MGVD consists of four phases which are sequentially
executed. We find candidates in advance through phases 1 and 2. Then we get the final results through phases 3 and 4.
doi:10.1371/journal.pone.0026975.g008
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SEGij~

s1,i � � � s1,j

s2,i � � � s2,j

..

.
P

..

.

sN,i � � � sN ,j

2
66664

3
77775[O~fonjAverage of nth row : 1ƒnƒNg

where O is the set of on which is the average value of the nth row in SEG.

First, we clustered the average values of each row of the N X j matrix,

each of which represents a sample. If all the elements in the N X j

matrix are used for the clustering, then some of the samples can be

included in a cluster of two or more samples, because their elements

can be partitioned into different clusters. We decided whether the

SEGi,j was a candidate for the CNVZ or not without taking into

consideration multiple clusters for one sample. Then, we carried out k-

means clustering, which is a fast and typical partitioning-based method.

We assumed that one segment could probabilistically have three

states on their samples: gain, neutral, and loss. It might be argued

that there are more states than the three that we assumed, such as

outlier and high gain states. However, outliers without their own

state are removed by k-means clustering. Furthermore, high gain or

extreme loss states can be included as gain and loss states,

respectively. Thus there are only three states in total. Based on this

reasoning, we do not need to find the optimal k when evaluating

the clustering model with AIC or BIC. We therefore fixed k to 3.

Furthermore, we do not have to allow for non-convex shapes

because our objects are in 1-dimensional space. With these

constraints, we applied k-means clustering to partitioning the

segments.

The time complexity of k-means clustering is O(mkt), where m is

the number of objects, k is the number of clusters, and t is the

number of iterations. In our method, the values of m and k are

Figure 9. Multi-sample aCGH data and notations used in this paper. Descriptions of the notations used in the paper are provided in Table 1.
The left, black-dotted rectangle containing si,j indicates the window used for the moving average. The right, dotted, red rectangle indicates a
segment.
doi:10.1371/journal.pone.0026975.g009

Table 2. The sensitivity and FDR dependence of the algorithms on the data type.

Data
Simulated dataset [32]
(500 probes620 samples)

Chromosome 22 of AK1 [40]
(Nimblegen 42 M high-resolution)

Answer set
Five CNVs
(composed of 92 probes) 28 CNVs (Quantity is 967,462 bp)

Method MGVD GADA MGVD GADA

sensitivity (%) 89.13 100.00 70.92 98.97

FDR (%) 8.88 8.91 41.50 97.17

F1 score 0.90 0.95 0.64 0.06

Identified quantity (bp) 90 probes 101 probes 1,197,547 34,606,907

Identification ratio (%) 18.00 20.20 3.40 98.42

Average length of detected CNVs 8.1 probes 20.2 probes 16,183 bp 96,130 bp

doi:10.1371/journal.pone.0026975.t002
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sufficiently small, and the value of t is generally less than that of m.

We performed clustering for all of the segments. However, because

the number of segments, m, was much less than the number of all

of the positions, M, the entire algorithm was executed in a

reasonable amount of time. Our k-means clustering procedure is

detailed in File S1, Table 4.

Determination of CNVZs and CNVs
We identified CNVZs and CNVs by analyzing the distributions

of three clusters for each segment. To determine CNVZs, we

defined a scoring function that is based on the distance among

centroids and can be used to analyze various cluster distributions.

Basically, each sample can have a variation or neutral state in a

segment. Sometimes, numerous CNVs occur simultaneously

across all samples. The scoring function was designed to consider

all these possible distributions of clusters in a segment. Figure 10

shows three possible cluster distributions.

We identified whether the region of a segment was an

aberration or not by evaluating the distances between all possible

pairs of clusters in the segment. For example, if one segment has a

large sum of distances between possible pairs of clusters, then these

clusters are located far away from each other. In this case, the

segment is likely to be judged to be a CNVZ. By using only the

distance sum of possible cluster pairs, however, aberrations cannot

be detected in some cases, such as in segment 3 in Figure 10.

Segment 3 has a small distance among centroids in contrast to the

other cases, but its objects have a highly negative log ratio with

little variation among the objects; therefore, Segment 3 can be

considered a CNVZ. To solve the problem noted above, we used

the following the scoring function:

f (CLUi)~ rj jfdist(clu1,clu2)zdist(clu1,clu3)zdist(clu2,clu3)g

where dist() is the distance between two centroids of CLUi. If these

three clusters are close to each other, the sum of distances is small.

If the value of f(CLUi) is high, then CLUi is determined to be a

CNVZ. However, the sum of all of the distances alone cannot

cover all of the possible clustering cases. For example, all the

clusters of segment 3 in Figure 10 are close to each other, and all

the centroids are highly negative. However, according to f(CLUi),

segment 3 could be a neutral area, because the sum of all the

distances is low. Segment 3 cannot be distinguished from real a

neutral area where all the centroids of clusters are located around

the zero log ratio profile. Therefore, in this case, the score is

weighted to reduce the false rate.

The weight, r, is the sum of flags, where flag M {1, 0, 21}. Let m
and s be the mean and standard deviation of all the centroids for

all the segments, respectively. We assume that a cluster whose

absolute centroid value is greater than m+s can be considered to

be out of a neutral position. According to our assumption, the flag

is calculated as follows:

flag~

1, centroid valuew0 and centriod valuewmzs

{1, centroid valuev0 and centriod valuevm-s

0, otherwise

8><
>:

9>=
>;

For example, if we assume that a set of centroids of CLUn is {23,

24, 22} and that m+s is 1, then r will be 23. As another

example, if there is a set of centroids that is {23, 24, 2}, then r
will be 21, because r is the sum of 22 and 1.

The segment with hcnvz,f(CLUi),houtlier is selected as a candidate

CNVZ. Here, hcnvz is the threshold to determine a candidate

CNVZ and houtlier is the threshold used to trim outlier segments

with a very high value of f(CLUi). One of these two parameters,

houtlier, is not sensitive to performance if it is larger than a certain

value. Because most samples have similar log ratio distributions

and outliers have extremely high or low log ratios, we can

determine the optimal criterion for pruning outliers. We set houtlier

to 3.5. The experimental results for houtlier are provided in Figure

S3.

To estimate the CNVs for each sample, we identified samples

that participate in CNVZ. After identifying all the CNVs for each

sample, we merged and pruned the CNVs to build the final set of

CNVs for each sample. Finally, the candidate CNVZs were also

merged and pruned. The adjacent candidate CNVZs were

merged into a large CNVZ if their interval was less than 1 Kbp.

The segmentation phase of our algorithm identifies short

segments, ,0.5 Kbp. However, these segments can be disre-

garded, because the minimum CNV size is approximately

0.5 Kbp in the NimbleGen aCGH dataset. Through these two

post processes, the final CNVZs were identified and the

segmentation process, which is closely related to the breakpoint

decisions, was supplemented. As a result, those processes play a

role in maximizing the length and accuracy of CNVZs. The

algorithm for determining CNVZs and CNVs is shown in File S1,

Table 5.

Table 3. Performance comparison of MGVD and CMDS.

Data

Chromosome 22 of Asian 30 [23]
(Agilent 24 M high-resolution)
File size of the 30 raw samples is
about 76 MB
(35,136,378 bp per sample)

Answer set 104 CNVE (6,846,363 bp)

Method MGVD CMDS

sensitivity (%) 48.41 14.38

FDR (%) 45.50 40.93

F1 score 0.51 0.23

Identified quantity (bp) 6,081,610 1,667,547

Identification ratio (%) 17.30 4.74

Average length of recurrent CNV
(bp)

17,376 13,781

Max length of recurrent CNV (bp) 371,559 515,022

Min length of recurrent CNV (bp) 503 928

Runtime (min9 sec0) 19120 19330

doi:10.1371/journal.pone.0026975.t003

Table 4. Notations used throughout the manuscript.

Symbol Definition

N X M Raw input data matrix composed of N samples and M positions

ri,j A raw log ratio of the ith sample in the jth position

si,j A smoothed log ratio of the ith sample in the jth position

Vi A N X 1 sub-matrix at the ith position in the N X M matrix

SEGi,j A N X j sub-matrix from the ith to the jth position

CLUi A set of clusters in the ith segment

CZi,j A CNVZ from the ith to the jth position

doi:10.1371/journal.pone.0026975.t004
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Consideration of reference copy number
Our approach can identify CNVZs taking into consideration

aberrations of the reference sample by using comparative assays

for all test samples. A recent study categorized CNV calls into

three possible cases: obscure, covert and overt [23]. An obscure

call means that the test sample will come out having a copy

number but this is caused by an aberration in the reference

sample. If the reference sample has a complete loss, the test sample

is reported to have a high gain. In this case, however, the test

sample should be neutral. A covert call means that the status of the

reference and test sample have the same copy number variation,

i.e. either both are gains or both are losses, therefore the test

sample will end up as neutral. An overt call indicates that the

reference sample does not have copy number variation. This is the

basic assumption in most studies. Details of these three categories

are provided in Table 2.

Of the three categories represented in Table 2, obscure calls can

be detected by our approach. Here, overt calls are exceptional

because they are a basic assumption of the aCGH platform. It is

impossible to call covert CNVs using our algorithm because it does

Table 5. Three categories of CNV calls proposed by [23].

Call categories Case ID Status of the reference sample Status of the test sample
Ostensible result/True
result

Can be solved by
MGVD?

Obscure case1 Complete Loss Very high and unstable CNV/Neutral O

case2 Heterozygous Copy Number:
loss(1 copy), gain

Heterozygous Copy
Number: gain, loss

CNV/CNV O

Covert case3 Copy Number: loss, gain Copy Number: loss, gain Neutral/CNV X

Overt case4 Normal Copy Number CNV/CNV Not required

doi:10.1371/journal.pone.0026975.t005

Figure 10. Three possible distributions of clusters. It would be problematic to just consider the distances between clusters. The gray circle
indicates the objects in a cluster, and the black circle indicates the centroid of a cluster. This is a conceptual figure to explain the various relationships
among clusters.
doi:10.1371/journal.pone.0026975.g010
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not consider neutral segments, or using the sequencing informa-

tion from the reference sample. Our algorithm uses only the

distribution of clusters to estimate the reference copy number.

Obscure calls are false positive results due to a discrepancy

related to the reference copy number. There are two sub-

categories of obscure call: one due to complete loss and the other

to a heterozygous copy number. The two sub-categories, case 1

and case 2, are shown in Table 2. To detect these cases without

reference sample sequencing, we inferred the reference copy

number by analyzing CNVZs as follows.

First, if the centroid of one cluster of a CNVZ has a high ratio

profile and those of the other two clusters are also somewhat high,

the value of f(CLUi) will be large. However, if the value of f(CLUi) is

higher than houtlier, this CNVZ will be identified as a neutral outlier.

We assumed that the appearance of the cluster with a high

centroid was caused by a complete loss in the reference. In

Figure 11, the left panel notated [A] shows the simple principle

underlying our proposed method.

Second, if the three clusters of a segment are widely spread

without satisfying the outlier condition, this segment is identified as

a CNVZ. In this case, however, the reference sample might be said

to have a copy number variation. In our algorithm, if the reference

has a heterozygous copy number compared to the test sample, the

true result is adjusted. In the example shown in the right panel of

Figure 11, the reference sample has a loss, therefore the centroids

of the three clusters must be lower and vice versa. Nevertheless,

both of these two cases will be identified as CNVZ by our

algorithm. When all the clusters of a CNVZ are far away from the

medium cluster, whose centroid is nearby zero, that CNVZ will be

detected as a CNVZ despite the heterozygous copy number of the

reference sample.

Supporting Information

Figure S1 F1 score according to window size. While

changing the window size from 7 to 16, we also changed hCNVZ from

0.4 to 0.85. The graph shows the maximum, minimum and

average f1 scores when we change the parameters. The horizontal

bar for each window size indicates the average f1 score and it was

maximal at window size 11. Therefore, we decided the optimal

window size to be 11.

(TIF)

Figure S2 F1 score according to hPCC. While changing the

hPCC from 0.4 to 0.85, we also changed hCNVZ from 0.4 to 0.85.

The graph shows the maximum, minimum and average f1 scores

when we change the parameters. The horizontal bar for each hPCC

indicates the average f1 score. If we use the large value for hPCC,

which is close to 1, the size of the segment will increase, while the

number of segments will decrease. It may slow down the

performance because we have to find small sized CNVZ.

Therefore, we decided the optimal hPCC to be 0.8 which is clearly

distinguished from the previous ones and which is not too close to

the larger value, 1.

(TIF)

Figure S3 F1 Score according to houtlier. While changing the

houtlier from 1.5 to 6, we also changed hCNVZ from 0.05 to 1.4. The

graph shows the maximum, minimum and average f1 scores when

we change the parameters. The horizontal bar of each houtlier

means the average f1 score. If we use a value which is larger than

3.5 as houtlier, the f1 score is in equilibrium condition. Therefore, we

decide the optimal houtlier to be 3.5.

(TIF)

Figure 11. Schemes to consider the reference copy number in MGVD. The left Figure [A] indicates case 1, which has a complete loss in the
reference. MGVD detects these cases as neutral. The right Figure [B] indicates case 2, which has a heterozygous copy number compared with the test
sample. MGVD detects these cases as CNVZs.
doi:10.1371/journal.pone.0026975.g011
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Figure S4 F1 score of 5 comparing algorithms and
MGVD on chromosome 21.
(TIF)

File S1 Five supplemental tables.
(DOC)

File S2 Comparison results of our method and CMDS
using the 30 Asian aCGH datasets.
(XLS)

File S3 CNVZ results identified by our method for
whole chromosome.

(XLS)
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