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Neurons in the central nervous system are organized in functional units interconnected

to form complex networks. Acute and chronic brain damage disrupts brain connectivity

producing neurological signs and/or symptoms. In several neurological diseases,

particularly in Multiple Sclerosis (MS), structural imaging studies cannot always

demonstrate a clear association between lesion site and clinical disability, originating

the “clinico-radiological paradox.” The discrepancy between structural damage and

disability can be explained by a complex network perspective. Both brain networks

architecture and synaptic plasticity may play important roles in modulating brain networks

efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in

surviving neurons to compensate network disconnection. In MS, inflammatory cytokines

dramatically interfere with synaptic transmission and plasticity. Importantly, in addition

to acute and chronic structural damage, inflammation could contribute to reduce

brain networks efficiency in MS leading to worse clinical recovery after a relapse

and worse disease progression. These evidence suggest that removing inflammation

should represent the main therapeutic target in MS; moreover, as synaptic plasticity

is particularly altered by inflammation, specific strategies aimed at promoting LTP

mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity

with different non-invasive brain stimulation (NIBS) techniques has been used to promote

recovery of MS symptoms. Better knowledge of features inducing brain disconnection

in MS is crucial to design specific strategies to promote recovery and use NIBS with an

increasingly tailored approach.

Keywords: multiple sclerosis, inflammation, brain networks, functional connectivity, synaptic plasticity,

non-invasive brain stimulation

INTRODUCTION

Multiple Sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system
(CNS) characterized by white matter demyelinating lesions and gray matter atrophy. MS represents
one of the most frequent neurological condition associated with clinical disability in young adults.
Symptoms include a huge range of manifestations such as motor/sensory deficits, fatigue, spasticity,
cognitive dysfunction, and pain, related to the different neural systems involved. In several
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neurological disorders, and particularly inMS, structural imaging
studies hardly demonstrate clear associations between lesion
site and clinical disability. The peculiar discordance between
radiological and clinical features is usually referred to as the
“clinico-radiological paradox” (Barkhof, 2002). The remote
effects of a brain lesion on functionally connected regions
and the ongoing rearrangement produced by synaptic plasticity
in response to brain damage can concur in determining the
discrepancy between structural damage and clinical symptoms.

The concept of diaschisis (von Monakow, 1914; Feeney
and Baron, 1986) refers to focal changes in metabolism or
neuronal activity in anatomically intact brain regions located
away from the lesion (Carrera and Tononi, 2014). Recently,
the concept of diaschisis has been applied to complex networks
analysis. The connectome is defined as an overall map of neural
connections in the brain (Sporns et al., 2005) represented by
a set of nodes (i.e., graphs) joined by lines depicted between
them (Bullmore and Bassett, 2011). It is possible to explore
how network activity is changed by a lesion relying upon its
topography within the network architecture (Honey and Sporns,
2008; Alstott et al., 2009; Joyce et al., 2013). Accordingly,
the term “connectomal diaschisis” refers to changes in the
structural and functional connectome, including disconnections
between and reorganization of subgraphs, involving areas located
away from the lesion (Carrera and Tononi, 2014). A better
definition of diaschisis could contribute to clarify the clinico-
radiological paradox in neurological disorders. Understanding
how lesions alter brain networks could help to select the
appropriate treatment based on the underlying process. However,
it is challenging to ascertain whether remote connectivity changes
occur following diaschisis or rely on other recovery mechanisms,
such as plasticity (either positive or maladaptive) and vicariation
(Carrera and Tononi, 2014).

Clinical improvement after brain lesions mainly depends
on structural and functional connectivity restoring. Synaptic
plasticity is the main mechanism involved, both promoting
spontaneous recovery and mediating the beneficial effects of
rehabilitation. Non-invasive brain stimulation (NIBS) techniques
such as repetitive transcranial magnetic stimulation (rTMS) and
transcranial direct current stimulation (tDCS) perturbing local
neural activity can subsequently affect the function of distributed
brain regions located away from the stimulated area. Therefore,
NIBS can be successfully used for testing and modulating
brain networks dynamics in physiological and in a number of
neuropsychiatric conditions (Shafi et al., 2012).

A number of studies suggest that inflammatory molecules
released during MS relapses alter neuronal functioning acting
both on synaptic transmission and plasticity (Stampanoni
Bassi et al., 2017b). It is therefore reasonable to assume that
inflammation in MS could disrupt brain connectivity, even
regardless of demyelinating white matter lesions and gray matter
atrophy. In addition, as inflammation could restrain brain
network reorganization inducing synaptic plasticity alterations,
promoting beneficial synaptic plasticity through NIBS could
represent a promising therapeutic approach in MS.

In this paper, the main studies exploring brain connectivity
in MS with different techniques will be overviewed. We

performed a literature search in PubMed in August 2017
using the terms “connectivity” and “multiple sclerosis.” We
looked for original case-control studies, case series, or cohort
studies. We also examined many of the references of the
articles found. We excluded studies not available in English
language, studies conducted in animals, studies published more
than 10 years before, and studies including patients with age
<18 years. We will also overview the alterations of synaptic
transmission and plasticity described in a MS experimental
model (i.e., experimental autoimmune encephalomyelitis, EAE)
and in human MS using TMS. The findings supporting the role
of inflammation in inducing connectivity dysfunction and the
possible role of NIBS in promoting beneficial connectivity for
recovery will be discussed.

CONNECTIVITY IN MS

In MS, alterations of brain connectivity have been studied with
different techniques. TMS has been used to test cortico-cortical
connectivity, checking how a stimulus delivered on a given
brain region can influence the excitability of a different region
and providing information on effective connectivity (Gerstein
and Aertsen, 1985; Friston et al., 1993). Inhibitory connectivity
between homologous regions of both primary motor cortices
(M1) has been assessed using either a single coil or a double-
coil (d-c) approach (Figure 1). With a single suprathreshold
magnetic pulse given over M1, it is possible to induce inhibitory
influences in the contralateral M1 measurable as a suppression of
the tonic muscle voluntary activity ipsilateral to the stimulated
cortex (ipsilateral silent period, iSP; Wassermann et al., 1991).
Interhemispheric inhibition (IHI) can be also studied with d-c
TMS when a suprathreshold stimulus delivered over one M1 is
able to suppress the test response elicited by a suprathreshold
stimulus given over the contralateral M1 at short (10ms) or
longer (40ms) interstimulus intervals (Ferbert et al., 1992;
Murase et al., 2004; Uehara et al., 2013). The two subtypes of
IHI are likely mediated by different physiological mechanisms,
both depending on GABAB transmission (Kukaswadia et al.,
2005; Radhu et al., 2012). IHI40 could depend on an overlapping
population of inhibitory neurons activated by the excitatory input
from the contralateral M1 (Kukaswadia et al., 2005) whereas
IHI10 may be mediated by transcallosal fibers passing through
the posterior body and the isthmus of the corpus callosum
(CC, Ni et al., 2009). In MS, owing to high prevalence of
lesions within the CC, most TMS approaches mainly focused on
interhemispheric connectivity (Boroojerdi et al., 1998; Schmierer
et al., 2000; Codecà et al., 2010; Wahl et al., 2011). In MS,
altered iSP correlated with clinical disability (Schmierer et al.,
2000, 2002; Llufriu et al., 2012; Neva et al., 2016) and with
central motor conduction time prolongation (Jung et al., 2006).
Whereas, some studies showed a correlation between CC lesions
and iSP alterations (Lenzi et al., 2007; Llufriu et al., 2012), other
studies found that reduced iSP did not correlate with magnetic
resonance imaging (MRI) alterations of the CC (Jung et al.,
2006). One study reported reduced IHI in early RR-MS even
without detectable CC lesions at conventional MRI, making IHI
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FIGURE 1 | Results of the main studies investigating interhemispheric connections in MS. Red coils and arrows represent CS, black coils and arrows depict TS. AMT,

active motor threshold; CC, corpus callosum; CMCT, central motor conduction time; CS, conditioning stimulus; EDSS, expanded disability status scale; fMRI,

functional magnetic resonance imaging; HC, healthy controls; IHI, interhemispheric inhibition; iM1, ipsilateral primary motor cortex; ISI, interstimulus interval; iSP,

ipsilateral silent period; M1, primary motor cortex; PMd, dorsal premotor cortex; PP-MS, primary progressive multiple sclerosis; RMT, resting motor threshold; RR-MS,

relapsing-remitting multiple sclerosis; SDMT, symbol digit modality test; T1-LL, T1 lesion load; TS, test stimulus.

failure a possible marker of callosal disconnection also at earlier
disease stages (Wahl et al., 2011). Finally, altered connectivity
between dorsal premotor cortex and contralateral M1 suggests
that also excitatory transcallosal connectivity may be impaired
independently of lesion load and site, and even in the absence
of clinical disability (Codecà et al., 2010).

Recently, functional MRI (fMRI) gave the opportunity to
study the activity of a large number of brain regions. FMRI is
a tool able to reveal dynamic changes in brain tissue occurring
whilst the subject is awake and fully relaxed (i.e., resting state
fMRI, rs-fMRI), or in response to specific behavioral tasks (i.e.,
task-based fMRI). In MS, task-based fMRI showed increased
and widespread brain activations compared to healthy controls,
particularly at disease onset (Rocca et al., 2005). Increased
activation is generally interpreted as adaptive plastic changes
aimed at preventing the clinical manifestations (Pantano et al.,
2006; Filippi and Rocca, 2013). Nevertheless, overactivation
does not consequently denote adaptive plasticity, as it may be
associated to high disability. For instance, diffuse microstructural
damage—as shown by combined diffusion tensor imaging (DTI)
and fMRI- correlated with increased sensorimotor network
activation (Rocca et al., 2002; Lenzi et al., 2007). Intriguingly,
increased activation of ipsilateral M1 during hand movements

correlated with CC damage and loss of transcallosal inhibition
(Lenzi et al., 2007) suggesting that ipsilateral M1 hyperactivation
could likely represent a simple epiphenomenon of disease.

The development of methods testing brain connectivity
at rest helped to avoid behavioral confounding related to
task. In particular, the temporal correlation between neural
or hemodynamic spontaneous activity arising from distinct
brain regions, namely functional connectivity (FC), describes
the intrinsic property of a given area or the influences of a
particular area over another region, independently of external
stimuli (Biswal et al., 1995; Fox and Raichle, 2007; van denHeuvel
and Hulshoff Pol, 2010). In brain networks analysis different
types of connectivity can be explored. Structural connectivity is
usually referred to the anatomical connections and is evaluated
by fiber tractography from DTI to obtain a reliable map of
anatomical connection between brain areas. The relationship
between structural and functional brain networks has not been
yet completely elucidated (Rubinov et al., 2009; Honey et al.,
2010; Ponten et al., 2010).Whereas, areas anatomically connected
show a greater FC (Honey et al., 2007, 2009; Rubinov et al., 2009;
Hermundstad et al., 2013), functional interactions are not limited
to directly connected areas (Honey et al., 2007, 2009). A better
definition of the complex relationship between structural and
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functional brain networks could predict how structural damage
alters network dynamics (Honey and Sporns, 2008; Kaiser, 2013;
van Dellen et al., 2013).

In MS, several studies have described rs-fMRI alterations
involving different networks. Increased or decreased FC have
been related to disease phenotype, clinical characteristics
and neuroradiological findings (Table 1). Overall, findings
apparently contrast likely due to different methodological
approaches, and different clinical phenotypes. In addition,
whether FC changes could be compensatory or maladaptive
is not yet clear. Longitudinal studies or combining different
experimental techniques could contribute to clarify the clinical
implications of connectivity changes in MS. In addition,
standardized measures should be properly identified to predict
the effect of damage, evaluate symptoms evolution and compare
the effect of different treatment protocols. Recently, graph
based rs-fMRI studies showed that analyzing properties of
large-scale brain networks could help to identify reliable
measures of brain network functioning. Parameters such
as clustering coefficient, path length, network centrality,
and modularity, show that brain networks magnify cost
efficiency of parallel information processing (Achard and
Bullmore, 2007). Moreover, these properties contribute to
protect networks from damage (Achard et al., 2006; Achard
and Bullmore, 2007). Accordingly, clinical symptoms may
occur in MS when structural damage raises to a critical
level reducing overall network efficiency (Schoonheim et al.,
2015).

INFLAMMATION ALTERS SYNAPTIC
TRANSMISSION AND BRAIN
CONNECTIVITY

In MS, brain connectivity disruption could rely on the acute
and chronic structural damage and also on inflammation. In MS
experimental models, inflammatory cytokines induce alterations
of synaptic transmission of both glutamatergic and GABAergic
transmission, causing synaptic hyperexcitability (Rossi et al.,
2011; Mandolesi et al., 2013; Stampanoni Bassi et al., 2017a).
Interleukin (IL)-1β represents one of the main inflammatory
cytokines involved (Mandolesi et al., 2013).

Synaptic transmission can be explored in humans with TMS
and specific protocols are related to different features of synaptic
transmission (Ziemann et al., 2008; Rossini et al., 2015). Studies
in MS showed that the same inflammatory cytokines induce
synaptic alterations similar to those seen in EAE (Rossi et al.,
2012a); moreover, the magnitude of these alterations correlated
with CNS levels of IL-1β. Furthermore, cerebrospinal fluid
from MS patients in active phase of the disease reproduced in
vitro both the glutamatergic and GABAergic alterations and the
neuronal degeneration observed in EAE (Rossi et al., 2012a,b). In
addition, different phases and disease phenotypes are associated
to specific patterns of alterations. In particular, the relapsing
phase of MS is characterized by cortical disinhibition as indexed
by reduced contralateral silent period duration and reduced
short-interval intracortical inhibition (Caramia et al., 2004).

As inflammatory cytokines alter synaptic functioning, a direct
role of neuroinflammation in connectivity dysfunction occurring
in MS may be hypothesized. To support this view, few studies
showed that in patients with clinically isolated syndrome (CIS)
significant FC alterations develop even without white matter
lesions or brain atrophy. One study showed significant rs-fMRI
changes in a group of patients with CISmanifesting as acute optic
neuritis, involving both left and right primary visual cortices and
extravisual regions (Wu et al., 2015). Another study explored
FC alterations in a group of RR-MS patients and in a group
of patients with CIS without brain lesions (Liu et al., 2016),
including patients with optic neuritis or spinal cord syndromes.
CIS patients showed significantly decreased FC in the visual areas
and increased FC in the temporal lobes. It should be highlighted
that in both studies altered FC developed also in networks other
than the visual system, likely suggesting that acute inflammation
may induce diffuse connectivity changes.

It is important to mention another study exploring FC in CIS
and RR-MS patients considering graph-based network analysis
(Liu et al., 2017). As expected, in RR-MS patients decreased whole
brain network efficiency, reduced nodal efficiency, and impaired
FC were found. In addition, patients with CIS displayed a similar
pattern of alterations. In particular, impaired FC involved the
occipital, temporal, and frontal cortices and the insula. Finally,
changes in RR-MS did not correlate with white matter lesion load
and site, and with gray matter atrophy.

A number of studies showed that also systemic inflammation
could affect brain FC. For instance, in healthy individuals,
experimental inflammation influences brain activity in the insula
and in the cingulate cortex (Hannestad et al., 2012) and alters
resting connectivity between the left thalamus and the right
posterior cingulate cortex (Labrenz et al., 2016). Furthermore, a
study using graph analysis showed that in patients with Hepatitis
C the administration of IFN α reduced whole brain network
connectivity and efficiency (Dipasquale et al., 2016). Recently, a
study showed that IL-6 blood levels covaried with connectivity
in the default mode network (Marsland et al., 2017). These
studies are in line with previous reports showing that peripheral
cytokines may modulate central synaptic transmission altering
task-based fMRI (Capuron et al., 2005; Harrison et al., 2009).

Overall, these data suggest that inflammation in MS, altering
synaptic transmission, may represent an additional key feature
contributing to network dysfunction. It may be hypothesized
that, in addition to structural damage, network efficiency can be
dramatically disrupted by inflammatory cytokines.

INFLAMMATION, SYNAPTIC PLASTICITY,
AND CLINICAL RECOVERY

Recovery after brain injury mainly depends on the ability of
surviving neurons to undergo long-term functional changes
(Floel and Cohen, 2006). Long-term potentiation (LTP), the
most studied form of synaptic plasticity, consists of enduring
enhancement of synaptic strength followed by structural
rearrangements (Bliss and Gardner-Medwin, 1973). LTP can be
virtually induced in all brain areas and may reduce the clinical
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TABLE 1 | Main results of studies investigating rs-FC in MS.

Authors Study population Main findings

Roosendaal et al.,

2010

14 CIS, 31 RR-MS, 41 HCs Increased rs-FC in several RSNs, including the DMN and sensorimotor network, in CIS compared to HCs and

RR-MS. In RR-MS GM atrophy and abnormal WM diffusivity compared to HCs. No changes in CIS. rs-FC and

structural MRI or clinical disability did not correlate in CIS and RR-MS.

Rocca et al., 2010 33 SP-MS (18 CI), 24

PP-MS (12 CI), 24 HCs

In SP-MS reduced activity in the DMN, in the medial prefrontal cortex and precentral gyrus, compared with HCs.

In PP-MS reduced activity in the precentral gyrus and the ACC compared with HCs. In SP-MS increased ACC

activity compared with PP-MS. RS activity in the ACC was reduced particularly in CI. DMN abnormalities

correlated with cognitive test and DTI changes in the CC and the cingulum.

Bonavita et al.,

2011

36 RR-MS (18 CI and 18

CP), 18 HCs

In RR-MS reduced DMN connectivity in the ACC, reduced in the core and increased at the periphery of the PCC.

No correlations between FC changes and global atrophy or T2-LL, but association with regional GM loss. The

findings were more marked in CP than CI.

Faivre et al., 2012 13 early RR-MS, 14 HCs Increased rs-FC in several RSNs in early RR-MS compared with HCs. No correlations between RSNs connectivity

and T2-LL or disease duration. Increased rs-FC in cognitive and sensorimotor networks negatively correlated with

different cognitive and motor tasks and MSFC scores.

Rocca et al., 2012 85 RR-MS, 40 HCs In RR-MS decreased rs-FC in different RSNs (salience, executive control, working memory, default mode,

sensorimotor, and visual) and increased rs-FC in regions of the executive control and auditory RSNs. Decreased

rs-FC was correlated with disability and T2 lesion volumes.

Tona et al., 2014 48 RR-MS, 24 HCs In RR-MS both increased and decreased connectivity within the thalamic RSN. No significant correlation between

thalamic FC and radiologic variables. Increased thalamocortical FC correlated with decreased cognitive

performance.

Cruz-Gómez et al.,

2014

60 RR-MS (30 CI and 30

CP), 18 HCs

Decreased rs-FC in the DMN in CI compared with CP and HCs. Decreased rs-FC in the LFPN in both CI and CP

compared with HCs. Decreased rs-FC in the RFPN and salience network in CI compared with CP. BPF correlated

with rs-FC in the DMN, LFPN and RFPN. T1-LL negatively correlated with rs-FC in all explored RSNs.

Louapre et al.,

2014

35 RR-MS (15 CI and 20

CP), 20 HCs

In CI decreased rs-FC in DMN and ATT compared with CP. In CI decreased rs-FC particularly between the medial

prefrontal cortex and the PCC, predicted by PCC atrophy. In CI higher WM LL and more severe GM atrophy in

cognitive networks compared with CP. In CP increased rs-FC in ATT compared with HCs.

Zhou et al., 2014 24 RR-MS and 24 HC The connections of paired DMN subregions showed decreased SC and increased FC in RR-MS patients. SC

alterations correlated with EDSS. Decreased SC was correlated to atrophy.

Rocca et al., 2015 69 CP MS, 42 HCs In CP MS decreased rs-FC between the hippocampi and several cortical–subcortical regions within the DMN.

Reduced hippocampal rs-FC correlated with T2-LL, disease duration, depression and disability.

Sbardella et al.,

2015

30 RR-MS and 24 HCs In RR-MS decreased rs-FC in several networks (cerebellar, executive-control, medial-visual, basal ganglia and

sensorimotor) and changes in inter-network correlations. CC microstructural damage correlated with FC in

cerebellar and auditory networks. No correlations between rs-FC in all explored RSNs and T2-LL.

Liu et al., 2015 35 RR-MS, 35 HC Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions

including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra and

inter-thalamic FC was observed in MS compared to HC. FC alterations were not correlated with T2-LL, thalamic

volume or the presence of thalamic lesions.

Baltruschat et al.,

2015

17 RR-MS, 15 HCs In RR-MS increased FC between left posterior cingulate gyrus/precuneus, and left middle temporal gyrus and left

cerebellum. In RR-MS GM bilateral atrophy in posterior cingulate gyrus/precuneus. BPF negatively correlated with

FC between left posterior cingulate gyrus/precuneus and left cerebellum.

Rocca et al., 2016 214MS patients (RR-MS

and SP-MS), 55 HC

Global network properties (network degree, global efficiency, hierarchy, path length and assortativity) were

abnormal in MS compared with HC and contributed to distinguish CI MS patients from HC, but not the main MS

phenotypes. In MS, global and regional network properties were not correlated with T2-LL and normalized brain

volume.

d’Ambrosio et al.,

2017

187MS patients (136

RR-MS, 42 SP-MS and 9

PP- MS), (122 CP and 65

CI); 94 HCs

In patients lower GM, WM and thalamic volumes compared with HCs. In patients decreased rs-FC between

thalamic subregions and the caudate, cingulate cortex and cerebellum correlated with worse motor performance.

Increased rs-FC with the insula correlated with better motor performance. In CI increased rs-FC between thalamic

subregions and temporal areas compared with CP. No correlations between thalamic rs-FC and T2-LL.

ACC, anterior cingulate cortex; ATT, attentional network; CC, corpus callosum; CI, cognitive-impaired patients; CIS, clinically isolated syndrome; CP, cognitive-preserved patients;

DMN, Default Mode Network; DTI, Diffusion Tensor Imaging; FC, functional connectivity; GM, gray matter; HCs, healthy controls; LFPN, left fronto-parietal network; LL, lesion load; MRI,

Magnetic Resonance Imaging; MS, Multiple Sclerosis; MSFC, Multiple Sclerosis Functional Composite Score; PCC, posterior cingulate cortex; PP-MS, primary-progressive MS patients;

RFPN, right fronto-parietal network; RR-MS, relapsing-remitting MS patients; rs-FC, resting-state Functional Connectivity; RSN, resting state network; SC, structural connectivity; SP-MS,

secondary-progressive MS patients; WM, white matter.

expression of neuronal damage likely restoring the excitability of
neurons deprived of their synaptic inputs. Promoting LTP could
therefore contribute to maximize network efficiency restoring,
delaying the clinical expression of brain damage. The link
between LTP and clinical recovery after acute brain lesion

first came from animal studies. In rats, neurological deficit
after experimental ischemia partly improved 7 days after the
infarction and correlated with increased glutamatergic excitatory
transmission in surviving neurons, suggesting that recovery was
driven by increased excitatory synaptic activity surrounding
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the damaged area (Centonze et al., 2007c). In humans, the
evidence that LTP could be crucial for clinical recovery was first
showed in acute stroke patients, comparing the amount of TMS-
induced LTP-like plasticity with the degree of recovery 6 months
later. Patients with higher TMS-induced LTP displayed a better
recovery (Di Lazzaro et al., 2010a). Accordingly, the term LTP
reserve has been proposed to indicate the amount of LTP induced
by different TMS protocols as significant predictor of clinical
recovery.

Physical rehabilitation represents the main treatment option
to enhance spontaneous recovery of neurological deficits Albeit
early rehabilitation after acute brain lesions can facilitate
recovery, the optimal treatment type is still poorly defined
(Morreale et al., 2016). It is likely that the beneficial effect of
rehabilitation could be mediated by LTP, as shown in animals and
also in human studies by the findings that learning a motor skill
engages LTP mechanisms triggered by motor practice (Rioult-
Pedotti et al., 2000; Muellbacher et al., 2001; Ziemann et al.,
2004).

Different studies reported alterations of synaptic plasticity in
EAE and MS (Mori et al., 2011, 2012; Di Filippo et al., 2013;
Nisticò et al., 2013). An early finding was that MS relapses
are associated with impaired LTP-like plasticity as assessed with
intermittent theta-burst stimulation (iTBS) (Mori et al., 2011). In
a further study, iTBS-induced LTP-like plasticity was explored in
RR-MS patients either in acute or stable disease phase, confirming
that LTP-like plasticity is reduced in relapsing patients compared
to remitting patients (Mori et al., 2012) Remarkably, in the
same study, 6-months treatment with interferon (IFN) beta 1-
a improved LTP-like plasticity in relapsing patients (Mori et al.,
2012).

The association between LTP reserve and clinical recovery has
been explored in RR-MS patients using the paired associative
stimulation protocol (Mori et al., 2014). In this study, LTP
reserve tested at the time of a clinical relapse correlated with
clinical recovery 3months later. Patients with greater LTP reserve
showed a better recovery whereas patients with absent or poor
LTP reserve displayed partial or absent clinical recovery, further
suggesting the crucial role of LTP taking place in surviving
neurons to compensate coexisting neuronal loss (Mori et al.,
2014). Overall, these studies suggest that CNS inflammation
in MS patients negatively influences pathways involved in LTP
induction and maintenance (Tongiorgi et al., 2012; Stampanoni
Bassi et al., 2017a). In addition, some studies suggest that
negative impact of acute inflammation on LTP may be reduced
by immune-modulating therapies (Mori et al., 2012; Di Filippo
et al., 2016). In MS, it is likely that inflammation-induced LTP
alterations could lessen brain network reorganization influencing
clinical recovery after a relapse and disease progression and
that resolving inflammation could positively influence clinical
recovery.

NIBS AND SYMPTOMS RECOVERY IN MS

NIBS has been used in healthy subjects for enhancing motor
skills and cognitive functions, and in neurological and psychiatric

patients for therapeutic purposes (Hummel et al., 2005; Miniussi
et al., 2008). Different studies showed that focal perturbation
of neural activity by NIBS selectively modulates functional and
effective connectivity in different connected networks (Grefkes
et al., 2010; Eldaief et al., 2011; Grefkes and Fink, 2011; Cocchi
et al., 2016). Furthermore, as inflammation alters synaptic
plasticity, boosting LTP through NIBS could help to improve
recovery in MS patients.

rTMS and tDCS represent the most commonly used NIBS
techniques able to induce LTP-like plasticity (Ziemann et al.,
2008). In M1, this plastic effect can be generally measured
as an increase of the peak-to-peak amplitude of the motor
evoked potentials (MEPs) after the plasticity-inducing protocol,
likely coming from enhanced excitability of the cortico-cortical
facilitatory synaptic inputs onto the corticospinal cells (Di
Lazzaro et al., 2010b). A number of rTMS protocols are able
to induce persistent changes in cortical excitability depending
on the intensity, frequency and number of stimuli applied,
frequency playing a pivotal role. In particular, high-frequency
(i.e.,≥5Hz) rTMS protocols produce LTP-like plasticity (Siebner
and Rothwell, 2003; Ziemann et al., 2008). Subsequently, new
rTMS protocols have been introduced to modulate cortical
plasticity, including TBS. In particular, iTBS produces excitatory
after-effects through LTP-like plasticity (Huang et al., 2005).
tDCS employs weak transcranial currents to induce changes in
cortical excitability depending on stimulation polarity (Nitsche
and Paulus, 2000). In particular, anodal tDCSmay entail LTP-like
mechanisms (Liebetanz et al., 2002; Nitsche et al., 2003).

NIBS techniques have been applied to treat different
symptoms in MS patients. Spasticity is considered as the
consequence of the hyperexcitability of the stretch reflex
secondary to corticospinal tract lesions and reduced supraspinal
inhibitory input (Young, 1994). In MS, a single session of
5Hz rTMS over M1 reduced stretch reflex hyperexcitability
(Centonze et al., 2007a). Moreover, daily application for 2 weeks
of both 5Hz rTMS and iTBS can be useful to reduce lower limb
spasticity in MS (Centonze et al., 2007a; Mori et al., 2010a).
Noticeably, one longitudinal study showed that repeated daily
iTBS sessions associated with physical rehabilitation may induce
functional reorganization of M1 connectivity. In particular,
reduced spasticity was associated with both changes in local
connectivity and in the inter-hemispheric balance (Boutière et al.,
2017). Conversely, one study reported that anodal tDCS on M1
for 5 consecutive days had no clinical impact on spasticity in MS
patients (Iodice et al., 2015).

Some studies explored the effects of both anodal tDCS
and 5Hz rTMS over M1 to reduce motor deficits in MS
(Koch et al., 2008; Cuypers et al., 2013; Meesen et al., 2014;
Elzamarany et al., 2016). It has been shown that 5Hz rTMS
over M1 improved hand dexterity in MS patients with cerebellar
symptoms (Koch et al., 2008). Intriguingly, the beneficial effect
of high frequency rTMS may have raised from enhanced
M1 excitatory drive onto the pontine nuclei modulating the
cerebro-pontine-cerebellar network (Schwarz and Thier, 1999)
and possibly counteracting the reduced cerebellar inputs to
these structures due to demyelination. Similarly, another study
showed that two consecutive daily sessions of 5Hz rTMS on M1
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improved hand dexterity in a group of RR and progressive MS
patients, with a more pronounced effect in RR-MS (Elzamarany
et al., 2016). Of the two studies exploring the effects of anodal
tDCS, one study evidenced that anodal tDCS could increase
cortico-spinal output (Cuypers et al., 2013) and the other study
showed that a single concurrent M1 anodal tDCS session had
no beneficial effects on a unimanual motor sequence task in
a group of RR-MS and progressive MS (Meesen et al., 2014).
In addition, repeated 5Hz rTMS on M1 for 5 consecutive
days over 2 weeks may induce beneficial effects also in other
dysfunctions, such as lower urinary tract involvement (Centonze
et al., 2007b). Notably, other motor symptoms including gait
disturbances may respond to NIBS, as five consecutive sessions of
high frequency rTMS over the left dorsolateral prefrontal cortex
(DLPFC) improved gait in a RR-MS patient (Burhan et al., 2015).

In MS, neuropathic pain and both positive and negative
sensory symptoms, including paresthesia and hypoanestesia, are
frequently observed and scarcely responsive to pharmacological
treatment. It has been reported that 5 consecutive days of anodal
tDCS on M1 may improve neuropathic pain in MS (Mori et al.,
2010b). In addition, another study reported that 3 consecutive
days of anodal tDCS over the DLPFC reduced neuropathic
pain in MS (Ayache et al., 2016). Finally, tactile hypoanesthesia
improved in RR-MS after 5 consecutive days of anodal tDCS over
the somatosensory cortex (Mori et al., 2013).

Fatigue represents another disabling symptom frequently
observed in MS patients, occurring in all disease stages (Krupp
and Pollina, 1996; Kos et al., 2004; Lerdal et al., 2007). The
nature of fatigue in MS is multifactorial and it has been
related to different pathophysiological mechanisms, including
structural or functional brain alterations (Ayache and Chalah,
2017). Different studies explored the effects of anodal tDCS
on fatigue in MS. The available studies differ in terms of
parameters and stimulation sites, including M1 (Ferrucci et al.,
2014), somatosensory cortex (Tecchio et al., 2014), left DLPFC
(Saiote et al., 2014; Chalah et al., 2015, 2017), and right
posterior parietal cortex (Chalah et al., 2017). Overall, whereas
the results suggest that tDCS may represent a promising
approach to treat fatigue, further studies are needed to define
the optimal stimulation parameters and site (Lefaucheur et al.,
2017).

Finally, only few studies explored the use of NIBS for treating
cognitive deficits associated with MS. One study showed that 10
daily sessions of anodal tDCS over the left DLPFC significantly
improved concurrent cognitive training (Mattioli et al., 2016).
Another study explored the effects of 5Hz rTMS over the right
DLPFC on working memory deficits (Hulst et al., 2016). In that

study, cognitive performance improvement was associated with a

reduced aberrant hyperactivation of the prefrontal areas observed
in MS patients. It is worth noting that although cognitive
activities are subserved by diffuse networks, focal modulation of
a node may induce functional changes in remote regions (Siebner
et al., 2009).

CONCLUSIONS

Improved understanding of features inducing brain
disconnection in MS (i.e., demyelination, neurodegeneration,
inflammation) and those influencing recovery (i.e., plasticity)
may help to characterize the underlying pathophysiology. As
neuroinflammation could induce brain connectivity dysfunction
and impair network reorganization, contrasting inflammation
may hinder connectivity disruption in MS. Furthermore,
strategies aimed at promoting plasticity could be particularly
relevant in MS, as plasticity reserve is reduced in these patients.
Although NIBS could represent a promising approach for
treating different symptoms inMS, it will be useful to identify the
brain areas that should be stimulated and relate the lesion site to
therapeutic response, establish the need to perform consecutive
stimulation sessions and better predict the individual response to
NIBS, also considering that in MS plasticity is altered in response
to inflammation. It is therefore crucial to understand how focal
modulation of brain activity by NIBS can enhance network
efficiency. In particular, identifying anatomical and functional
principles determining how local perturbations affect large-scale
neural activity (Sale et al., 2015) may help to predict the impact
of NIBS on brain network reorganization (Gollo et al., 2017).
This could help to define whether restoring the original networks
or promoting alternative circuits could be the best strategy for
recovery, and therefore to use NIBS with an increasingly tailored
approach.
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