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Abstract
We present a model of the early stages of processing in the visual cortex, in particular V1

and MT, to investigate the potential role of end-stopped V1 neurons in solving the aperture

problem. A hierarchical network is used in which the incoming motion signals provided by

complex V1 neurons and end-stopped V1 neurons proceed to MT neurons at the next

stage. MT neurons are categorized into two types based on their function: integration and

segmentation. The role of integration neurons is to propagate unambiguous motion signals

arriving from those V1 neurons that emphasize object terminators (e.g. corners). Segmen-

tation neurons detect the discontinuities in the input stimulus to control the activity of inte-

gration neurons. Although the activity of the complex V1 neurons at the terminators of the

object accurately represents the direction of the motion, their level of activity is less than the

activity of the neurons along the edges. Therefore, a model incorporating end-stopped neu-

rons is essential to suppress ambiguous motion signals along the edges of the stimulus. It

is shown that the unambiguous motion signals at terminators propagate over the rest of the

object to achieve an accurate representation of motion.

Introduction

Visual information processing in the cortex begins in the primary visual cortex (V1) of the
occipital lobe, which receives its input from the retina via the dorsal lateral geniculate nucleus
(LGN) [1]. Information from V1 is sent to higher brain regions through two cortical pathways:
the dorsal and ventral pathways [1]. The main role of the dorsal pathway is to determine the
spatial location and motion of stimuli, while the ventral pathway is specialized for processing
form and color information. Processing of motion information starts in V1 but the receptive
fields of the neurons in this area are very small, with diameters in the central visual field of less
than one degree. Due to these small receptive fields, the neurons can only measure local motion
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signals; i.e., the component of the motion that moves orthogonal to the orientation of an edge.
Fig 1 illustrates this effect: any component of the motion parallel to the edge is not visible
because of the invariance of the contrast in this direction.Measuring only one component of
the motion results in an ambiguity called the “aperture problem” [2,3]. To overcome this prob-
lem, these initial motion signals are fed to neurons with larger receptive fields in an early part
of the dorsal pathway, known as area MT (also V5).

There is experimental evidence that MT neurons play a critical role in suppressing ambigu-
ous motion information [4–6]. Various computational models of MT neurons have been pro-
posed to show how these neurons deal with the aperture problem. A well-known model,
referred to as the intersection of constraints, uses the local motion of two edges to compute the
global motion by finding the intersection of all of the detected local motions [7]. Simoncelli
and Heeger (1998) showed that MT neurons might use this method to extract two-dimensional
motion signals [8]. Other models strengthen unambiguous motion signals relative to the
ambiguous feature signals [9–11]. In these models, there is no way to propagate the feature
tracking signals to estimate the accurate motion direction in a single stage. Therefore, another
stage is necessary, which is known as a motion-grouping network [10]. In this model, there is
competition betweenmotion signals received from V1. Neurons with a similar direction pref-
erence, selected as winning cells, send feedback activity to suppress other directions. Therefore,
a model of the medial superior temporal (MST) area, which is the next anatomical stage after
MT, is essential in these models to solve the aperture problem by propagating motion informa-
tion from the terminators. In addition, there are no inhibitory connections to limit the propa-
gation of the activities of MT neurons beyond the border of the stimulus, where there is no
motion [10–13].

Liden and Pack (1999) proposed a model of MT neurons that propagates motion informa-
tion along the stimulus. However, in this model, there is no strategy to discriminate the unam-
biguous motion information of the terminators from the ambiguous signals resulting from the
aperture problem [14]. Therefore, the neighboring neurons along the edges that are active
simultaneously over a larger area dominate the other neurons. This results in suppression of
the unambiguous activity of the neurons responding to the terminators, which only cover a
small area of the stimulus, before the propagation of their activity to other regions. Moreover,
the activity of V1 neurons in this model is computed from the spatial correlation between sub-
sequent frames. Therefore, the neurons have their highest level of activity where there is no
motion (i.e., in the stimulus background). In their proposed model, there is also no mechanism
to detect the border of the stimulus. Therefore, the activities of the V1 neurons that respond to
the background of the stimulus dominate over other neurons that represent motion informa-
tion before the suppression of their activity by inter-directional inhibition between neurons.

In another approach proposed by Bayerl and Neumann (2004), combinations of feedback
connections from area MT and lateral inhibition are used to suppress the ambiguous responses
of neurons [15]. The result of this model suggests that V1 neurons have ambiguous perception
of motion at the early stages of their response and this ambiguity is resolved through feedback
connections from MT neurons, which have less ambiguous activity because of their extended
receptive fields. Although this is an interesting approach, there is no biological evidence to rep-
resent the propagation of unambiguous motion information to other V1 neurons over time.
The temporal evolution of the response of MT neurons has been observed experimentally by
Pack and Born (2001), whose results show that MT neurons overcome their ambiguous repre-
sentation of motion with a delay of 200ms after the initial onset of the stimulus [5]. However,
there is no biological evidence to show that standard V1 neurons follow the same temporal pat-
tern to deal with the aperture problem.
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Neuro-physiological experiments have revealed a subset of orientation-selective neurons in
V1 called “end-stopped cells” that have inhibitory regions outside the excitatory receptive
field area. As an optimally oriented bar increases in length between the inhibitory zones, the
response of an end-stopped cell increases, but when the bar extends into the inhibitory zones,
its response is suppressed, such that the cell is strictly length selective [16]. In cases where cells
are both direction selective and end-stopped, the cells respond maximally to the end-points of
bars, i.e. “terminators” [17] (Fig 1). As the terminators are two-dimensional, the estimated
direction of motion is accurate compared to the one-dimensional regions in which the mea-
sured direction of motion is perpendicular to the edge of the object. End-stopped neurons
respond only to the motion information of terminators that cover a small area of the stimulus.
Therefore, a large amount of the motion information signals transmitted to the MT neurons
are ambiguous motion signals from the standard complex V1 neurons. It is the role of MT neu-
rons to propagate unambiguous motion information from the terminators to the other areas of
the input stimulus. Therefore, solving the problem is a two-stage process that is initiated in the
primary area of V1 with the activity of end-stopped neurons and completes with the neurons
in MT by integrating the received local motion signals from V1.

Experiments performed to explore the temporal dynamics of end-stopped cells revealed
that the end-stopping takes some time to develop because it involves an interaction between
the center and surround of the neuron’s receptive field [17]. Therefore, end-stopping is a
dynamic behavior. For example, at an early stage of stimulus presentation, neurons respond
well to a long bar but, after about 20–30 ms terminator inhibition suppresses the response
and the neurons begin to respond preferentially to motion at the end-points of the bar [17].
Based on neuro-physiological experiments,many neurons in V1 have some end-stopping

Fig 1. A schematic explanation of the aperture problem. The bar is moving to the right. The component

of motion that is parallel to the edge of the bar is not visible in the upper aperture because there is no change

in the contrast in this direction. Therefore, it seems that the bar is moving in a direction that is perpendicular

to the edge of the bar (arrow labeled “visible”). The correct direction of motion can be estimated when the

end-points of the bar are seen through an aperture as shown in the lower aperture.

doi:10.1371/journal.pone.0164813.g001
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(suppressive surround) characteristics, but it is not clear how this feature might be involved in
overcoming the aperture problem [18,19].

The direction-selective end-stopped neurons in V1 provide initial motion signals to MT
neurons [20]. Studies have shown that the receptive fields of MT neurons have a very sophis-
ticated structure. The neurons do not respond directly to stimulation in the area outside their
excitatory receptive fields. However, their responses are strongly influenced by the differ-
ences between the stimulus inside and immediately outside their excitatory receptive field,
the latter known as a “silent surround” [3,21–23]. This center-surround interaction is mostly
antagonistic, which helps to detect image segmentation [22,24]; i.e., when the stimuli in the
receptive field and surround move in different directions, the surround has an additive excit-
atory effect on the response of the neuron. Conversely, when the stimuli move in the same
direction, the activity in the surround suppresses the activity generated by motion in the neu-
ron’s excitatory receptive field. While the antagonistic influence of the surround has been
thoroughly investigated, integrative influences of the surround have only been found for
selected stimuli [25]. These integrative effects, where present, may help to overcome the aper-
ture problem.

Here, we investigate the potential role of V1 end-stopped cells for accurate estimations of
motion direction. Based on the observationsmade by Huang and Albright (2007), and
inspired by a neural network proposed by Liden and Pack (1999), we developed a model for
the perception of motion that is performed in two stages [14,25]. In the first stage, there are
two sets of V1 neurons: end-stopped neurons and regular complex neurons with no end-stop-
ping properties. These V1 neurons provide input to the second stage of the network, which we
model as being representative of processing by MT neurons. The MT neurons are divided into
two different sets based on their function: integration and segmentation. The role of segmen-
tation neurons is to detect discontinuities in the input image, while integration neurons gather
all of the local motion signals in V1 to estimate the correct direction of motion, thus overcom-
ing the aperture problem. In our model, integration and segmentation neurons interact with
each other through different types of connections to estimate the direction of the moving
object.

Our model proposes some advantages over other similar computational methods. The
inclusion of end-stopped neurons in our model assists MT neurons to weight more strongly
the received unambiguous motion signals from the terminators over the other areas of the
input stimulus to overcome the aperture problem, which is in contrast to the model proposed
by Liden and Pack (1999) [14]. Furthermore, the aperture problem in our model is thoroughly
solved at the intermediate stage (MT) of the visual cortex and the participation of the neurons
in higher levels, such as MST, is not essential, unlike other approaches [10–13] where a model
of MST neurons is essential for the propagation of the motion signals from the terminators
along the whole of the stimulus. The characteristics of our proposed model in both areas V1
and MT are biologically realistic. The common model of motion energy filters used in V1
matches available neurophysiological data, but the modeledV1 neurons by Liden and Pack
(1999) have the highest level of activity where there is no motion, as they are a correlation-
based model with higher output values where there is no variation in the stimulus [14]. The
mechanism used to propagate the motion information by Bayerl and Neumann (2004) also
does not accord with the current neurophysiological data that shows the activity of V1 neurons
do not evolve over time to disambiguate motion information [15]. In contrast, our model uses
the interconnection betweenMT neurons to propagate motion information from the termina-
tors and this propagation does not have any effect on the activity of V1 neurons. The experi-
ments by Pack and Born (2001) provide evidence for this delayed disambiguation of the
activity of MT neurons [5].
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Methods

We propose a neural model that can determine the true direction of motion by replicating the
response properties of several known neuronal types in brain areas V1 and MT and the inter-
connections between them. The initial motion signals are computed through spatiotemporal
filters with different orientation tuning. The filters aim to replicate the response properties of
neurons in V1. There are neurons in V1 that have end-stopping features that provide unambig-
uous motion signals to MT neurons. The resulting activity of the end-stopped neurons is
passed through excitatory connections to MT neurons for further processing. Based on the
characteristics of the receptive field surround of the MT neurons, they integrate or segregate
the local motion signals received from V1 neurons to detect the borders of the input image and
overcome the aperture problem.

Fig 2 is a schematic diagram of the excitatory and inhibitory connections between neurons
in V1 and MT employed in our model. Based on surround suppression, MT neurons are

Fig 2. The interconnections between neurons in V1 and MT. The interconnections represented by red

(excitatory) and blue (inhibitory) arrows, respectively. Integration neurons receive inputs from both sets of

complex and end-stopped cells in V1. They also receive inhibitory connections from segmentation cells.

Segmentation cells receive excitatory input from complex cells and are inhibited by end-stopped cells. They

also receive a conditional inhibitory connection from integration cells when the neurons in the receptive field

center and surround are active. The connection parameters and variables are explained in the text and in

Tables 1 and 2.

doi:10.1371/journal.pone.0164813.g002
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divided into two categories: integration and segmentation neurons. These neurons interact
with each other to propagate unambiguous motion signals from the terminators along the
whole of the object. Table 1 is a summary of the model parameters. In these parameters, ‘ig’
and ‘sg’ are short forms used to describe integration and segmentation cells, respectively, and
‘cx’ and ‘es’ are short forms for complex and end-stopped neurons, respectively.

Complex V1 neurons

The activities of complex neurons in V1 are computed using motion energy filters [26]. This
model is composed of oriented spatiotemporal filters that generate initial motion energy sig-
nals. The spatial filters are Gabor functions with sine and cosine phase. The width of the filter
covers four pixels of the stimulus. The temporal filter is a multi-stage low-pass filter expressed
as

gnðtÞ ¼ ðt=tgÞ
nexpð� t=tgÞ

1

n!
�
ðt=tgÞ

2

ðnþ 2Þ!

" #

: ð1Þ

To simulate two temporal filters with different delays, n takes two values, n = 6 and n = 9,
and τg is the time constant of the filter. The output from these spatial and temporal filters are
combined and squared to obtain separable spatiotemporal filters. The result is a good approxi-
mation of the motion energy in a direction, rx, y, θ (t), and the opposite direction, lx, y, θ (t),
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where Ix, y (t) is the input stimulus at the spatial location (x, y), f is the spatial frequency of the
sinusoidal carrier, (xθ, yθ) represents the oriented coordinate in direction θ, and σx and σy are
standard deviations. The symbol � represents convolution. To extract movement in eight direc-
tions, four motion energy filters with orientations 0, π/4, π/2, and 3π/2 are used. For example,
for a filter oriented at 0°, a positive value of its output represents a rightward motion and a neg-
ative value indicates leftward motion. The outputs of model complex neurons in V1 are the
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normalized values of the output of motion energy filters according to

vcx
x;y;yðtÞ ¼

rx;y;y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
x;y;y þ l2x;y;y

q ; ð4Þ

vcx
x;y;y� p

ðtÞ ¼
lx;y;y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
x;y;y þ l2x;y;y

q ; ð5Þ

where vcx
x;y;y is the activity of the complex V1 neuron at location (x, y) that is selective to direc-

tion θ. The resulting neurons respond strongly to motion in their preferred direction and have
no activity when there is no movement in their preferred direction.

End-stopped neurons

End-stopped neurons are modelled using lateral inhibition between neighboring neurons (in
the receptive field surround) that are selective to the same direction as the central end-stopped
cell. This inhibition is active only if the neighboring neurons of a cell have a level of activity
above a set threshold. The value of the inhibition decreases in a Gaussian form with increasing
distance from the central neuron. The activities of the end-stopped cells are computed accord-
ing to

d
dt
ves
x;y;yðtÞ ¼ 1 � ves

x;y;yðtÞ
� �

Gcx1
es v

cx
x;y;yðtÞ

� �

� ves
x;y;y tes þ Gcx2

es   Gx;y;yðtÞ þ Ges1
es Ox;y;yðt � TesÞ þ Ges2

es Lx;y;yðt � TesÞ
� �

;

ð6Þ

where ves
x;y;y is the activity of an end-stopped cell selective to direction θ located at the coordinate

Table 1. Variables used in the model.

Description Parameter

Activity of complex neuron vcx

Activity of end-stopped neuron ves

Activity of integration neurons in MT vig

Activity of segmentation neurons in MT vsg

Inter-directional inhibitory connections between end-stopped neurons Ω
Long-range inhibitory connections between end-stopped neurons Λ
Excitatory input of end-stopped neurons Γ

Inter-directional inhibitory connection between integration neurons γ
Long-range inhibitory connection between integration neurons ζ
Excitatory connection from integration to segmentation neurons η
Inhibitory connection from integration neurons as the result of center-surround antagonism χ

Preferred direction of neurons θ
Horizontal location index x

Vertical location index y

Location index of the area that a neuron receives surround suppression Π
Location index of the area that a neuron receives long-range inhibition Φ
Motion energy in the specific direction r

Motion energy in the opposite direction l

Input stimulus I

doi:10.1371/journal.pone.0164813.t001
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(x, y), vcx
x;y;y is the activity of the complex neuron in the same location and direction, τes is a

decay rate, and Gcx1
es , Gcx2

es , Ges1
es , and Ges2

es are gains. Γx, y, θ is the inhibition that the neuron
receives from complex neurons when the activity of the neighboring complex neurons are
above a certain threshold, ρcx,

Gx;y;y ¼

X8

i¼� 8

X8

j¼� 8

mi;j v
cx
xþi;yþj;y vcx

xþi;yþj;yj
i¼3;j¼3

i¼� 3;j¼� 3
> rcx

0 otherwise;

ð7Þ

8
><

>:

where μi, j is the inhibitory connectivitymatrix, which has a discretizedGaussian shape.
There is also an inter-directional inhibition between end-stopped neurons selective to dif-

ferent directions. The value of this inhibition depends on the level of the activity of the V1 com-
plex neurons selective to other directions,

Ox;y;y ¼
X

�¼y

vcx
x;y;f: ð8Þ

The role of these inhibitory connections is more prominent when there is no aperture prob-
lem. This happens when the difference in the orientation of the stimulating bar and the direc-
tion of the movement is 0° or 90°. End-stopped neurons also receive long-range inhibitory
connections from other neighboring end-stopped neurons that are selective to other directions,

Lx;y;y ¼
X

�6¼y

X3

i¼� 3

X3

j¼� 3

ves
xþi;yþj;y: ð9Þ

These inhibitory inter-directional connections between end-stopped neurons are applied
with a delay of 60ms to permit the development of activity in these neurons from complex V1
neurons before enforcing inhibitory connections between them.

MT integration neurons

The interconnections betweenneurons in MT are shown in Fig 3. Interactions between integra-
tion neurons have three components: (1) excitation from neighboring neurons selective to the
same direction, (2) inter-directional inhibition between neurons at the same spatial location,
and (3) long-range inhibition from distant neighboring neurons. The behavior of the integra-
tion neurons, vig

x;y;y, is determined by

dvig
x;y;yðtÞ
dt

¼ h
Gcx

ig v
cx
x;y;yðtÞ þ Ges

igv
es
x;y;yðtÞ þ Gig2

ig lx;y;yðtÞ � Gig1
ig gx;y;yðt � T igÞ

� Gig3
ig zx;y;yðt � T igÞ � Gsg

igv
sg
x;y;yðtÞ � tigv

ig
x;y;yðtÞ

 !

; ð10Þ

where λx, y, θ is excitation from neighboring neurons, γx, y, θ is inter-directional inhibition, and
zx, y, θ is long-range inhibition. These neurons receive excitatory input from V1 complex and
end-stopped neurons, vcx

x;y;y and ves
x;y;y, respectively. They also receive inhibitory input from seg-

mentation neurons, vsg
x;y;y. Finally, h() is a piece-wise linear saturation function that keeps the

level of activity within a specified range (between 0 and 1):

hðxÞ ¼

1 if x � 1

x if 0 � x < 1

0 if x < 0

8
><

>:
ð11Þ
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The remaining parameters have constant values (Table 2) that were determined using the
genetic algorithm described below.

The functional role of the excitatory connections is to propagate unambiguous signals from
the terminators along the object. To overcome the aperture problem, neurons receive excitation
only from neighboring neurons with higher levels of activity; i.e., vig

xþi;yþj;y � vig
x;y;y > r

ig
ig. This

Fig 3. Schematic diagram of interconnections between neurons in MT. Nodes with the same color are neurons

selective to the same direction. Neurons in columns have the same spatial location but different direction selectivity.

A) Red arrows indicate the excitatory connections from neighboring integration neurons with the same directional

preference. Neurons receive excitatory inputs from nearby integration neurons and neurons in the surround. B) A

schematic diagram of inhibition from distant neighboring neurons selective to different directions. Solid blue arrows

represent these long-range inhibitory connections. In addition, integration neurons receive inter-directional inhibition

from neurons selective to different directions at the same spatial location; the dotted blue arrows represent these

interconnections. C) The inter-connection between integration and segmentation neurons in MT. Segmentation

neurons receive excitatory connections from integration neurons with different directional preferences at the same

spatial location. They also receive inhibition from segmentation cells when motion in the center and surround of the

receptive field of a cell is in the same direction.

doi:10.1371/journal.pone.0164813.g003
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interaction betweenMT neurons is modelled as

lx;y;y ¼

X6

i¼� 6

X6

j¼� 6

vig
xþi;yþj;y Hðrsg � vsg

x;y;yÞ; if   vig
xþi;yþj;y � vig

x;y;y > r
ig
ig

0;   otherwise;

ð12Þ

8
><

>:

where (x+i, y+j) is a location index andH() is the Heaviside step function.When segmentation
neurons have a value above the threshold, ρsg, they prevent integration neurons from receiving
this excitatory input. This means that segmentation neurons limit the activity of integration
neurons at the discontinuities of the input stimulus, where they are activated by effectively
shunting excitation from neighboring integration neurons.

To implement a winner-takes-all system that results in only one neuron active at each loca-
tion, inter-directional inhibition is implemented. This inhibition is defined between neurons

Table 2. The constant parameters used in the model, their values, and their units.

Description Parameter Value Unit

Connection strength of input to the end-stopped neurons Gcx1
es 2 —

Connection strength of inhibitory connections on end-stopped neurons Gcx2
es 3 —

Connection strength of inter-directional inhibitory connections between end-

stopped neurons

Ges1
es 1 —

Connection strength of long-range inhibitory connections between

neighboring end-stopped neurons

Ges2
es 0.5 —

Connection strength of complex V1 neurons to integration neurons Gcx
ig 0.3 —

Connection strength of end-stopped V1 neurons to integration neurons Ges
ig 1 —

Connection strength of complex V1 neurons to segmentation neurons Gcx
sg 1 —

Connection strength of end-stopped V1 neurons to segmentation neurons Ges
sg 1 —

Connection strength of excitatory connections to integration neurons Gig2

ig
0.1 —

Connection strength of inter-directional inhibitory connections Gig1

ig
0.741 —

Connection strength of long range inhibitory connections Gig3

ig
0.1 —

Connection strength of inhibition from segmentation neurons Gsg
ig 1 —

Connection strength of excitation from integration on segmentation neurons Gig1
sg 0.7 —

Connection strength of surround suppression on segmentation neurons Gsg
sg 1 —

Number of neurons at each location selective to different directions N 8 —

Threshold on the activity of segmentation neurons ρsg 0.01 —

Threshold on the activity of integration neurons ρig 0.1 —

Threshold on the difference between the activity of the integration neurons r
ig
ig

0.01 —

Threshold on the activity of end-stopped neurons ρes 0.008 —

Decay rate of the activity of integration neurons τig 0.101 —

Decay rate of the activity of segmentation neurons τsg 0.101 —

Decay rate of the activity end-stopped neurons τes 0.01 —

Simulation time step Δt 0.1 ms

Time constant of the temporal filter τg 0.01 ms

Time delay of inhibition between end-stopped neurons Tes 6 ms

Time delay of inhibition between MT integration neurons Tig 6 ms

Spatial frequency f 1.1 cyc/

deg

Standard deviation of horizontal spatial Gaussian filter σx 0.5 —

Standard deviation of vertical spatial Gaussian filter σy 0.5 —

doi:10.1371/journal.pone.0164813.t002
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selective to different directions at the same spatial location,

gx;y;y ¼
X

�6¼y

vig
x;y;�; ð13Þ

where ϕ indexes the preferred directions of other neurons. Another source of inhibition comes
from distant neighboring neurons selective to other directions to facilitate the propagation of
motion signals in the network and assist terminators to win the competition and overcome
ambiguous information,

zx;y;y ¼
X

�6¼y

X

i2F

X

j2F

vig
xþi;yþj;�; ð14Þ

where ϕ is the set of locations in the effective area of long-range inhibition shown in Fig 4A.
These neurons receive inhibitory connections from neurons selective to all directions ϕ that are
three positions away, except for the neurons with the same directional preference θ. These
inhibitory connections between integration neurons are enforced with a time delay of 60ms
compared to excitatory connections. This provides sufficient time for MT neurons to propagate
the motion information through the excitatory connections before suppression of their activity
by inhibitory connections.

MT segmentation neurons

The main role of segmentation neurons is detecting discontinuities in the input stimulus. The
inclusion of segmentation neurons in the model is essential to control the activity of integration
neurons and prevent the propagation of their activity beyond the edges of the moving stimulus.
They do this by imposing an inhibitory signal upon integration neurons with the same spatial
location and directional tuning. The overall dynamic behavior of these neurons is described by

dvsg
x;y;y

dt
¼ hðGcx

sgv
cx
x;y;y � Ges

sgv
es
x;y;y þ Gig

sgZx;y þ Gsg
sgw

e
x;y;y � Gsg

sgw
i
x;y;y � tsgv

sg
x;y;yÞ; ð15Þ

where ηx, y is the excitatory input received from integration neurons and χx, y, θ represents the
excitatory and inhibitory interconnection between segmentation neurons as the result of cen-
ter-surround interactions. All of the remaining parameters are constant and their values are
given in Table 2.

The input to segmentation cells is provided by complex neurons in V1. The segmentation
neurons also become active when there is more than one moving object at the same spatial
location. To implement this, they receive excitatory input from integration neurons selective to
different directions at the same location. This also helps the winner-takes-all system of the MT
integration neurons, as the segmentation neurons in turn provide inhibitory input to other
integration neurons. This interaction is defined by

Zx;y ¼
X8

y¼1

vig
x;y;y: ð16Þ

To detect discontinuities in the input image, the inhibition is defined based on center-sur-
round receptive field antagonism. As a result, the activity of neurons is suppressed when the
motions at the center and surround of the neuron’s receptive field are in the same direction,

wx;y;y ¼

X

i2P

X

j2P

vsg
xþi;yþj;y; if vsg

x;y;y > rsg and vsg
xþi;yþj;y > rsg;

0; otherwise;
ð17Þ

8
<

:
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where P indicates the surround of an MT neuron (Fig 4B). The receptive fields of these neu-
rons are modeled by Gaussian filters. The spatial extent of the receptive fields of MT neurons is
larger than V1 neurons. The center of the receptive field of these neurons covers 7 pixels of the
stimulus and the spatial extent of the surround is 10 pixels of the stimulus. This surround sup-
pression is effective when motion in the center and surround are in the same direction if the
neuron’s activity is above the threshold, ρsg (Fig 4C and 4D). The value of the surround sup-
pression depends on the level of activity of segmentation neurons located in the receptive field’s
center.

The other source of inhibition for segmentation cells is end-stopped neurons in V1. The
presence of segmentation neurons limits the propagation of motion signals. Therefore,

Fig 4. Illustration of lateral inhibition in integration and segmentation neurons. A) The area from which an integration neuron, denoted in yellow,

receives long range inhibition is represented by blue squares. B) The spatial extent of the surround of the receptive fields of MT neurons covers around

nine pixels of the input stimulus. The area from which the segmentation neuron receives surround suppression is the outside of the border represented

by the dashed line. The receptive field of the neuron is modelled as a Gaussian filter in which the amplitude decreases gradually from the center of the

receptive field, with the yellow color representing the highest value. C) The circle shows the excitatory receptive field of a segmentation MT neuron and

its surround area. According to experimental data, when motion in the center and surround of the neuron are in the same direction, the response of the

segmentation cell is suppressed. D) Illustration of the effect of surround suppression, where increasing the size of the input stimulus, such that the

center and surround are stimulated simultaneously, the activity of a segmentation MT neuron experiences a suppression of its response.

doi:10.1371/journal.pone.0164813.g004

A Possible Role for End-Stopped V1 Neurons in the Perception of Motion: A Computational Model

PLOS ONE | DOI:10.1371/journal.pone.0164813 October 14, 2016 12 / 27



segmentation neurons must receive inhibition from end-stopped cells to prevent interference
with the propagation of accurate motion signals from the end-points of the stimulus. Sponta-
neous activity is defined for segmentation neurons to prevent the propagation of the activities
of the neurons to other regions of the image where segmentation neurons are inactive because
of a lack of motion.

Parameter optimization

The values of the parameters used in the model as weights of the excitatory and inhibitory
connections are optimized using a genetic algorithm [27]. A genetic algorithm is a heuristic
method that resembles ‘natural selection’, where the fittest members of a population survive
and reproduce most effectively through successive generations. This method is generally used
for optimization and search problems. A rough estimation of the value of the parameters is
used as an initial population for the genetic algorithm. Following this, each string is evaluated
and assigned a fitness value (cost function),F(θ), which is computed based on the activity levels
of the MT integration and segmentation neurons and complex neurons in V1 according to the
following equations:

FðyÞ ¼ F1ðyÞ þ F2ðyÞ ð18Þ

F1ðyÞ ¼
X

x

X

y

ð1 �
X

�6¼y

vig
x;y;�Þv

ig
x;y;y v

cx
x;y;y

 !

þ
X

x

X

y

ð1 �
X

�

vig
x;y;�Þð1 � vcx

x;y;yÞ

 !

ð19Þ

F2ðyÞ ¼
X

x

X

y

vsg
x;y;y v

cx
x;y;y 1 �

1

8

X1

i¼� 1

X1

j¼� 1

vcx
xþi;yþj;y � vcx

x;y;y

 ! ! !

þ
X

x

X

y

ð1 � vsg
x;y;yÞ v

cx
x;y;y þ

X

x

X

y

ð1 � vsg
x;y;yÞð1 � vig

x;y;yÞ:

ð20Þ

The goal of the algorithm is to maximize the value of the cost function by iteratively
adjusting the parameters, Gcx

ig , G
es
ig , G

es
sg, G

ig2
ig , Gig1

ig , Gsg
ig , Gsg

sg , G
cx
sg , G

ig3
ig , Gig

sg, and τig/sg. The value of
the fitness function, F1, depends on the activity of the neurons where there is motion,
expressed by the first term in Eq (19). This term reaches its highest value when complex V1
neurons selective to direction θ are active in response to the stimulus moving in direction θ.
A complex V1 neuron is considered active when its level of activity is higher than 0.01. In
this case, it is expected that integration neurons at the same location, which are selective for
direction θ, have a high level of activity and those selective to other directions ϕ, are inactive.
An integration neuron is considered to be inactive when the level of activity is below the
threshold 0.15. The second term in Eq (19) depends on the activity of neurons outside the
border of the moving stimulus where there is no motion. This term has a high value when
integration neurons have a very low activity in the background area, where the complex V1
neurons are not active.

The fitness function, F2, is based on the activity of the segmentation neurons. The first
term in Eq (20) depends on the activity of segmentation neurons at the discontinuities and
has a high value when segmentation neurons are active at these locations. Discontinuities of
the input stimulus are expressed by the activity of complex V1 neurons where they have a
high level of activity at the borders, while most of their neighboringV1 neurons are inactive.
The second term in Eq (20) relates to the coherent part of the stimulus, where complex V1
neurons are active while their corresponding segmentation neurons have a low level of
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activity. The third term depends on the activity of the segmentation neurons in the back-
ground, where there is no motion. This term has a high value when neurons at these locations
are not active.

The selection process is performed based on the value of the fitness function of the current
population. The sets of parameters that result in higher values of the fitness function will be
selected as the next generation. The next generation of offspring is produced by applying the
following three common operators in the genetic algorithm to the population that has a higher
fitness value, as follows.

Reproduction is applied to create 10% of the new population. Crossover is applied to create
50% of the new population. In the crossover operation, portions of the data are swapped
between two parent members of the population with high values of the fitness function. The
mutation operator is applied to the remaining 40% of the population to introduce diversity,
and is applied to individual population members. We use a simplified version of Gaussian
mutation to maintain diversity in the population [28].

To decrease the computational load, a combination of the genetic algorithm and the follow-
ing heuristics are applied, which use some basic information about the expected dynamic
behavior of the neurons to adjust the parameters. This modification is applied on the mutation
operator; instead of sampling from a normally distributed random variable, a uniformly dis-
tributed random function is used in which the sign depends on the measures below. Applying
these conditions to the genetic algorithm restricts the area of the search and speeds up the pro-
cess by which the algorithm finds solution regions. This is performed based on the following
three evaluations of the activity of MT neurons,

1. The ability of integration neurons to overcome the aperture problem with the current
parameters. In this model, it is essential that end-stopped neurons have a stronger influence
than complex neurons for the aperture problem to be solved. When the model is not capable
of dealing with the aperture problem, it is a sign that the strength of the connections from
the end-stopped neurons need to be increased compared with complex V1 neurons. When
the model is capable of dealing with the aperture problem but the activity of the neurons
selective to other directions is above the threshold, then the gain of the inter-directional
inhibition is not strong enough. Therefore, the effectiveness rate of inter-directional inhibi-
tion is increased.

2. The activity of the neurons in spatial locationswhere there is no motion.When the activ-
ities of the integration neurons propagate to the background of the image, the level of excita-
tion between neurons is decreasedwhile the strength of the inhibitory connection from
segmentation neurons is increased to prevent the excessive propagation of the activity of the
integration neurons to regions with no motion.

3. The activity of the segmentation neurons.As discussed above, the role of segmentation
neurons is to detect discontinuities in the input image. Therefore, they must have high lev-
els of activity at the edges independent of their preferred direction and low activity when
there is no motion or there is coherency in the input stimulus. To facilitate the algorithm’s
ability to find the desired parameters, a condition is set based on a threshold of the activity
of the segmentation neurons to evaluate the activity of the neurons where there is coher-
ence. In particular, the strength of the surround inhibition is increased when the activities
of the segmentation neurons are above the threshold set for the coherent part of the input
stimulus.

The genetic algorithm terminates when the algorithm has one or more solutions. This is
indicated by the defined error, EGA, between the expected activity of the neurons and the
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activity of the neurons with the estimated parameters,

EGA ¼
X

x

X

y

0 if vig
x;y;�j�6¼y < T and vig

x;y;y > T

0 if vig
x;y;�j�6¼y

< T and vig
x;y;y < T and vcx

x;y;y < T

1 � vig
x;y;yðvcx

x;y;yÞ þ vig
x;y;yð1 � vcx

x;y;yÞ þ
X

�6¼y

ðvig
x;y;�Þ otherwise:

ð21Þ

8
>>>><

>>>>:

The first term of the equation assigns zero error if activity of integration neurons along the
stimulus selective to correct direction, θ, have an activity level above the threshold, T, and
those selective to other directions have an activity level below T. The second term assigns zero
error where the activity levels of the neurons are below T in the background area. The third
term is computed from the relative differences between the activity levels of the neurons with
the desired directions with those selective to other directions, or at locations where there is no
motion. When the overall value of the error over different directions and locations for a mem-
ber of the population is zero (i.e., EGA = 0), the member of the population can generate the
desired activity of the model neurons. Otherwise,more evolution is necessary to find the
solutions.

Results

Parameter optimization

Fig 5 shows the results of the genetic algorithm for a population with 100 members. Different
sets of parameters that resulted in zero error, E, are plotted. The weights of connections from
end-stopped neurons to integration neurons,Ges

ig , are always higher than the weights of connec-
tions from complex neurons to integration neurons,Gcx

ig . The weights of excitatory connections
between neurons can take different values but are all above a certain threshold. However, there
is less variation between the weights of inhibitory connections and the weights of connections
between segmentation neurons.

The responses of neurons in V1 and MT

The responses of complex neurons in V1 to a single bar oriented at 45°, moving to the right,
are shown in Fig 6. The figure illustrates activity levels for neurons at different locations when
the bar is located at a particular point along its trajectory. The level of activity is represented by
the grey shaded areas (note the color bar). The neurons located along the bar are activated by
the direction of motion perpendicular to the edges (in this case, mainly up-right and down-
right), while neurons at the endpoints have unambiguous, correct estimates of motion. It is
also important to note that the activities of neurons along the edges of the bar are much stron-
ger than the activities of neurons at the terminators.

The activity levels of end-stopped neurons in V1 for the same angled bar moving towards
the right are shown in Fig 7. The activities of neurons representing ambiguous directions of
motion are reduced as a result of the lateral inhibition between end-stopped neurons. There-
fore, neurons at the terminators selective for rightward motion have the highest level of activity
compared to other neurons.

The final outputs of the model, which are the responses of the MT neurons for the same
stimulus, are presented in Figs 8 and 9. The results in Fig 8 show that all of the integration neu-
rons selective to the rightward direction have a high level of activity. This means that integra-
tion neurons have successfully integrated the local motion signals and they represent correct
estimations of the direction.On the other hand, segmentation neurons, shown in Fig 9, have
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high levels of activity at the edges of the moving bar, indicating the discontinuities in the input
image.

The role of end-stopped neurons in motion perception

To illustrate the role of end-stopped neurons in the perception of motion, we modify the
model such that MT neurons only receive input from complex V1 neurons that do not have
end-stopped properties. Fig 10 shows the resulting activity of MT integration neurons. As a
result of the aperture problem, ambiguous motion signals are propagated through the entire
network and the dominant output after a certain period of time is the direction perpendicular
to the edges of the bars.

To further examine the necessity of end-stopped neurons in the model, the activity of a
complex V1 neuron selective for rightward motion at the terminator is compared to the activity
of the neurons along the bar selective to right-downward motion, shown in Fig 11. Among
the neurons selective for motion to the right, those located at the terminators representing
the correct direction of motion have the highest activities. To overcome the aperture problem,
the activity of these neurons should win the competition over the neurons with ambiguous
information.

Fig 11A shows the dynamic behavior of V1 neurons. The selected complex neuron (blue)
does not respond when the bar has not reached the receptive field of the neuron (location 1)
and its activity increases as the bar enters the receptive field of the neuron (location 2). The
activity of the neuron gradually decreases as the bar passes this point (location 3). The activity
of the neuron along the bar selective to downward-right motion (green) is much higher than
the activity of the neuron located at the terminator (blue). Therefore, the neuron preferring

Fig 5. Results of estimation of the constant parameters in the model using the Genetic Algorithm

(GA). Each line represents a different set of parameters. The optimization algorithm has successfully

converged to the solution for different sets of parameters. The model is not very sensitive to small changes in

the values of some parameters.

doi:10.1371/journal.pone.0164813.g005
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rightward-down motion wins the competition over the neuron at the terminator, as it has a
higher level of activity. The end-stopped neurons need to be added to the model. These neu-
rons respond strongly to the motion of the terminators. As shown in Fig 11A, the activity of an
end-stopped neuron selective to the correct direction of motion at the terminator (red) is
higher than the activity of an end-stopped neuron along the edge (black). Therefore, with a
higher activity for end-stopped neurons, those at the terminators will win the competition over
complex neurons.

Fig 11B shows the dynamic behaviors of integration and segmentation neurons over time.
The activities of the neurons increase as the stimulus enters the receptive fields of neurons
within MT due to the propagation of activity via the recurrent connections. The activity of the

Fig 6. The activity of model V1 complex neurons. Each graph shows the activity of the V1 complex neurons selective to the direction shown by the

colored arrow. The angle of each arrow also indicates its direction. The axes represent the location and the gray scale intensity indicates the level of

activity. Neurons at the edges have higher activity compared to neurons at the terminators, which have unambiguous motion signals. The cartoon in the

middle summarizes the results shown in eight graphs. The colored section of the bar shows neurons selective to the directions that have the highest

levels of activity at those locations. For a bar moving towards the right, the terminators, indicated by the purple color, show the correct direction of motion;

the colors of the edges represent the directions that are incorrect because of the aperture problem.

doi:10.1371/journal.pone.0164813.g006
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integration neuron indicated by the blue dot increases to a maximum when the corner of the
object reaches the receptive field of the neuron (location 2) and then decreases gradually as the
bar passes beyond that location. The activity of the segmentation neuron, whose location is
indicated by the green circle, starts to increase as the edge of the bar moves closer to the recep-
tive field of the neuron (location 1). It then decreases because it receives inhibitory inputs from
end-stopped neurons. This reduction in the activity of segmentation neurons facilitates the
propagation of activity from the terminator along the object.

Fig 11C shows activity of the integration and segmentation neurons located in the middle of
the bar. The activity of the integration and segmentation neuron selective to the rightward
direction increases as the bar gets closer to the center of the receptive field of the neurons.
The increase in the activity of the segmentation neuron is because of the perception of the

Fig 7. The responses of model end-stopped neurons in V1 (plotted using the same format as in Fig 6). The neurons at the end-points of the bar have

much stronger activity compared to neurons along the edge. In this case, the input stimulus is a bar moving to the right, so neurons at the terminators

selective to this direction have higher activity. As a result of lateral inhibition between neurons in V1, the activities of the neurons along the bar are

suppressed.

doi:10.1371/journal.pone.0164813.g007
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discontinuity in the input stimulus (location 1). As the edge of the bar passes through this
point, the activity of the integration neuron selective to rightward motion increases with a
decrease in the activity of segmentation neurons (location 2). This dynamic behavior in the
neurons selective to the rightward motion coincides with the changes in the activity of integra-
tion and segmentation neurons selective to rightward-down motion over time (Fig 11D). The
activity of the integration neuron selective to rightward-down motion drops with an increase
in the activity of the integration neuron selective to the rightward motion due to the inhibition
received from neurons with unambiguous motion signals. The small fluctuation in the activity
of the integration neuron selective to rightward-down motion is due to the competition
between neurons selective to different directions over time (location 2 in Fig 11D). The activity
of integration neurons selective to rightward motion drops slightly when the coherent section
of the bar is in the receptive field of the neuron (location 3 in Fig 11C), and rises again as the
second edge of the bar passes through the receptive field of the selected neuron. As the edge of

Fig 8. The activities of integration neurons for a stimulus moving to the right (plotted in a format similar to Fig 6). In this case, neurons

representing the location of the bar, which are selective for motion to the right, have the highest levels of activity. The cartoon in the middle summarizes

the results shown in the eight graphs. Neurons selective for rightward motion (purple) have the highest activity in the locations where there is motion.

doi:10.1371/journal.pone.0164813.g008

A Possible Role for End-Stopped V1 Neurons in the Perception of Motion: A Computational Model

PLOS ONE | DOI:10.1371/journal.pone.0164813 October 14, 2016 19 / 27



the bar moves closer to the receptive field of the neuron, the competition between integration
neurons selective to the correct direction of motion and those with ambiguous information
commences, which gives rise to the fluctuation in the activity of the integration neuron and an
increase in the activity of the segmentation neuron that detects the edges of the bar (location 4
in Fig 11C). The activity of the segmentation neurons increases when there is a discontinuity in
the input stimulus (location 5 in Fig 11C and 11D).

The required time for propagation of the activity from the terminators along the whole of
the object can be roughly estimated by means of the temporal dynamic shown in Fig 11. How-
ever, this time depends on the length of the bar. The overall simulation time that is assumed
for MT neurons is 12ms with the time step of 0.1ms. It takes less than 12ms for the MT neu-
rons stimulated with a shorter bar to propagate the activity from the terminators through the
whole of the object and inhibit the activity of the neurons selective to other directions. The sim-
ulations are performedwith a stimulus moving at one pixel per frame. The image information
of the next frame is transmitted to the model after around 20ms.

Fig 9. The activity levels of segmentation neurons for a stimulus moving to the right (plotted in the same format as Fig 6). As expected, these

neurons have a high level of activity at the discontinuities of the input image.

doi:10.1371/journal.pone.0164813.g009
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Quantitative evaluation on the robustness of modeled MT neurons

The robustness of the model in response to a single bar with different orientations and lengths
and moving in different directions is evaluated. An error in a neural response at a particular
pixel is considered to occurwhen any integration neuron that represents a wrong direction of
motion has higher activity than the neuron that represents the correct direction. The model is
deemed to give a correct overall response when there are more integration neurons responding
to the correct direction than to a wrong direction. Therefore, the overall response error is

E ¼
0 if for all φ 6¼ y;

X

x

X

y

Cx;y;y >
X

x

X

y

Cx;y;φ

1 otherwise;

8
<

:
ð22Þ

where C = 1 is assigned to the winning neuron and C = 0 is assigned to the other neurons at
each location. The coordinates (x, y) that are considered are those in the vicinity of the moving

Fig 10. The activities of MT integration neurons when they do not receive input from end-stopped neurons, when the input stimulus is a bar

moving to the right (plotted similarly to Fig 6).

doi:10.1371/journal.pone.0164813.g010
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object, where integration cells are expected to respond, plus three neighboring neurons. The
error is zero if the spatial summation of C is higher for the correct direction, θ, than the other
directions,φ.

The activities of the MT neurons are considered for the single bar stimulus with different
directions of movement, angles of orientation, and sizes of the bar. In particular, the model is
tested with motion to the right, left, up and down, with orientations 0, 45, 90, and 135 degrees,
for short and long bars, and with narrow and wide bars. The results demonstrate accurate

Fig 11. Activity of V1 neurons and MT integration and segmentation neurons in response to a bar moving to the right. The spatiotemporal

location of the bar is indicated by (1), (2), (3). . . A) The activity of the complex V1 neuron selective to rightward motion at the terminator (blue), the activity

of a complex V1 neuron selective for downward-right motion along the bar (green), the activity of an end-stopped neuron selective to rightward motion at

the terminator (red), and the activity of an end-stopped neuron selective to downward-right motion along the bar (black). B) The activity of an integration

neuron (blue) and a segmentation neuron (green), both selective to rightward motion and located at the terminator. C) The activity of an integration

neuron (blue) and a segmentation neuron (green) selective to the rightward-down direction located at the middle of the bar. D) The activity of an

integration neuron (blue) and a segmentation neurons (green) selective to rightward-down motion located at the middle of the bar (green).

doi:10.1371/journal.pone.0164813.g011
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performance and robustness of the model MT neurons in response to these different stimuli
with the zero error in all cases.

To further evaluate the robustness of the model, stochastic noise is added to the outputs of
the neurons in areas V1 and MT. The noise has a Gaussian distribution with variance depend-
ing on the level of output activity of the neuron to model neural spiking activity. For example,
the output of an integration neuron at position (x, y) and direction θ is modified as

v̂igx;y;y ¼ vig
x;y;y þ aNð0; vig

x;y;yÞ; ð23Þ

whereN(μ, σ2) is the normal distribution with mean μ and variance σ2. The parameter α is
used to scale the noise, with α = 0 giving no noise and α = 1 corresponding to Poisson spiking
statistics. We investigated the impact of α varying from 0 to 1 to evaluate robustness of the
response of the neurons to a stimulus that is a single short bar of 45 degrees orientation moving
to the right. The error was obtained for 10 repeats with 11 different values of α for a single
frame of the input stimulus (bar in the middle of the frame), and the mean and standard devia-
tion of the errors were calculated. The value, α = 1, is an extreme level of noise—vision neurons
generally fire more regularly than Poisson statistics [29,30]–but noise up to this level has been
included to illustrate the network’s performance over a wide range of noise levels.

Fig 12 shows the mean error with different levels of the noise, α, at the outputs of the neu-
rons; the error bars show the standard error. The results show that the model is robust in esti-
mating the correct direction of motion up to α = 0.5. The error grows with further increases in
the noise level. All of the errors made are confusions caused by the aperture effect, where the
majority of the neurons indicate movement down-right. At α = 0.8, the network performance

Fig 12. The average error of the integration neurons in the network to correctly classify the direction

of motion with different levels of neural noise. The represented error is the average of the measured

values of the error after 10 experiments and the error bars indicate standard error of the mean. An error of 0

represents an accurate estimation of motion by a majority of the MT neurons while an error of 1 indicates that

the majority winning MT neurons have wrong estimates of the direction of motion, measured in a region

within three pixels of the edges of the moving bar in one frame of the motion.

doi:10.1371/journal.pone.0164813.g012
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is at chance level, where around half of the repeats result in correct direction of motion and the
other half result in direction influenced by the aperture effect. Further increase of α leads to
further dominance of the aperture effect.

Discussion

In our model, the process of motion perception is performed in two steps. The initial motion
signals are generated by neurons with receptive field properties similar to those found in V1.
The outputs from these neurons are processed by a model that replicates the receptive field
characteristics of MT neurons. The interconnections betweenMT integration neurons propa-
gate unambiguous motion signals from the termination points along the whole of the moving
object and suppress ambiguous information that results from the aperture problem. MT seg-
mentation neurons detect discontinuities in the input stimulus and prevent the propagation of
motion signals from the edge of the object to the background of the image where there is no
motion.

Our model suggests that overcoming the aperture problem is a two-stage process that, based
on known physiological properties, likely involves neurons in area MT and special-complex
neurons in V1 that have end-stopped receptive fields [20]. The outputs of the model V1 com-
plex cells show that the end-points of a moving bar contain information that allows a calcula-
tion of the correct estimation of motion. The problem is that the end-points only cover a very
small area of the input stimulus and a large proportion of the motion signals extracted by V1
neurons are ambiguous. To propagate the unambiguous information from the terminators and
suppress the ambiguity, interactions between neurons in the second stage of the model (pro-
posed in MT) are necessary. These neurons integrate the received local motion signals from
V1. Therefore, the process of estimation of the direction of motion is temporally dynamic [31].

As well as input from V1 complex neurons, to overcome the aperture problem, the model
uses the activity of end-stopped neurons as input to the model of MT neurons, and excitation
from neighboring neurons with similar direction selectivities. This allows the activity of neu-
rons at the terminators, which only cover a small area of the input, to suppress the activity of
the neurons along the object, which covers a larger area of the input stimulus.

There is also neurophysiological evidence that some of the neurons projecting to area MT
are end-stopped. Movshon and Newsome (1996) showed that these neurons respond optimally
to bars that are shorter than their receptive fields. These neurons are also directionally selective
and respond to the component motion of plaids rather than pattern motion [20].

Apart from the biologically plausible structure of our proposed model, the results demon-
strate the robustness of the model to a large amount of noise. This is because of the low-pass fil-
tering of the neural update equations and the recurrent connections between neurons. Gur
et al. (2000) showed that the coefficient of variation (CV) in V1 cells had an average of 0.18
and has a maximum of 0.4 in alert monkey [29]. This corresponds to the noise scaling parame-
ter, α, less than 0.2, which is well within the range where performance was robust in the net-
work model. Thus, the activities of a few end-stopped neurons (at the corners of the moving
bar) are sufficient to overcome the effects of expected levels of neural output noise.

Our model is inspired by a model proposed by Liden and Pack (1999) who computed the
correlation between two consecutive image frames as the initial motion signals [14]. They used
this method because of its simplicity. However, their model of V1 neurons had a maximum
level of activity when there was no motion; i.e., the cells responded maximally to the stationary
background of the image. This is not only biologically unrealistic, but also causes difficulties at
the next stage of computation because of the excitatory connections between neurons. There is
also no mechanism to differentiate the unambiguous activity of the neurons at the terminators
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from the activity of the neurons along the edges. Therefore, in the competition between neu-
rons those regions that have a high density of active neurons (i.e. along the edges) win the com-
petition over other neurons.

A model proposed by Beck and Neumann (2011) used a similar scheme. However, the princi-
ple for dealing with the aperture problem in their model is feedback connections from MT neu-
rons with larger receptive fields than V1, which contradicts neurophysiological finding by Pack
and Gartland (2004) [32,33]. In our model, the propagation of the unambiguous motion signals
from the terminators results from recurrent interconnection between excitatory neurons.

In the 3D formation model proposed by Grossberg and Mingolla (2001), the role of end-
stopped neurons is mainly in the form processing stream, which results in spatial sharpening
of the neuron’s activity. In their model, it is not clear how the unambiguous motion informa-
tion provided by these neurons directly assists the visual system to achieve accurate motion
perception when there is no occluder in the input stimulus [10–12]. Our model demonstrates
that end-stopped neurons have a key role in solving the aperture problem and their role is
essential even where there is no illusion resulting from occlusion. In contrast to other previous
work [10–12], our model also shows that solving the aperture problem does not necessarily
require feedback connections from a higher-order area (e.g. MST).

The results of experiments performed by Majaj and Carandini (2007) show that MT neu-
rons do not simply combine all of their inputs in their receptive fields and that the integration
of motion in MT neurons is local [34]. In contrast to the models that compute global motion in
the visual field, our proposed model estimates the corresponding motion at each spatial loca-
tion, consistent with recent neurophysiological data. The model proposed by Nowlan and Sej-
nowski (1995) computes the motion of the moving objects in the visual field at two stages [35].
In the first step, the initial motion signals are obtained by velocity detecting units that act like
neurons in V1. The outputs of these units are weighted by selection units at the next stage. The
structure of this model results in estimation of the global motion of the moving objects in the
receptive field but it does not provide the corresponding motion at each location. A flexible
method proposed by Koechlin and Anton (1999) has similar temporal dynamics to our model.
Unambiguous information is propagated through lateral excitatory connections between neu-
rons, as is the case in our model, while the connections between neurons in the model proposed
by Nowlan and Sejnowski (1995) are only feedforward [35,36].

Horn and Schunck (1981) and Hildreth and Ullman (1982) proposed models where the
propagation of motion signals is based on a smoothing process [37,38]. The requirement of
these methods is a continuous visual field. Therefore, these methods may encounter problems
when dealing with the motion of different moving objects as there is no strategy to segregate dif-
ferent moving objects in visual space, while our proposed model has the potential to discrimi-
nate different moving objects in the visual field through the activity of segmentation neurons.
Also there is evidence that the process of motion perception is temporally dynamic and the
activity of the neurons gradually changes over time to represent the correct direction of motion.

In future research, we will augment the model to overcome other illusions in response to
complicated stimuli, such as bars that cross each other while moving in different directions.
This case gives the illusion of an upward or downward motion of the intersection point when
the bars are moving horizontally. We propose that adding some form information to the
model will be necessary in these cases.
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