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Mycobacterium tuberculosis is one of the most dangerous pathogens in humans. It acts as an etiological agent of
tuberculosis (TB), infecting almost one-third of the world's population. Owing to the high incidence of
multidrug-resistant TB and extensively drug-resistant TB, there is an urgent need for novel and effective alterna-
tive therapies. Peptide-based therapy has several advantages, such as diverse mechanisms of action, low immu-
nogenicity, and selective affinity to bacterial cell envelopes. However, the identification of anti-tubercular
peptides (AtbPs) via experimentation is laborious and expensive; hence, the development of an efficient compu-
tationalmethod is necessary for the prediction of AtbPs prior to both in vitro and in vivo experiments. To this end,
we developed a two-layermachine learning (ML)-based predictor called AtbPpred for the identification of AtbPs.
In thefirst layer, we applied a two-step feature selection procedure and identified the optimal feature set individ-
ually for nine different feature encodings, whose corresponding models were developed using extremely ran-
domized tree (ERT). In the second-layer, the predicted probability of AtbPs from the above nine models were
considered as input features to ERT and developed the final predictor. AtbPpred respectively achieved average
accuracies of 88.3% and 87.3% during cross-validation and an independent evaluation, which were ~8.7% and
10.0% higher than the state-of-the-art method. Furthermore, we established a user-friendly webserver which
is currently available at http://thegleelab.org/AtbPpred. We anticipate that this predictor could be useful in the
high-throughput prediction of AtbPs and also provide mechanistic insights into its functions.
This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tuberculosis (TB) is a major deadly disease caused by an infection
from the bacteriumMycobacterium tuberculosis [1,2]. TheWorld Health
Organization (WHO) recently reported that around 10 million people
were infected with TB and 1.6 million people died from the disease in
2017 alone (https://www.who.int/en/news-room/fact-sheets/detail/
tuberculosis). Despite evolving treatment strategies, its prevalence is in-
creasing owing to inadequate drug use, poor-quality drugs, and the pre-
mature discontinuation of treatment by patients, leading to amplified
drug-resistant strains of Mycobacterium tuberculosis [3]. Multidrug-
resistant tuberculosis (MDR-TB) is a form of TB caused by bacteria
that do not respond to first-line anti-TB drugs, like rifampicin and isoni-
azid [4]. Owing to its high prevalence, MDR-TB is considered a public
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health crisis and a health security threat (https://www.who.int/en/
news-room/fact-sheets/detail/tuberculosis). Another form of MDR-TB,
extensively drug-resistant tuberculosis, does not respond to second-
line anti-TB drugs and accordingly is much more serious. Furthermore,
the adverse side effects of anti-tubercular drugs and prolonged treat-
ment durations are major issues. Therefore, it is necessary to find alter-
native effective therapeutics with new mechanisms of anti-tubercular
action or methods to potentiate existing drugs with minimized treat-
ment periods and costs.

Since the serendipitous finding of penicillin in the 1920s, peptide-
based therapy has gained momentum in the area of drug discovery.
One of themost influential characteristics of peptides is their pleiotropic
effects towards a wide range of biological targets, thus making them
better drug candidates with lower toxicity than that of small molecules.
Several studies have shown the anti-tubercular properties of peptides
and their unique mechanism of actions, suggesting that they are an
ideal approach for TB management [5]. Peptides derived from human
immune and non-immune cells, venom, fungi, bacteria, and several
other sources have been shown to act as effective anti-tubercular agents
[3]. Some aspects of anti-tubercular peptides (AtbPs), like their low im-
munogenicity, selective affinity to negatively charged bacterial cell
ons.org/licenses/by-nc-nd/4.0/).
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envelopes, and targeted immune responses against bacterium, make
them attractive alternatives to conventional TB drugs [3,6].

Owing to the growing interest in peptide-based therapy for the iden-
tification of effective anti-tubercular agents, their design and discovery
process should be accelerated. However, the experimental identifica-
tion and development of AtbPs is time-consuming and expensive. To as-
sist and expedite the discovery of AtbPs, in silico methods are needed
prior to their synthesis [5]. A trending computational method, machine
learning (ML), could provide an excellent platform for the prediction
and design of AtbPs. To the best of our knowledge, only one ML-based
method has been developed for AtbP prediction [7]. The authors utilized
five different classifiers (support vector machine (SVM), random forest
(RF), SMO, J48, Naïve-Bayes) and four different feature encodings
(amino acid composition (AAC), dipeptide composition (DPC), binary
profiles (NC5) and terminal composition). Two prediction models,
such as SVM-based ensemble model and SVM using hybrid features
achieved better performances [7]. Despite encouraging results, the
method has certain limitations in terms of efficiency and accuracy. Fur-
thermore, feature selection techniques for optimization of features and
exploration of other feature encodings were not implemented.

Henceforth, in this study, we proposed a novel sequence-based two-
layer predictor, i.e. AtbPpred, for the classification of AtbPs or non-AtbPs
from given peptide sequences. To develop a prediction model, we ex-
plored nine different feature encodings that covers various aspects of
sequence information, including AAC, DPC, NC5, composition-
transition-distribution (CTD), quasi-sequence-order (QSO), amino acid
index (AAI), conjoint triad (CTF), grouped tripeptide composition
(GTPC), and grouped dipeptide composition (GDPC). Subsequently, a
two-step feature selection protocol was applied on each encoding and
identified their corresponding optimal feature set. In the first-layer,
nine optimal feature set-based prediction models were developed
using extremely randomized tree (ERT), whose predicted probability
scores were further considered as input features to ERT in the second-
layer and developed the final model. Comparative results for AtbPpred
and the state-of-the-art method using benchmark and independent
datasets showed remarkable improvements. Therefore, we foresee
that our work will pave way for the development of novel computa-
tional methods and facilitate experimentalists in the discovery of
novel AtbPs.
Fig. 1. Framework of the proposed algorithm. It consists of four steps: (i) dataset construction, (
construction of two-layer prediction model, and (iv) assessment of performance and developm
2. Materials and Methods

2.1. Proposed Predictor Framework

The overall procedure for the proposed peptide sequence-based pre-
dictor is shown in Fig. 1. It consists of four steps: (i) construction of
benchmark and independent datasets; (ii) feature extraction and opti-
mization using two-step feature selection (F-score algorithm was ap-
plied for feature ranking, followed by a sequential forward search
(SFS)) protocol; and (iii) using ERT, the optimal feature set of nine dif-
ferent encodings based prediction models were developed individually
in the first layer, whose predicted probability of AtbPs were integrated
and further considered as input features to ERT for the development
of the final prediction model in the second layer. (iv) performance as-
sessment and webserver development. In our predictor, the predicted
outcome for each sequence is 0 or 1, where 0 denotes non-AtbP and 1
denotes AtbP.

3. Construction of Benchmark and Independent Datasets

Recently, Usmani et al. [7] constructed antitubercular peptide
datasets and developed prediction models. Basically, two datasets
were constructed, namely AntiTb_MD and AntiTb_RD, where both
datasets were comprised of identical positive samples (246 AtbPs),
but different negative samples (246 non-AtbPs). AntiTb_RD and
AntiTb_MD respectively contained random peptides generated from
Swiss-Prot and anti-bacterial peptides. In this study, we utilized both
the datasets and developed a prediction model separately. All positive
samples contained true experimentally validated ATbPs derived from
the public database, AntiTbpdb [8]. Table S1 shows the distribution of
ATbPs from different species, where major contribution is from Myco-
bacterium tuberculosis (66%), moderate contribution is from Mycobac-
terium smegmatis (24%), and other species contribution is marginal.
Moreover, the sequence lengths in two separate datasets were in the
range of 5 to 61 amino acids. We utilized the same dataset for the fol-
lowing reasons: (i) comprised of most recently updated datasets; (ii)
contains nonredundant data; and (iii) allowance of a fair comparison
between our proposed and the existing methods. For each dataset,
80% of the samples (199 AtbPs and 199 non-AtbPs) were randomly
ii) feature extraction and their optimization using two-step feature selection protocol, (iii)
ent of webserver.
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selected for the development of a prediction model and the remaining
20% of samples (47 AtbPs and 47 non-AtbPs) were utilized for model
evaluation.

4. Feature Extraction

Generally, feature extraction is one of the important steps in design-
ing well-performed classifiers. It generates a fixed length of feature
vectors from the given peptide sequences that have varied lengths. Fea-
tures used in this work can be categorized into two major groups:
sequence-based features and physicochemical-based features.

5. Sequence-Based Features

The differences between positive and negative samples can be
reflected by amino acid sequences bearing various factors, including
profiles, composition, permutation and combination modes of amino
acids, and physicochemical properties. Here, we extracted seven types
of sequence-based features: AAC, DPC, QSO, CTF, GTPC, GDPC, and NC5.

(i) Amino acid composition (AAC)

AAC reflects the occurrences of standard amino acids in a given pep-
tide normalized by the sequence length and is widely applied in bioin-
formatics [9–11]. It has a fixed length of 20 features, which can be
formulated as follows:

P ¼ f v1; f v2;…; f vi;… f v20½ �; ð1Þ

where fvi=
Ri

L
(i = 1,2,3…,20) is the normalized frequency of the ith

amino acid in a given peptide. Ri is the quantity of type i observed in a
peptide.

(ii) Dipeptide composition (DPC)

DPC reflects the composition of a residue pair (e.g. Ala-Ala, Ala-Cys)
occurring in a given peptide, further describing the fraction of amino
acids and their local order [7,12]. It has a fixed length of 400 vectors,
which can be formulated as follows:

P ¼ f v1; f v2;…; f v j;… f v400
� �

; ð2Þ

where fvj represents the frequency of jth amino acid pair in {AA, AC, AD,
AE,…,YY}.

(iii) Binary profile (NC5)

In the NC5, each amino acid is encoded as a 20-dimensional 0/1
vector. For instance, the amino acids of type A (b(A)) and type C
(b(C)) are encoded as (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) and
(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), respectively. For a given peptide
P, its N- or C– terminus with a length of m amino acids was translated
as follows:

BPF mð Þ ¼ ½b P1ð Þ; b P2ð Þ; b P3ð Þ;…; b Pmð Þ; ð3Þ

where the BPF(m) dimension is 20 × m, wherem is assigned a value of
5 at both termini to obtain BPFN5 and BPFC5. Furthermore, these two
termini (NC5) were combined to generate 200-dimensional feature
vector.

(iv) Grouped tripeptide composition (GTPC)

In GTPC encoding, amino acids are divided into five categories
according to their physicochemical properties: aliphatic group (G,
A, V, L, M, and I), aromatic group (F, Y, and W), positive charge
group (K, R, and H), negative charged group (G, D, and E) and un-
charged group (S, T, C, P, N, and Q). The tripeptide composition of
these five categories generates a fixed length of 125-dimensional
feature vector.

(v) Grouped dipeptide composition (GDPC)

In GDPC encoding, the dipeptide composition of five categories of
amino acid physicochemical properties (listed in GTPC) generates a
fixed length of 25-dimensional feature vector.

(vi) Quasi-sequence-order (QSO)

QSO encoding of the given peptide sequence results in a fixed length
of a 100-dimensional feature vector, by measuring the physicochemical
distance between the amino acids within the sequence. A detailed de-
scription of QSO feature encoding along with a set of equations has
been provided in previous studies [13,14].

(vii) Conjoint triad (CTF)

CTF encoding generates a 343-dimensional feature vector for a given
peptide sequence by clustering amino acids into seven classes according
to their dipoles and side chain volumes. A detailed description of CTF
with a set of equation has been reported previously [15].

5.1. Physicochemical Properties-Based Features

(i) Composition-Transition-Distribution (CTD)

In the CTD feature, composition (C) indicates the composition of
amino acids, transition (T) signifies the percentage of amino acid resi-
dues with certain characteristic that are followed by other amino
acids, and distribution (D) measures the sequence length within
which 1%, 25%, 50%, 75%, and 100% of the amino acidswith certain char-
acteristics are located. In CTD, composition, transition, and distribution
are respectively encoded as a 21, 21, 105-dimensional feature vector.

(ii) Amino acid index (AAI)

Previously, eight high-quality AAIs (accessions LIFS790101,
TSAJ990101, MAXF760101, BIOV880101, CEDJ970104, BLAM930101,
MIYS990104, and NAKH920108) were identified from 566 total AAIs
in the AAIndex database [16,17] by applying a clustering technique
[18]. AAI generates a 160 (=20 amino acids× 8 properties) dimensional
vector, which has been widely applied in numerous sequence-based
prediction tasks [19].

6. Feature Optimization

Feature optimization is one of the important steps in ML [20] that
has been used in the improvisation of classification performance. In
this study, an F-score algorithm with a SFS protocol was used to filter
out noisy and irrelevant features, after which a subset containing opti-
mal features was selected. This two-step protocol has been successfully
applied in various predictions [21–23]. In the first step, an F-score algo-
rithm is used to rank the actual features, and to sort these features in a
descending order, thereby generating a ranked feature list. The F-score
of the ith feature is defined as:

F−score ið Þ ¼
y þð Þ
i −yi

� �2
þ yi

−ð Þ−yi
� �2

1
nþ−1

Xnþ

j¼1

y þð Þ
i; j −yi

þð Þ
� �2

þ 1
n−−1

Xn−

j¼1

y −ð Þ
i; j −yi

−ð Þ
� �2

ð4Þ

where yi, y
ðþÞ
i ; and yð−Þ

i ; represent mean values of the ith feature in the
combined (both positive and negative), positive, and negative datasets,
respectively. n+ and n− represent the number of positive and negative



Fig. 2. Performance of various classifiers in distinguishing between AtbPs and non-AtbPs
with respect to nine feature descriptors. (A) and (B) respectively represent
performances based on AntiTb_MD and AntiTb_RD benchmark datasets.
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samples, respectively.yðþÞ
i; j andyð−Þ

i; j represent the ith feature of jth positive

instance and ith feature of jth negative instance, respectively.
In the second step, two features were chosen from the ranked fea-

tures list, and added sequentially as an input feature to ERT which
were further utilized for training anddeveloping the correspondingpre-
diction models. Ultimately, the features corresponding to the model
with highest accuracy were recognized as optimal features for the re-
spective ML classifier.
7. Machine Learning Algorithms

We explored the commonly used six different ML algorithms, in-
cluding ERT, gradient boosting (GB), k-nearest neighbor (KNN), logistic
regression (LR), random forest (RF), and SVM. Another five ML-based
algorithms have been discussed previously [19,24–30], whose parame-
ter search range is given in supplementary Table S2. Since ERT imple-
mented in AtbPpred exhibited better performance than other ML
Fig. 3. Sequential forward search (SFS) for discriminating between AtbPs and non-AtbPs. The
feature encoding. (A) and (B) respectively represent performances based on AntiTb_MD and A
methods, a brief description of thismethod and its utilization is detailed
below.

8. Extremely Randomized Tree (ERT)

ERT, another powerful decision tree based method developed by
Geurts et al. [31], has been widely used in various sequence-based pre-
diction problems [19,32]. ERT incorporates a stronger randomization
technique that reduces the variance of the model. The ERT algorithm
is similar to that of RF, except for two main differences: (i) ERT uses
all training samples to construct each tree with varying parameters,
rather than the bagging procedure used in RF; and (ii) ERT randomly
chooses the node split upon construction of each tree, rather than the
best split used in RF. In this study, the ERT algorithmwas implemented
using the scikit-learn (v 0.18.1) library in Python [33]. The grid search
approach is used for optimizing the number of trees (ntree), number
of randomly selected features (mtry), andminimumnumber of samples
required to split an internal node (nsplit) of the ERT algorithm. The
search ranges for the three parameters were 50 ≤ntree≤ 2000 with a
step size of 25, 1 ≤mtry≤ 15 with a step size of 1, and 1 ≤nsplit≤ 12
with a step size of 1, respectively.

8.1. 10-Fold Cross-Validation (CV)

Three CV methods, i.e. an independent dataset test, a sub-sampling
(or k-fold CV) test, and a leave-one-out CV (LOOCV) test, are frequently
used to calculate the expected success rate of a developed predictor
[34,35]. Among the three methods, the LOOCV test is deemed the least
arbitrary and most objective, as demonstrated by Eqs. 28–32 in ref.
[36]. Although it is widely used to examine the quality of various predic-
tors [37–43], it is time- and resource-intensive. Thus, 10-fold CV was
used to examine the proposed models. In 10-fold CV, the training
dataset was randomly partitioned into 10 subsets. One subset was
used as a test set and the remaining nine subsets were used as the train-
ing sets. This procedure is repeated 10 times, where each subset is
treated as a test set at least once. Results were averaged to obtain the
performance of the classifier.

8.2. Performance Evaluation

To evaluate the performance of the constructed models, four com-
mon measurements in binary classification tasks were used
[23,29,44–48], i.e. sensitivity, specificity, accuracy, and Matthews
maximum accuracy (SFS peak) obtained from 10-fold cross-validation is shown for each
ntiTb_RD benchmark datasets.



Fig. 4. Comparison between original features and optimal features in terms of performance and feature dimension. The percentage of improvement in accuracy calculated between the
control and the optimal feature set is shown in (A) and (B), respectively represent AntiTb_MD and AntiTb_RD. The percentage of selected features (optimal features) from the original
features shown in (C) and (B), respectively represent AntiTb_MD and AntiTb_RD.
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correlation coefficients (MCC). They were calculated as follows:

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

MCC ¼ TP � TN−FP � FN
√ TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ ð5Þ

where TP is the number of true positives (i.e. AtbPs classified correctly
as AtbPs) and TN is the number of true negatives (i.e. non-AtbPs classi-
fied correctly as non-AtbPs). FP is the number of false positives (i.e.
AtbPs classified incorrectly as non-AtbPs) and FN is the number of
false negatives (i.e. non-AtbPs classified incorrectly as AtbPs). Addition-
ally, the receiver operating characteristic (ROC) curve, was generated to
visually evaluate the comprehensive performance of different
classifiers.

9. Results and Discussion

9.1. Evaluation of Various ML-Classifiers Using Nine Different Feature
Encodings

Generally, exploring different classifiers using the same dataset is es-
sential, rather than selecting a specific classifier [20,22,49]. Hence, we
explored commonly used six different ML algorithms (ERT, RF, SVM,
GB, LR, and KNN) [50–54] to evaluate the effectiveness of the ML
method in AtbP prediction. For a fair comparison, all ML classifiers
were trained and evaluated using 10-fold CV on benchmark datasets,
whose corresponding ML parameters were tuned and the optimal pa-
rameters were identified using a grid search procedure. To generate a
robust prediction model, 10-fold CV was repeated 10 times for each
classifier by random partitioning of the benchmark datasets, which
lead to ten optimized ML parameters for each classifier. However, we
considered the median ML parameter estimates to develop a final pre-
diction model for each feature encoding.

Fig. 2A and B respectively represent the performance of six different
classifiers on AntiTb_MD and AntiTb_RD datasets. To get an overview of
each classifier performance, we computed the average MCC from nine
different feature encodings (Fig. 2A), where ERT, GB, KNN, LR, RF, and
SVM respectively achieved an average MCC of 0.550, 0.535, 0.379,
0.344, 0.540, and 0.453. Particularly, ERT showed 1.0–20.6% higher MCC
scores than that of other five classifiers, demonstrating its superiority in
AtbPs prediction. From Fig. 2B, ERT, GB, KNN, LR, RF, and SVM
respectively achieved an average MCC of 0.687, 0.666, 0.558, 0.586,
0.666, and 0.638. Specifically, ERT showed 2.1–12.9% higher MCC scores
when compared to other classifiers. Overall, ERT classifier attained better
performance when compared to other five classifiers regardless of the
datasets. Hence, we considered only ERT classifier for further analysis.
10. Selection of Optimal Features for Each Encoding

To examine whether the feature selection protocol could improve
each encoding-based predictionmodel performance, we applied a com-
monly used two-step feature selection protocol (i.e. F-score based rank-
ing, followed by SFS) on each encoding. Fig. 3A shows the accuracy
curves with gradual addition of features from the ranked feature list for
the ERT classifier based on nine different encodings using AntiTb_MD
dataset. Results showed that the six feature encodings (DPC, NC5, QSO,
CTF, GTPC, and GDPC), whose accuracy curve gradually improved,
reached its maximum point and subsequently declined upon the addi-
tion of ranked features. Conversely, three encodings (AAC, AAI, and
CTD) reached its maximum point using all features, further indicating
the equal significance of all features. Using AntiTb_RD dataset, the accu-
racy curve gradually improved for six feature encodings (CTD, DPC,
NC5, QSO, CTF, and GTPC) and reached its maximum point, which then
declinedupon the addition of ranked features (Fig. 3B). However, amax-
imumpointwasobserved for threeencodings (AAC,AAI, andGDPC)with



Table 1
Performance of various classifiers on the benchmark dataset.

Dataset Encoding MCC Accuracy Sensitivity Specificity AUC

AntiTb_MD AAC 0.594 0.797 0.764 0.829 0.853
AAI 0.588 0.792 0.724 0.859 0.857
CTD 0.559 0.769 0.633 0.905 0.809
CTF 0.599 0.799 0.774 0.824 0.849
DPC 0.664 0.832 0.809 0.854 0.886
GDPC 0.506 0.751 0.694 0.809 0.798
GTPC 0.604 0.802 0.774 0.829 0.837
NC5 0.568 0.784 0.779 0.789 0.826
QSO 0.548 0.774 0.769 0.779 0.845

AntiTb_RD AAC 0.715 0.852 0.764 0.940 0.909
AAI 0.708 0.844 0.729 0.960 0.906
CTD 0.665 0.832 0.799 0.864 0.883
CTF 0.765 0.882 0.859 0.905 0.908
DPC 0.820 0.910 0.889 0.930 0.945
GDPC 0.635 0.817 0.779 0.853 0.883
GTPC 0.674 0.837 0.814 0.859 0.889
NC5 0.684 0.839 0.774 0.905 0.878
QSO 0.708 0.849 0.769 0.930 0.881

The first and the second column represent the dataset and the feature encoding employed
in this study. The third, fourth,fifth, sixth, and the seventh columns, respectively represent
the MCC, accuracy, sensitivity, specificity, and AUC.
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all features. To check the improvement, we computed the difference in
accuracybetween theoptimal feature set andcontrol (usingall features).
Models developed using AntiTB_MD dataset (Fig. 4A) showed a major
improvement (N3%) for three encodings (GTPC, NC5, and DPC), a mar-
ginal improvement (b1%) for three encodings (QSO, CTF, and GDPC),
and a tie for three encodings (AAC, AAI, and CTD). Using AntiTB_RD
dataset, a major improvement was observed only for DPC encoding
(Fig. 4B), a slight improvement (b 3%) for four encodings (CTF, NC5,
CTF, and GTPC), and a tie for four encodings (AAC, AAI, QSO, and GDPC).
Furthermore, the selected optimal features are significantly reduced for
both datasets, where AntiTB_MD (Fig. 4C) and AntiTB_RD (Fig. 4D) opti-
mal features respectively contained 59.1% and 51.7% from the total nine
feature encodings. Overall, feature selection protocol improvedmajority
of feature encoding performances and significantly reduced the feature
dimension on both AntiTB_MD and AntiTB_RD datasets.
Fig. 5.Performance comparison of AtbPpred and ninedifferent feature encodings basedmethod
benchmark datasets. (C) and (D) respectively represent performances based on AntiTb_MD an
11. Construction of AtbPpred

Two-layer prediction model has been successfully applied to ad-
dress various biological problems [20,22,27,28,55,56]. Inspired by
these studies, we implemented a similar approach for AtbPs predic-
tion. The optimal models obtained for each encoding from the above
step are considered as the first layer models (Table 1). Since the per-
formance pattern is similar between two datasets (AntiTB_MD and
AntiTB_RD), we focused only on AntiTB_MD. Using AntiTB_MD
dataset, DPC encoding appeared to be the most powerful encoding
and it achieved the MCC and accuracy of 0.664 and 0.832, respec-
tively (Table 1). Whereas, the remaining eight encodings also
achieved a reasonable performance with accuracies ranging from
75 to 80%, further indicating its practicality in AtbPs prediction due
to their complementary feature representation from a different per-
spective. Instead of selecting the best model from Table 1, we con-
sidered all these models to generate a robust and final prediction
in the second layer. Basically, we considered the predicted probabil-
ity of AtbPs (values ranging from 0.0 to 1.0) from nine individual op-
timal models as input features to ERT and developed a final
prediction model called AtbPpred.

AtbPpred based on AntiTB_MD dataset achieved the best perfor-
mance with the MCC, accuracy, sensitivity, specificity, and area
under the curve of 0.700, 0.849, 0.819, 0.879, and 0.909, respec-
tively. To show the effectiveness of AtbPpred, we compared its per-
formance with nine feature encoding predictors (Fig. 5A).
Specifically, the MCC and accuracy of the proposed predictor was
3.57–19.4% and 1.7–9.8% higher than the individual predictors,
thus indicating the effectiveness of our approach by integrating
various feature encodings, leading to an improved performance.
Similarly, AtbPpred based on AntiTB_RD dataset achieved the
best performance with the MCC, accuracy, sensitivity, specificity,
and area under the curve of 0.834, 0.917, 0.905, 0.930, and
0.942, respectively. Specifically, the MCC and accuracy of the
proposed predictor was 0.7–19.9% and 0.8–1.0% higher than
the individual predictors (Fig. 5B), thus indicating the effective-
ness of our approach.
s. (A) and (B) respectively represent the performances based onAntiTb_MDandAntiTb_RD
d AntiTb_RD independent datasets.



Table 3
Performance of various classifiers on the independent dataset.

Dataset Methods MCC Accuracy Sensitivity Specificity AUC P-value

AntiTb_MD AtbPpred 0.793 0.894 0.830 0.957 0.934 –
Antitbpred 0.520 0.759 0.750 0.767 0.830 0.020

AntiTb_RD AtbPpred 0.705 0.851 0.809 0.894 0.899 –
Antitbpred 0.570 0.785 0.733 0.838 0.860 0.4470

The first and the second column represent the dataset and the classifier name employed in this study. The third, fourth, fifth, sixth, and the seventh columns respectively represent the
MCC, accuracy, sensitivity, specificity, and AUC. For comparison, we have included Antitbpred metrics reported in the literature [7]. The last column represents the pairwise comparison
of ROC area under curves (AUCs) between AtbPpred and Antitbpred using a two-tailed t-test. P b .05 indicates a statistically meaningful difference between AtbPpred and the selected
method (shown in bold).

Table 2
Performance of various classifiers on the benchmark dataset.

Dataset Methods MCC Accuracy Sensitivity Specificity AUC P-value

AntiTb_MD AtbPpred 0.700 0.849 0.819 0.879 0.909 –
Antitbpred 0.550 0.775 0.768 0.773 0.820 0.000656

AntiTb_RD AtbPpred 0.834 0.917 0.905 0.930 0.942 –
Antitbpred 0.640 0.817 0.787 0.846 0.870 0.001013

The first and the second column represent the dataset and the classifier name employed in this study. The third, fourth, fifth, sixth, and the seventh columns respectively represent the
MCC, accuracy, sensitivity, specificity, and AUC. For comparison, we have included Antitbpred metrics reported in the literature [7]. The last column represents the pairwise comparison
of ROC area under curves (AUCs) between AtbPpred and the Antitbpred using a two-tailed t-test. P b .01 indicates a statistically meaningful difference between AtbPpred and the selected
method (shown in bold).
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12. Performance of AtbPpred on Independent Dataset

To assess the generalization, robustness, and practical applica-
tion of our proposed method, we evaluated its performance using
the independent dataset and compared the results with those ob-
tained using first-layer models. AtbPpred based on AntiTB_MD
achieved the best performance with the MCC, accuracy, sensitivity,
specificity and area under the curve of 0.793, 0.894, 0.830, 0.957,
and 0.934, respectively (Fig. 5C). Specifically, the MCC and accu-
racy of the proposed predictor was 7.9–25.1% and 4.3–12.8% higher
than the first layer models. Similarly, AtbPpred based on
Fig. 6. t-SNE visualization of the AntiTb_RD in a two-dimensional feature space. The dark cyan
(C) AAI, (D) AAC, (E) QSO, and (F) nine-dimensional probabilistic features (PF).
AntiTB_MD achieved the best performance with the MCC, accu-
racy, sensitivity, specificity, and area under the curve of 0.704,
0.851, 0.809, 0.894, and 0.899, respectively (Fig. 5D). Specifically,
the MCC and accuracy of the proposed predictor was 2.2–16.8%
and 1.0–8.5% higher than the first layer models, thus indicating
the utility and robustness of our two-layer approach. To summa-
rize, the experiments based on the independent dataset highlights
the importance and requisite to employ more comprehensive and
discriminative feature encodings and integrate them into a consol-
idated framework to further enhance the model design and
performance.
circles and salmon circles represent AtbPs and non-AtbPs, respectively. (A) CTF, (B) DPC,



Fig. 7. t-SNE visualization of the AntiTb_MD in a two-dimensional feature space. The dark cyan and salmon circles respectively represent AtbPs and non-AtbPs. (A) CTF, (B) DPC, (C) GTPC,
(D) NC5, (E) QSO, and (F) the nine-dimensional probabilistic features (PF).
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13. Comparison of AtbPpred With the Existing Method

We developed two prediction models using the AntiTb_MD and
AntiTb_RD datasets and compared their performances with the state-
of-the art method, Antitbpred. Notably, Antitbpred also contains two
predictionmodels using two different datasets. The rationale for consid-
ering this method in our analysis is as follows: (i) the authors trained
and validated their prediction models using the same training dataset
presented in this study and (ii) this method has been reported to dem-
onstrate excellent performance in AtbP identification.

First, we compared the performance of our proposed AtbPpred
method on two benchmarking datasets. As shown in Table 2, AtbPpred
achieved an overall better performance than Antitbpred in terms of
MCC, accuracy, sensitivity, and specificity on two benchmarking
datasets. Using a P-value threshold of 0.01, our proposedmethod signif-
icantly outperformed Antitbpred. Secondly, we compared the perfor-
mance of AtbPpred on two independent datasets. AtbPpred achieved
an overall better performance than Antitbpred in terms of MCC, accu-
racy, sensitivity, and specificity on two independent datasets
(Table 3). Inclusively, AtbPpred shows the best and consistent perfor-
mance on both benchmark and independent datasets, further suggest-
ing its ability to perform well with unknown peptides when compared
to the existing method.

14. Feature Selection Analysis

To explain the improved performance after feature optimization, we
compared the spatial distribution between the optimal and original fea-
tures. For an intuitive comparison, T-distributed stochastic neighbor
embedding (t-SNE) implemented in Scikit with default parameters
(n_components = 2, perplexity = 30, and learning_rate = 100) was
employed for each encoding to reduce the multi-dimensional space
into a two-dimensional one. Here, we compared nine probabilistic fea-
tures that were obtained from the first layer with the top five feature
encodings (CTD, DPC, AAI, AAC, and QSO) on AntiTB_RD dataset. Fig. 6
shows t-SNE distribution of the original and optimal features in the
two-dimensional space. As shown in Fig. 6A–E, the positive (AtbPs)
and negative (non-AtbPs) samples in the original feature space over-
lapped, indicating that the original feature space cannot effectively sep-
arate AtbPs from non-AtbPs. Conversely, probabilistic features (Fig. 6E)
showed that most of the positives and negative samples in the feature
space could be easily differentiated when compared to the original fea-
ture space, thus improving the performance. Furthermore, we com-
puted t-SNE distribution for AntiTB_MD (Fig. 7) and observed similar
trends with the AntiTB_RD results.

15. Implementation of a Webserver

As mentioned in [57] and suggested in a series of publications
[58–68] highlighting the importance in the development of webservers,
we established a user-friendly webserver, AtbPpred (http:/thegleelab.
org/AtbPpred), which is aimed at reaching a wide research community.
To validate our findings, all data sets utilized in this study can be freely
downloaded from our web server. Below, we provide a simple three-
step guideline in the utility of our webserver to obtain final predicted
outcomes. In thefirst step, users can select any one of the twoprediction
models. In the second step, submit the query sequences in the input
query box. Note that the input sequences should be in FASTA format. Ex-
amples of FASTA-formatted sequences can be seen below the input box.
In the final step, the ‘Submit’ button is clicked to provide the prediction
results as the output. For each run, users can submit amaximumof 3000
peptides for a single run.Moreover, we scanned the entire APDdatabase
[69] and AMPfun dataset [70] and built a list of potential anti-tubercular
peptides, which is available in our webserver (http://thegleelab.org/
AtbPpred/AtbPData.html).

16. Conclusion

In this study, we developed a novel sequence-based two-layer pre-
dictor called AtbPpred for the identification of AtbPs from the provided
peptide sequences. In this predictor, the optimal feature set was identi-
fied individually from nine different feature encodings and developed

http://thegleelab.org/AtbPpred
http://thegleelab.org/AtbPpred
http://thegleelab.org/AtbPpred/AtbPData.html
http://thegleelab.org/AtbPpred/AtbPData.html
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their corresponding prediction models in the first layer. Subsequently,
all these models predicted scores were further considered as features
and developed the final prediction model in the second layer. Unlike
the previous method [7], AtbPpred integrates different aspects of se-
quence information through nine prediction models, thereby overcom-
ing each model limitations and generating more stable predictions.
Hence, AtbPpred showed consistent performance using both training
and independent datasets, demonstrating thepracticability and benefits
of our proposed method. Two explanations could shed light on the ro-
bustness of our method. Firstly, we utilized ERT classifier for training.
When compared to other ML algorithms, ERT showed better perfor-
mance. Secondly, the probabilistic features used in the second layer
can more effectively distinguish AtbPs and non-AtbPs in feature space,
when compared to the feature encodings used in the first layer. Besides
AtbP prediction, our proposed framework could be further extended to
other peptide sequence-based predictors and applied to diverse compu-
tational biology fields [71–73]. Furthermore, our proposed method
along with the increasing availability of experimentally verified data
and novel features will greatly improve the prediction of AtbPs. To en-
able its wide use in the research community, we made AtbPpred avail-
able as a user-friendly public web server. AtbPpred is expected to be a
valuable tool in the identification of hypothetical AtbPs in a high-
throughput and cost-effective manner, further enabling the characteri-
zation of their functional mechanisms.
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