
Dynamic Transcriptomic Profiling
During Liver Development in
Schizothorax Prenanti
Jiahui Ni1, Peng Zhu1, Qilang Mo1, Wei Luo1, Zongjun Du1, Jun Jiang1, Song Yang1,
Liulan Zhao1, Quan Gong2 and Yan Wang1*

1College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China, 2Fisheries Institute, Sichuan
Academy of Agricultural Sciences, Chengdu, China

Liver is an important organ for glucose and lipid metabolism, immunity, and detoxification
in fish. However, the gene regulatory network of postnatal liver development still remains
unknown in teleost fish. In this study, we performed transcriptome analysis on the liver of S.
prenanti at three stages. A total of 1692 differentially expressed genes (DGEs) were
identified across three liver developmental stages. The oil red O staining and PAS staining
revealed that the lipid content of liver was increased and the glycogen content of liver was
decreased during liver development. The fatty acids biosynthesis related genes were
upregulated in adult and young stages compared with juvenile stage, while lipid
degradation related genes were downregulated. The genes related to glycolysis,
gluconeogenesis and glycogenolysis were upregulated in juvenile or young stages
compared with adult stage. Further pathway analysis indicated that the CYP450
pathway, cell cycle and amino acid metabolic pathway were induced in the process of
liver maturation. Our study presents the gene expression pattern in different liver
development stages of S. prenanti and may guide future studies on metabolism of S.
prenanti liver.

Keywords: liver, development, RNA-seq, S. prenanti., metabolism

INTRODUCTION

The liver is an important digestive and metabolic organ of fish. Previous studies have been conducted
on the effects of dietary and metabolic process on lipid deposition in liver of fish (Dai et al., 2015; Jia
et al., 2020; Sun et al., 2021). It is not only an important site of glucose and lipid metabolism in fish,
but also has the function of immunity and detoxification (Enes et al., 2009; Freitas-Lopes et al., 2017).
Liver is mainly a hematopoietic organ during the embryonic stage, and is transformed into a major
metabolic organ during the mature stage (Chapple et al., 2013; Lv et al., 2014). Wu et al. revealed that
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the hepatic immune functional, cell proliferation, and apoptotic
related pathways are involved in postnatal liver maturation of
breeder roosters (Wu et al., 2018). In addition, liver antioxidant
components are decreased during liver postnatal development to
protect juvenile animals from the oxygen environment and toxic
stimuli (Wu et al., 2019). Previous studies have proved that there
are significant changes in the expression levels of CYP450
isoforms, suggesting that different transcripts are regulated
during postnatal liver maturation (Cui et al., 2012a; Peng
et al., 2012). In addition, some other important factors, such
as IGF2BP1 (Hammerle et al., 2013), hepatocyte growth factor
(HGF) (Ishikawa et al., 2001), farniate X receptor (FXR) (Peng
et al., 2017), also can regulate the process of liver development.
Compared with tremendous researches on liver development of
mammals, the studies about gene regulatory network of postnatal
liver development still remains unknown in teleost fish.

RNA-seq is a kind of high-throughput sequencing, which is an
important tool for gene expression analysis in biology (Blencowe
et al., 2009). With the help of RNA-seq, there has been more
insight in the field of liver development in recent years. Xin et al.
(Wang et al., 2020) revealed that there are the similarities and
differences between human and mouse liver development using
RNA-seq. Besides, the mRNA abundance of transporters in liver
was revealed, and the expression of liver transporters was
demonstrated to both age and isoform specific (Cui et al.,
2012b). The RNA-seq results of chicken liver from the
prenatal to the postnatal stages indicated that antioxidant
defenses pathway is activated during chicken postnatal liver
mature (Xu et al., 2019).

Schizothorax prenanti (S.prenanti) is commonly known as
“Ya-fish”, belonging to the Schizothoracinae subfamily of the
Cyprinidae family. It is cultural symbol of Ya ‘an and popular with
the breeding industry (Li et al., 2018). In our previous study,
single molecule real-time sequencing is performed to generate
full-length transcriptome of S. prenanti (Wang et al., 2022). In the
present study, we obtained the overall gene expression patterns of
the three stages of liver by RNA-seq technique, then identified
and annotated the differentially expressed genes. These results
will further deepen our understanding of the liver metabolism of
S. prenanti in different stages, and provide a reference for the liver
health of S. prenanti in the artificial cultivation in the future.

METHODS

Experimental Animals and Feeding
Management
The study was performed with S. prenanti of three different ages:
6 months (juvenile, 9.41 ± 0.60 g, n = 3), 1.5 years (young,
110.11 ± 10.82 g, n = 3), and 3 years (adult, 673.33 ± 25.17 g
n = 3) of age, denoted as S, M, and L, respectively. All the fish were
maintained for cultivation at the Fish Breeding Center of Sichuan
Agriculture University (Ya’an, China) and were kept at 17 ± 1°C.
Commercial fish food pellet was resupplied twice daily (9:00 a.m.
and 6:00 p.m.). After acclimation for 2 weeks, healthy S. prenanti
for normal feeding are used for experiments. Prior to sampling,
fish were fasted for 24 h. Each fish was anesthetized with MS-222

(80 mg/L) and weighed. After dissection, liver was washed with
PBS buffer solution, then placed in a 2 ml centrifuge tube and
quickly preserved in liquid nitrogen.

Histological Structure and Oil Red O
Staining of Liver
Liver samples from three stages were fixed in 4%
paraformaldehyde and sections (4 μm) were cut and stained
with PAS staining. Then cryo sectioned and frozen sections
were subjected to standard Oil Red O staining (Servicebio,
Wuhan, China). The slides were seal-capped with
glycerogelatin and were photographed by a Nikon Eclipse Ti-
SR inverted microscope.

Triglyceride and Glycogen Concentration
Measurement
The contents of triglycerides were measured by Triglyceride
Assay Kit (Jiancheng Biotech Co, Nanjing, China). Briefly, the
liver samples treated with anhydrous ethanol were co-incubated
with GPO-PAP at 37°C for 10 min, and the absorbance value was
measured at 510 nm. The content of glycogen was measured by
Glycogen Assay Kit (Jiancheng Biotech Co, Nanjing, China).
Briefly, the glycogen detection solution was prepared, and
mixed with the chromogenic solution, then incubated at 100°C
for 5 min. The absorbance of samples was measured at 620 nm by
Varioskan LUX Microplate Reader.

RNA Preparation, Illumina Library
Construction and Sequencing
Total RNA was extracted by the RNAiso Pure RNA Isolation Kit
(TaKaRa, Tokyo, Japan). The quality of total RNA was measured
by Agilent Bioanalyzer 2100 system (Agilent Technologies, CA,
United States). The eukaryotic mRNA was enriched with Oligo
(dT) beads by A-T complementary pairing principle. The first-
strand cDNA was synthesized by random hexamers based on the
mRNA template, and then the second-strand cDNA was
synthesized by adding buffer, DNTPs, RNase H and DNA
Polymerase I. Then the double-stranded cDNA was purified
and a-tailed. After that, sequencing adaptors were attached
and the fragment size was selected by AMPure XP beads.
Finally, the cDNA library was obtained by PCR and
sequenced on the Illumina NovaSeq 6000 platform.

Identification and Expression Analysis of
Differentially Expressed Genes
Clean reads were obtained after removing ploy-N and low-quality
reads from raw data. Then, the base quality of the clean reads was
evaluated by GC content and Q30. The clean reads were mapped
onto transcripts of full-length transcriptome using the RNA-seq
comparison software STAR (Dobin et al., 2013). We aligned the
transcript sequence to NR (Deng et al., 2006), Swissprot (Rolf
et al., 2004), GO (Ashburner et al., 2000), COG (Tatusov et al.,
2000), KOG (Koonin et al., 2004), Pfam (Finn et al., 2014), KEGG
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(Minoru et al., 2004) databases by BLAST software (version
2.2.26) to obtain the annotation information of the transcript.
The FPKM distribution density was quantified using RSEM (Li
and Dewey, 2011). Subsequently, DESeq software package was
used to analyze differentially expressed genes, which could
remove genes that were not expressed (counts = 0) at least in
two samples (Anders and Huber, 2010), and then the p-values
were adjusted for controlling the false discovery rate (FDR) by the
Benjamini and Hochberg method (Storey and Tibshirani, 2003).
The screening criteria were fold change ≥2 and FDR <0.05.
KOBAS 2.0 software was used to test the statistical enrichment
of differentially expressed genes in KEGG pathways (Xie et al.,
2011).

Quantitative Real-Time PCR
The cDNA synthesis was used by HiScript® III RT SuperMix for
qPCR (Vazyme, Nanjing, China). CFX96TM Real-Time PCR
Detection System (Bio-Rad, United States) was used to perform
qPCR in a final volume of 10 μl: 3.8 μl of sterilized double-
distilled water, 5 μl of SYBR qPCR Master, 0.8 μl of cDNA
and 0.4 μl of each primer. The primers as shown in
Supplementary Table S1. Transcript levels were normalized to
the expression of the reference gene β-actin by the 2−ΔΔCt method.

Enzyme Assay
The activity of PEPCK and PFK was determined with
Phosphoenolpyruvate Carboxykinase Activity Assay Kit
(Jiancheng Biotech Co, Nanjing, China) and
Phosphofructokinase Activity Assay Kit (Jiancheng Biotech Co,
Nanjing, China), respectively. The mixture of 0.1 g tissue and
1 ml extraction solution was used for ice bath homogenization.
Take the upper part and put it on ice for test. Then we added the
reagent and sample into 1 ml quartz cuvette according to the
instructions, and read the absorbance at 340 nm by a UV-2800
spectrophotometer (BMS Biotechnology Medical Services,
Madrid, Spain).

Statistical Analysis
All data are expressed as the mean ± SEM. The statistical analyses
of one-way ANOVA were performed using SPSS 19.0 (IBM, NY,
United States). All data were represented as mean ± SEM. And
groups denoted by different letters represent a significant
difference at p < 0.05.

RESULTS

Illumina RNA-Seq Quality Validation
To identify the difference of gene expression in different stages of
S. prenanti, a total of 9 liver cDNA libraries in three periods were
constructed. After quality control of sequencing data, a total of
57.22G clean data were obtained, with Q30 reaching more than
85% (Table 1). Alignment results of clean reads and transcripts
are presented in Table 2. Normalize the number of reads mapped
to all genes and calculate it as FPKM for evaluating gene
expression. The FPKM distribution density displayed the
overall distribution of different transcripts expression levels in

9 liver samples (Figure 1A). The dispersion degree of the different
samples was also generated with box plots (Figure 1B), which
measured the expression level of each sample from the overall
discrete expression level. The PCA score plot showed that the
three stages were clearly separated with the main principal
component (PC) scores as follows: PC1 = 36.90%, PC2 =
20.90% (Figure 1C).

Analysis of Differentially Expressed Genes
A total of 1692 DEGs were detected across three liver
developmental stages (Supplementary Table S2). The
expression levels of genes among the three groups in the
pairwise comparisons were viewed through the Volcano
Plot. As shown in Figure 1D, the highest number of DEGs
was found between juvenile and young fish, including 511
upregulated and 549 downregulated genes. Between the
juvenile and adult fish, 417 genes were upregulated and 669
genes were downregulated. There were only 95 DEGs between
the young and adult fish, including 36 upregulated and 59
downregulated genes. A Venn diagram was constructed to
identify the joint DEGs among three pair-wise stage
comparisons. Through Venn diagram analysis, we identified
470 DEGs that were co-altered in both juvenile vs. young and
juvenile vs. adult. A total of 25 and 58 DEGs presented the
same expressed trends between juvenile vs. young and young
vs. adult, young vs. adult and juvenile vs. adult, respectively,
(Figure 1E).

GO and KEGG Pathway Enrichment Based
on DEGs
To explore the pathway of differential gene enrichment in
different periods, the sequences were annotated by GO and
KEGG databases. GO enrichment analysis was conducted on
DEGs identified in three stages, and the results were divided into
three categories: biological process (BP), cellular component (CC)
and molecular function (MF) (Figures 2A–C). GO enrichment
analysis showed that the major category represented was cellular
process (GO:0009987) among biological processes. And among
molecular functions, the major categories were catalytic activity
(GO:0003824).

Finally, KEGG pathways databases were performed to
determine the enrichment of differentially expressed genes.
The top 20 pathways of DEGs enrichment can be seen in
Supplementary Table S3 between different stages. In the
comparison of young vs. adult, only the cell cycle pathway
was significantly enriched for the differentially expressed genes
(Figure 3A). Comparing juvenile vs. young, the differentially
expressed genes were significantly enriched in three pathways,
including drug metabolism-cytochrome P450, protein
processing in endoplasmic reticulum, metabolism of
xenobiotics by cytochrome P450 (Figure 3B). In contrast, a
number of pathways were significantly enriched for juvenile vs.
adult. The top 20 KEGG pathways were shown in Figure 3C,
including drug metabolism-cytochrome P450, metabolism of
xenobiotics by cytochrome P450, carbon metabolism, tyrosine
metabolism, arginine and proline metabolism, tryptophan
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TABLE 1 | Statistical table for sample sequencing data evaluation.

Samples BMK-ID Read Number Base Number GC Content %≥Q30

Adult1liver L1liver 21,498,046 6,408,391,356 47.28 93.66
Adult2liver L2liver 21,224,260 6,345,019,826 47.85 93.84
Adult3liver L3liver 21,873,325 6,534,813,036 47.98 93.83
Young1liver M1liver 20,927,905 6,250,744,092 47.57 93.69
Young2liver M2liver 21,009,982 6,281,676,604 48.49 93.84
Young3liver M3liver 21,748,283 6,483,993,762 47.68 93.07
Juvenile1liver S1liver 21,527,874 6,433,382,690 47.95 92.97
Juvenile2liver S2liver 21,070,071 6,291,554,182 48.2 92.87
Juvenile3liver S3liver 20,741,711 6,195,120,812 48.27 93.1

TABLE 2 | Statistical table of comparison results between the second-generation sequencing data and the third-generation non-redundant transcripts.

Sample Total Reads Uniquely
Mapped reads (%)

% of reads
Mapped to Multiple

Loci

% of reads
Mapped to too

Many Loci

Adult1liver 21,498,046 44.61 27.32 0.03
Adult2liver 21,224,260 49.83 24.67 0.04
Adult3liver 21,873,325 49.92 24.47 0.04
Young1liver 20,927,905 49.55 21.65 0.08
Young2liver 21,009,982 51.26 22.84 0.09
Young3liver 21,748,283 46.27 21.77 0.05
Juvenile1liver 21,527,874 53.07 20.02 0.05
Juvenile2liver 21,070,071 52.05 21.27 0.04
Juvenile3liver 20,741,711 52.06 20.41 0.04

FIGURE 1 |Quality assessment and analysis of global gene expression among liver samples at three stages. (A) Intuitive display genes expressed at different FPKM
levels. (B) Boxplot of FPKM distribution among liver samples. (C) Principal component analysis (PCA) plots of all transprits at diffierent stages in S. prenanti. (D) Volcano
plot of differential expression genes among the three stages in the pairwise comparisons. (E) Venn diagram showing the number of DEGs in transcript abundance in liver
of S. prenanti. Yellow circles indicate the samples of juvenile vs young, green circles indicate the samples of young vs adult, and blue circles indicate samples of
juvenile vs adult.
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metabolism. We used heatmaps to characterize the DEGs in
the enriched pathway drug metabolism-cytochrome P450. The
mRNA expression levels of the CYP450 pathway related genes

such as GST, UGT, DHDH, CBR1, AOX, MAO and CYP450
subtypes CYP1a1 were lower level in adult stage compared
with juvenile and young stages (Figure 3D).

FIGURE 2 |Classification of different expression genes (DEG) with GO databasesa. (A) juvenile vs. young, (B) young vs. adult, (C) juvenile vs. adult. The abscissa is
the GO classification, the left of the ordinate is the percentage of transcripts, and the right is the number of transcripts. The two vertical axes are the enrichment of GO
secondary functions of differentially expressed transcripts and all transcripts, respectively.

FIGURE 3 |KEGG analysis of differentially expressed genes during liver development. (A) juvenile vs. young, (B) young vs. adult, (C) juvenile vs. adult, (D) heatmaps
of the DEGs involved in metabolism of xenobiotics by cytochrome P450 and drug metabolism—cytochrome P450. The size of each point represents the degree of
enrichment, and the color of each point represents the size of the q-value. Data are shown as means ± SEM. Three biological replicates were used.

FIGURE 4 |Oil red staining and TGs content in liver of S. prenanti at three stages. (A) liver oil red O staining of juvenile, (B) liver oil red O staining of young, (C) liver oil
red O staining of adult, (D) the content of liver triglyceride, (E) heatmaps of the DEGs involved in fatty acid biosynthesis, fatty acid elongation, biosynthesis of unsaturated
fatty acids, fatty acid degradation and PPAR signaling pathway. The juvenile, young and adult of S. prenanti denoted as S, M, and L, respectively. Data are shown as
means ± SEM. Three biological replicates were used. Data are shown as means ± SEM. Three biological replicates were used. And groups denoted by different
letters represent a significant difference at p < 0.05.
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Genes Involved in Lipid Metabolism
To investigate the contents of triacylglycerol among three stages, we
performed oil red O staining to the liver section. As shown in
Figures 4A–C, lipid accumulation was remarkedly increased in the
liver of young and adult stages compared with juvenile stage.
Meanwhile, the content of liver triglyceride was remarkedly
increased at young and adult stages compared with juvenile stage
(Figure 4D) (p < 0.05). Expression levels of genes involved in the
pathways associated to fatty acid metabolism were showed in
Figure 4E. Compared with juvenile stage, the mRNA expression
levels of fatty acid synthesis related genes such as FATP, ACSL,
SREBP1, ELOVL1were upregulated in adult and young stages, while
expression of fatty acid β oxidation related genes such as ALDH9A1,
AMACR, ECHS1, and HADHA were downregulated in young and
adult stage compared with juvenile (Figure 4E).

Genes Involved in Carbohydrate
Metabolism
To investigate the contents of glycogen during three stages, we
performed PAS staining to the liver section. As shown in Figures
5A–D, glycogen content was higher in the livers of juvenile and
young stages, compared with adult stage (p < 0.05). Expression
levels of genes involved in the main pathways associated to
carbohydrate are given in Figure 5E. The pathways include
glycolysis/gluconeogenesis, starch and sucrose metabolism,
fructose and mannose metabolism. The genes related to

glycolysis (HK, PFK, GAPDH, and PGAM), gluconeogenesis
(PEPCK and FBPase) and glycogenolysis (AGL, UGP2, GAA,
and TREH) were upregulated in juvenile or young stages
compared with adult stage. Moreover, the activity of PFK and
PEPCK was at the lowest level in juvenile and then increased to a
peak in young and was downregulated from young to adult
(Figures 5F,G).

Validation of Differential Gene Expression
By qPCR
To validate the accuracy of the transcriptome analysis, five
differentially expression genes were selected for qPCR. As
shown in Figures 6A,B, the mRNA expression levels of
FABP7 and FBPase were downregulated from juvenile to adult.
PFK, PEPCK and SREBP genes were expressed at the lowest level
in juvenile and then increased to a peak in young, and was
downregulated from young to adult (Figures 6C–E). As the qPCR
results shown, the expression of all the tested genes presented the
same expressed trends with the results of transcriptome analysis,
suggesting that the results of RNA-seq were accurate and credible.

DISCUSSION

In vertebrates, the liver is the main place for metabolic clearance
of foreign compounds, and is the richest source of drug

FIGURE 5 | PAS staining and glycogen content in liver of S. prenanti at three stages. (A) liver PAS staining of juvenile. (B) liver PAS staining of young, (C) liver PAS
staining of adult, (D) the content of liver glycogen, (E) heatmaps of the DEGs involved in glycolysis and gluconeogenesis, (F) The activity of PFK (U/mg), (G) The activity of
PEPCK (U/g). Data are shown as means ± SEM. Three biological replicates were used. And groups denoted by different letters represent a significant difference at p <
0.05. The juvenile, young and adult of S. prenanti denoted as S, M, and L, respectively.
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metabolizing enzymes (Parkinson et al., 2001). In this study, the
differentially expressed genes were significantly enriched in drug
metabolism-cytochrome P450 and metabolism of xenobiotics by
cytochrome P450 pathways. Drug metabolic enzyme can be
divided into cytochrome P450 enzymes and non-cytochrome
P450 enzymes. CYP450 is generated by liver microsomes,
which is an important enzyme in the metabolism of
environmental pollutants and endogenous substances
(Waxman, 1999). The expression and activity of CYP isoforms
in liver alter significantly with age during development, and
CYP1A1 is detected only in 3-week-old rats (Yun et al., 2010).
In rainbow trout, the concentration of CYP450 is negatively
correlated with body weight in the process of growing
(Fitzsimmons et al., 2018). In the present study, the mRNA
expression of CYP450 subtypes CYP1a1 were lower level in
adult stage compared with juvenile and young stage.

Non-cytochrome P450 enzymes includes DHDH, CBR1, GST,
MAO, AOX, UGT, and so on (Pang et al., 2022). Dihydrodiol
dehydrogenase (DHDH) is involved in the metabolism of
polycyclic aromatic hydrocarbons in the liver (Carbone et al.,
2008), but there is no report on the development change of
DHDH in teleost fishes. In the present study, the mRNA
expression of DHDH were lower level in adult stage compared
with juvenile and young stage. The activity of GST is elevated at
24 h under the action of low concentration toxicity (triclosan),
significantly inhibited at 72 h, but induced at 168 h in yellow
catfish (Ku et al., 2014). In addition, Neta et al. have proved that
GST activity is changed in different periods in catfish sampled
(Neta et al., 2017). Previous study showed that the activities of
CBR1 and GST are 2.4 folds and 5.6 folds higher in the 21-month-
old rats compared with 6-week-old rats, respectively, but UGT is
significantly decreased (Vyskocilova et al., 2013). Carbonyl
reductase 1 (CBR1) participates the biotransformation of
various xenobiotics containing carbonyl group. In this study,
the expression of GST, UGT, and CBR1 were decreased,
suggesting that the ability of the biotransformation of various

xenobiotics in the liver becomes lower during liver development.
Monoamine oxidase (MAO) and aldehyde oxidase (AOX) are
enzymes that catalyzes the oxidation of various drugs and
endogenous compounds (Petrovic et al., 1991; Tipton et al.,
2004; Tayama et al., 2007). The expression levels of MAO-A
and MAO-B decreased in the liver of aged mice (Saura et al.,
1994). Unlike mammals, which have two types of MAO (MAO-A
and MAO-B), there is only one single form of MAO in fish
(Nicotra et al., 2004). AOX activity in rats is increased rapidly
from birth and reached a plateau within 4 weeks, which is
connected with postnatal liver development of mice (Tayama
et al., 2007). In fish, there are few studies on these enzymes of
CYP450 pathway. In this study, the expression of drug
metabolism-cytochrome P450 related genes were decreased
during the liver development of S. prenanti, suggesting that
the oxidation ability of various drugs and endogenous
compounds may be inhibited in adult comparing with juvenile
and young stages.

Liver is one of the important sites of amino acid metabolism.
Amino acids play crucial roles on the growth, reproduction, and
immune responses in fish (Li et al., 2009). Arginine and proline
are amino acids with crucial roles in protein deposition and the
immune response (Wu et al., 2011). In addition, dietary
tryptophan attenuated stress induced anorexia and reduce
aggressive behavior in brown trout (Andersen et al., 2016).
Arginine and proline metabolism pathway and tryptophan
metabolism pathway were significantly enriched during
chicken liver development (Wu et al., 2018). Consistent with
this, arginine and proline metabolism pathway and tryptophan
metabolism pathway were significantly enriched based on the
DEGs, which suggested that amino acids pathway was involved in
development of S. prenanti.

Lipid synthesis and fatty acid β oxidation play a critical role in
lipid deposition of liver. SREBP1 is a key transcriptional factor of
lipid synthesis, regulating expression of fatty acid and triglyceride
synthesis related genes (Jeon and Osborne, 2012). ACSLs catalyze

FIGURE 6 | Validation of six differentially expressed of FABP7 (A), FBPase (B), PFK (C), PEPCK (D), SREBP (E) by qPCR. Left y axis shows the relative expression
levels of genes using qPCR, and the right y axis shows the fragments per kb per million reads (FPKM) values of the using RNA-seq. Data are shown as means ± SEM.
Three biological replicates were used.
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the synthesis of acyl CoA from fatty acids, which is the key
enzyme of triglyceride synthesis and fatty acid β oxidation
(Grevengoed et al., 2014). Our results revealed that the lipid
content of liver increased in adult and young stages comparing
with juvenile. Consistent with the oil-red O staining results, the
mRNA expression levels of SREBP1 and ACSLs increased in
young and adult stage compared with juvenile, indicating the
fatty acid and triglyceride synthesis maybe active in young and
adult stage. Previous studies proved that ELOVL1 can elongate
very long chain monounsaturated fatty acid and very long-chain
saturated fatty acids (Moon et al., 2009; Ohno et al., 2010). In the
present study, the mRNA expression of ELOVL1 was increased
during liver development, which suggested that liver fatty acid
elongationmay be induced during the liver development. FATP is
a key factor involved in fatty acid transport and fat deposition,
which function is to transport of long-chain and very long chain
fatty acids into cells (Dutta-Roy, 2000). In the conditions of low-
fat feeding, the expression level of FATP is upregulated in the liver
of 18 months mice comparing to 3 months mice (Martin et al.,
2008). In our RNA-seq results, we found that the mRNA
expression of FATP was also increased in young and adult
stage comparing with juvenile. FABP can bind fatty acids and
transport them to peroxisome, mitochondria and endoplasmic
reticulum for fatty acid β oxidation (Veerkamp et al., 1993). In
mice, L-FABP gene ablation increases the concentration of liver
lipid concentrations (Martin et al., 2008). In the resent study,
mRNA expression of FABP was the lowest in adult of the three
periods. Meanwhile, the mRNA expression of fatty acid β
oxidation related genes including ALDH9A1, AMACR, ECHS1,
HADHA were consistent with the results of FABP, which
suggested that fatty acid β oxidation pathway was
downregulated in adult stage. Collectively, the results revealed
that the pathways of lipid synthesis and fatty acid elongation was
elicited, and fatty acid β oxidation pathway was downregulated in
the liver development.

Liver is the main site of carbohydrate metabolism in fish. Our
PAS staining revealed that the glycogen content of liver decreased
during liver devepment. Hexokinase (HK) and
phosphofructokinase (PFK) are the rate-limiting enzymes of
glycolysis. In rats, hexokinase activity has no significant
change during liver postnatal development (Dileepan et al.,
1979). In our study, mRNA expression levels encoding these
two enzymes and the activity of PFK were the highest in young
stage, suggesting that glycolysis ability may be enhanced in young
stage. PEPCK and FBPase are the rate-limiting enzymes of
gluconeogenesis, and catalyzes oxaloacetic acid to form
phosphoenolpyruvate and the conversion of fructose-1, 6-
diphosphate to fructose-6-phosphate (El-Maghrabi et al., 1995;
Hanson, 2009). We found that the mRNA expression of PEPCK
and FBPase as well as the activity of PEPCK were decreased at the
adult stage, which indicated that the gluconeogenesis pathway
was inhibited in adult stage. Glycogen degradation is catalyzed by
many enzymes, which including AGL, GAA and TREH (Yong
et al., 1996; Lombard et al., 2014). In this study, the mRNA of
these genes showed that glycogenolysis decreased in adulthood.
These results indicated that glycolysis, gluconeogenesis and
glycogenolysis pathway were inhibited during liver

development of S. prenanti. With the growth of individuals,
the demand for feed lipid and carbohydrate varies at different
stages. In fish, many studies have confirmed that high
carbohydrate and high fat diets can lead to the increase of
lipid accumulation and glycogen content in fish liver
(Prisingkorn et al., 2017; Jia et al., 2020; Sun et al., 2021).
Therefore, suitable nutrient levels are able to affect fish health
and promote fish growth. Previous study showed that fatty acid
deficiencies manifest themselves faster in juvenile fish
(Dabrowski, 1986). For example, essential fatty acid (EFA)
deficiency occurs only within 2 weeks when young juvenile
barramundis (Lates calcarifer) are fed with fish oil free diet, or
with a low inclusion of fish oil (Salini et al., 2015). In seabass
(Dicentrarchus labrax) juveniles, reducing dietary fish oil levels
from 6% to 3% increases gut bacterial translocation rates
(Torrecillas et al., 2017). In this study, lipid accumulation was
remarkedly increased in the liver of young and adult stages
compared with juvenile stage, and we speculated that the
crude lipid requirement of juvenile is higher than that of
young and adult. In gilthead sea bream (Sparus aurata)
juveniles, the growth performance, feed efficiency, and protein
efficiency ratio of 30% gelatinized maize starch were lower than
those of 20 and 10% gelatinized maize starch fish fed diet (Couto
et al., 2008). In this study, glycogen content was higher in the
livers of juvenile and young stages, compared with adult stage,
and we speculated that the carbohydrate requirement of juvenile
and young is lower than that of adult.

In this study, we obtained mRNA expression patterns of three
stages in S. prenanti liver by RNA-seq technology and have
identified a total of 1692 differentially expressed mRNAs
across three stages of S. prenanti liver. In addition, we
revealed that lipid accumulation was increased and glycogen
content was decreased during liver development. Moreover,
based on KEGG analysis we found that the differentially
expressed mRNAs were involved in the CYP450 pathway, lipid
metabolism and carbohydrate metabolism in liver maturation of
S. prenanti. Overall, our data enriched sequences information of
S. prenanti and provided a broad and novel vision for future
research at the transcription level in fish.
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