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Inflammatory fibrosis is a wound-healing reaction of the immune system in

mammals against aggression. After a signalling cascade, fibroblasts and

potentially myofibroblasts make a stiff collagenous tissue inside the body

that modifies the original healthy tissue. We focus here on the implant-

induced fibrosis that aims to encapsulate the implant with a typical fibrous

tissue called the capsule. Focusing on breast capsules, we aim to understand

the mechanical properties of these tissues, to test the validity of fibre models

that have been established in other contexts such as arteries. For this pur-

pose, we perform force–extension experiments and show that mechanical

constitutive laws of these tissues are especially difficult to derive, because

models are sensitive to fibre orientation and dispersion, independently of

the variation between individuals. In addition, fibre breakdown, and poss-

ibly remodelling, occur during the extension experiments. However, the

high stiffness of the capsular tissue, compared with the healthy tissue,

added to the fact that an inflammatory process has no reason to cease, is

at the origin of large compressive stresses in vivo, which explains the

pain and unaesthetic deformity. We evaluate the stresses responsible for

the pain and the buckling instability, which have no reason to stop if the

inflammation persists.
1. Introduction
Fibrosis, the formation of excess fibrous connective tissue, seems to be a common

mechanism in organisms to find for protection, foreign body reaction and survi-

val. Put on a solid substrate, a drop-containing bacteria (Bacillus subtilis) [1]

extends by constructing a fibrous gel called biofilm. On a liquid substrate, it

makes a solid thin plate the elasticity of which has been shown to be anisotropic

both in tension and compression [2]. The fibrous matrix adheres strongly and

organizes the cell division. For humans, fibrosis occurs as a reaction of the

immune system against aggression: wounds [3,4], solid tumour growth [5,6],

implants [7] and also severe obesity. When it becomes excessive, it induces patho-

logical complications, unaesthetic in the best cases, painful and life threatening in

the worse cases. Moreover, the fibrotic tissue, which is difficult to eliminate phys-

ically, limits the transport of drugs, and the preferred solution remains surgery.

The introduction of a foreign body in mammals causes an immediate

wound-healing response with a complex signalling cascade [8]. In the case of

breast implants, the final and long-term result is encapsulation of the implant

by an inflammatory collagenous tissue called the capsule. Helpful not only to

fix it in the breast, but also to prevent infection and trauma, the capsular

tissue may stiffen and extend, becoming extremely painful and unaesthetic

only few months post-implantation. Several causes have been investigated

such as bacterial infection [9,10], previous breast and chest irradiation, and
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the structure and surface texture of the implant. However,

few histological studies have been published regarding fibro-

sis [7] and clearly, such information is essential to fully

understand the process.

The biomechanics of growing soft tissues is a recent

domain of study which covers plant morphogenesis [11],

embryogenesis [12], organ development [13] and pathologies

[5,6]. Many studies have been undertaken in the last

few years to understand the growth and form of biological

objects in the spirit of Thompson [14] by considering the

shape instabilities of growing simple geometric objects:

spheres for tumours, cylinders for arteries, plates for skin.

These studies oversimplify the structure of the tissues,

being simply represented by ad hoc constitutive laws and

treated in the context of finite elasticity with volumetric

growth [12,15]. Indeed, organ tissues have a microscopic

structure: epithelia mostly comprise well-ranked layers of

cells, whereas connective tissues include cells, fibres and

vessels in addition to fluids. Constitutive laws represent an

average behaviour that is supposed to take into account

the fine microscopic structure. Their validity is tested by the

treatment of simplified situations.

The present study is a biophysical and biomechanical

investigation of the growth of collagenous tissue owing to

inflammation. Our basic system of study will be the capsular

tissue around breast implants [7] and its excessive contracture,

but will not be limited to it. When it occurs, in the worse cases,

the implant is crumpled or fractured, with visible deformity of

the breast and pain. The deformations of the breast and

implant will be explained by a buckling instability inducing

a shape bifurcation owing to constrained volumetric growth

[15,16]. To reach this objective, however, requires a good rep-

resentation of the elasticity of such tissue. We will take into

account the elasticity of the tissue as derived from uniaxial

traction experiments to propose the best modelling of capsular

tissue. However, when constrained by the implant, which

plays the role of an imposed boundary, volumetric growth

will generate compressive stress that increases with the thick-

ness of the current layer. Even in the simplest case, such as

homogeneous volumetric growth of a neo-Hookean elastic

sample [16], the tissue and the implant will buckle owing to

the compressive stresses induced by growth. Because fibrotic

tissues are more complex, we expect stronger deformations,

which we aim to quantify.

The stresses may have a double origin: passive or/and

active. Passive elasticity for living tissues, or dead elasticity

[14], which treats living matter as a soft inert material.

When the structure evolves over a very long period of time

compared with the short timescale of elasticity (of the order

of a second), the global shape of the sample retains a mini-

mum of the elastic energy. Active elasticity [17] infers that

the sample contains specific cells acting like small compres-

sive motors or point stress sources. Myofibroblasts, having

originated from the immune system, may play this role, con-

tributing to the pathology. In case of adult wound-healing as

an example [3,18], they are responsible of the final closure of

wounds. A good model may help to distinguish between

both contributions although we suspect, without precise

observations, that these active cells do not exist at the early

stages of the disease process. Even remaining at the level of

passive elasticity, an appropriate constitutive law is required,

and one part of this work is devoted to determining this law

via traction tests. To the best of our knowledge, we have
performed these tests for the first time, on post-surgical

tissues obtained post-surgery. Although preliminary, the pre-

sent study is sufficient to establish a good model of capsule

tissue deformation as a function of its extension.

The paper is organized as follows. In §2, we explain the

surgery and the experimental tests. In §3, we introduce the

model of extension of an incompressible soft-matter cuboid

compared with standard predictions for the ground matrix.

In §4, we introduce the existence of the cross-linked fibre net-

work in the hyperelastic models. We select two models, and

we introduce fibre dispersion for the orientation and filament

breakages. In §5, we calculate the stresses that appear in the

capsule as the fibrosis occurs using our measurements.

Finally, in §6, we offer some concluding remarks.
2. The problem, material and methods
The peri-prosthetic capsule is a normal physiological

response to a foreign object introduced in human body.

Soon after surgery, the implanted prosthesis becomes sur-

rounded by an immature tissue made of fibrin mostly and

phagocytes. In approximately four weeks collagen and

inflammation lead to the formation of a mature capsule. Cap-

sular contracture is the excessive fibrosis around the implant

that leads to a high re-operation rate. According to the Inter-

national Society of Aesthetic and Plastic Surgery, for aesthetic

breast augmentation, complication rates are 1% per year, and

after 10 years, the rate for capsular contracture exceeds 10%

but is approximately 25%, in the case of reconstructive sur-

gery after breast cancer treatment. According to Moyer et al.
[7], the organization of collagen fibres around the implant

evolves from loose organization to a well-spaced thick col-

lagen fibre network when the severity increases (measured

by a clinical index or grade) from Baker grade I up to IV. In

addition, cells, such as mast cells, present in less dense

breast capsules appear to be absent from more advanced

fibrosis. In this case, fibroblasts organize themselves parallel

to the fibres or in a spiral fashion. The collagen network is

cross-linked and more or less parallel to the implant surface.

In more advanced stages, muscle-like cells are recruited, con-

tributing to a higher state of stress. A more quantitative study

[19] has been published recently, covering capular contrac-

ture cases of all grades. It confirms the increase in the

density of the collagen fibres with grade, the alignment par-

allel to the surface device (loosely oriented for low grade,

well oriented for contracted capsules) and the presence of

myofibroblasts for grade IV capsules [19]. For irradiated

patients, the histological damage and changes of the breast

skin [20] increase the probability of high-grade capsular

contracture.

2.1. Specimen preparation
Nine biopsies were taken from patients: five with Baker III

and IV capsular contracture, after implant-based reconstruc-

tion, and four cases concerned breast augmentation for

aesthetic purposes (grade I). Two patients of the first category

have previously received irradiation treatment [20,21] after

partial mastectomy. Samples were harvested from surgical

specimens of capsulectomy (anterior and posterior). Each

sample was cut from the anterior part of the surgical specimen.

All patients received the same brand of implant, the same grade

of silicone gel and shell texture (ALLERGAN 410, Anatomical



Figure 1. A schematic example of capsular tissue attached to the traction
apparatus. Traction tests are performed at constant velocity along in the vertical
X-direction.
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textured implant, texture: biocell). The dimensions of the

samples were identical, 1 cm in width, 3 cm in length.

The thickness increased with capsular contraction severity.

The specimens were treated in less than 2 days (stored in a

sterile saline solution) for tension tests. Once they are excised,

the stress owing to in vivo confined growth is eliminated, but

solid stresses or residual stresses may remain in the absence

of loading. These stresses are the active part we discuss in

the Introduction or come from plastic reorganization of the col-

lagen or remodelling during contracture. The best way to

identify such stresses is to carefully cut cuboids of the tissue

and observe the shape as time goes on, make an incision and

study the aperture, in other words to play with simple

shapes immediately post-surgery, then examine them after

few hours.

The deformation of the sample if it occurs after a cut indi-

cates the existence of residual stresses as shown by Fung [22],

more recently for desmoplastic solid tumours in references

[5,6] for example. An opening indicates a tensile stress and

a cusp-like opening indicates a contractile state followed by

a tensile one. With such techniques, Stylianopoulos et al. [5]

were able to evaluate the stresses stored during tumour

growth of a few kilopascals with a map of their orientation

inside the tumour. Further evidence for the presence or

absence of residual stresses may be given simply by the be-

haviour of the uniaxial signal force versus stretch for low

loadings. For the set of samples covered by this study, no

obvious evidence was made of possible residual stresses or

of a high density of active cells.
2.2. Experimental set-up and protocol
Uniaxial tension tests of the aforementioned capsular tissues

were performed in a testing set-up shown in figure 1. The

samples were attached to the machine using pneumatic grips

prohibiting the sliding of the tissue that may occur during the

tensile test, 1 kPa being the maximal compression exerted by

the grips. The testing apparatus was an INSTRON (Instron

3343 1 kN single column testing systems) with a load cell that

allowed measurement of vertical force in the range from 1023

to 103 N (with a precision 1 mN) for loading velocities between

0.005 and 500 mm min21 (precision of 1mm s21). The vertical

displacement (along X) is measured directly by the traction

machine. Some experiments were documented by automatically

taking CCD camera images. The images were used to ensure that

during the tensile test, samples contract in the middle section of

the sample, whereas the upper or lower faces of the sample were

maintained in the pneumatic grips. The tests were performed at

room temperature (Te � 218C). During sample preparation, it

was verified that no residual stresses or internal cell activity

were present in the tissues by cutting the tissues and observing

their evolution in time. Tissues were cut in rectangular ribbons

of different sizes in the following range: initial length: 2.0–

5.0 cm, initial width: 0.5–2.0 cm, initial thickness: 0.8–2.0 mm.

These rectangular tissue samples were axially extended between

both pneumatic grips at a fixed velocity of 1 mm min21. Only

one loading cycle was made with each sample. One of the prac-

tical difficulties in performing tension experiments was placing

samples in the testing machine in reliable and repeatable way.

At the end of the procedure, no signs of dehydration were

observed. At first, grips move at zero force, zero extension,

then the force increases indicating the start of the loading and

fixing the correct initial size of the sample. The tests were
continued until the failure of the specimen. Typical results of

the traction experiments performed in the capsular tissues are

shown in figure 2a,b, which we will compare with an equivalent

experiment for fabrics [23].
3. Determination of the Constitutive Law
3.1. The space of configurations and the stress

calculation
We focus here on a cuboid submitted to uniaxial tension

along the X-axis. We assume that the sample has a length

X0 before stretching larger than the width given initially by

Y0 (in the Y-direction) and a thickness Z0 (in the Z-direction).

The tissue extends in the X-direction, keeping its cuboid

shape. This assumption is rather tenuous, but has been

checked carefully in our experiment. The surgical cuts are

parallel to the implant and correspond to the X, Y plane.

We look for the simplest solutions, taking advantage of the

small values of Y0/X0 and Z0/X0. Then, all stretches defined

by xi/Xi depend only on x, the current configuration coordi-

nate or equivalently on X, the coordinate in the reference

configuration before loading. The hyperelastic energy, W, is

a function of the principal stretches: W(l1, l2, l3) with the

Cauchy stress given by

ti ¼ li
@W
@li
� p ð3:1Þ

li means the principal stretch in the i direction, the ratio

between the current length li of the sample and the initial

length Li, in the same direction. li (where the index i takes

the value 1, 2, 3 meaning respectively x, y, z) and p are

x-dependent. The pressure p is a Lagrange multiplier, which

ensures the incompressibility of the sample, given by

l1l2l3 ¼ 1: ð3:2Þ

In addition, because of the mechanical equilibrium, we have

@t1

@x
¼ 0: ð3:3Þ
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experimental data: case 1
normal capsular tissue
Baker grade I
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Figure 2. Experimental results: (a) experimental stress – stretch relation for
different capsular tissues. The orientation of the fibres is unknown. The
curves correspond to three different degrees of severity of fibrosis. The surgery
corresponded to a case of breast augmentation for aesthetic purposes. None
of the patients had undergone previous irradiation treatment. (b) Experimen-
tal stress – stretch relation for different capsular tissues. The orientation of the
fibres is also unknown. The surgery corresponded to a case of an implant-
based reconstruction post-cancer. The patient in this case had previously
undergone irradiation treatment.
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So, t1 is a constant along x. A similar equation applies for t2

and t3, which have also constant values in the sample. Apply-

ing the cancellation of the stress in the Y- and Z-direction,

we obtain

t3 ¼ l3
@W
@l3
� p ¼ 0! p ¼ l3

@W
@l3

: ð3:4Þ

Equation (3.2) and (3.4) enable l2 and l3 to be solved as a

function of l1 to recover the Cauchy stress t1 as a function

of only l1. Our experiments determine the uniaxial force

F ¼ A0l2l3t1 ¼ A0
@W
@l1
� p
l1

� �
, ð3:5Þ

with A0 ¼ Y0Z0. Note that F is directly proportional to the

nominal stress [24].

The complete understanding of our experimental results

requires a good model for the constitutive law of tissues

with fibres but also a systematic study of these models

versus the orientation, dispersion and failure. The experimen-

tal analysis, including the determination of fibre orientation

and dispersion by using optical methods, will be considered

in a future study. Here, we focused on the analysis of our

results by using biomechanical models that incorporate

fibre behaviour at a given orientation and dispersion. Because

most of the continuum biomechanics models superpose the
elasticity of the ground state to the one of fibres, we begin

by the ground-state representation.
3.2. The low stretch biomechanics model
For the ground matrix and applied homogeneous strain, we

apply two classical models, the Mooney–Rivlin model and

the Valandis–Landel model [24]. The energy density for the

Mooney–Rivlin model is

WMR ¼
m

2
fl2

1 þ l2
2 þ l2

3 � 3þ rðl2
1l

2
2 þ l2

2l
2
3 þ l2

3l
2
1 � 3Þg,

ð3:6Þ

where the li, as before, means the principal stretch li=Li.

It is possible to replace li by the first invariants I1 and I2.

The first invariant is I1 ¼ tr½FFT�, whereas the second I2 is

defined by I2 ¼ 1=2ðI2
1 � trðFFTÞ2Þ with the deformation

gradient being the tensor: F ¼ rRr. In equation (3.6), m is

called the infinitesimal shear modulus [24], having the

dimension of pressure (Pa). The Mooney–Rivlin model is

an expansion of the elastic energy density limited to I1 and

I2. To ensure convexity at low strains, the dimensionless par-

ameter r can be negative but larger than 21, a restriction that

may be revisited for fibrous elasticity.

We have also considered the Valandis–Landel model,

which allows a better representation of large rubber

deformation, and the elastic energy density reads [24]

WVL ¼
P

p mpðl
ap

1 þ l
ap

2 þ l
ap

3 � 3Þ
ap

: ð3:7Þ

Both models recover the neo-Hookean model with r ¼ 0 in

the Mooney–Rivlin model and with ap ¼ 2 in the Valandis–

Landel model. Note that convexity of the elastic energy and

ellipticity is also required to avoid irrelevant singularities in

the material behaviour; these properties are difficult to prove

in practice in three dimensions for arbitrary models and defor-

mation which is why we restrict ourselves to standard

representations of elastic energy. For the Mooney–Rivlin

model, r can be negative but, for convexity remain larger

than –1. In this case, we obtain force versus stretch given by

F ¼ mA0
1

l3
1

ðl3
1 � 1Þðl1 þ rÞ: ð3:8Þ

For low values of stretch (l1! 1)

F�3mA0fð1þ rÞðl1 � 1Þ � ð1þ 2rÞðl1 � 1Þ2g: ð3:9Þ

The uniaxial test results are compatible with the Mooney–

Rivlin model, giving a negative initial curvature for

r . 21/2, positive for 21 , r , 21/2. For the Valandis–

Landel model, the result for F is not explicit but an expansion

in series is possible. To quadratic order, it gives

F� 3

2
A0fC1ðl1 � 1Þ þ 1

4C2ðl1 � 1Þ2g: ð3:10Þ

with

C1 ¼ ða1m1 þ a2m2 þ a3m3Þ
C2 ¼ ða1 � 6Þa1m1 þ ða2 � 6Þa2m2 þ ða3 � 6Þa3m3

�
,

giving the possibility of having positive and negative initial

curvatures as soon as one of the ai’s is between 0 and 6.
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4. Fibre hyperelastic models
Fibres (e.g. collagen) are a consequence of the inflammatory pro-

cess. They may be disordered, polydispersed, cross-linked with

arbitrary orientations or have a well-defined orientation. They

may also contain diverse bundle families. Under stretch, they

can reorient themselves in the direction of the stretching or

simply break as observed for the fabrics in reference [23]. We sus-

pect that the network more or less stays in the tangent plane of

the implant surface. It is also the X, Y plane of the samples

from the surgical cut. However, we ignore their orientation in

this plane. Biomechanical models exist for fibrous matter

[25,26], but most of them concern the arteries and heart. There

has not been a well-established model for fibrotic connective

tissue. In addition, none of them seems to win unanimous sup-

port for arbitrary materials even if one of them is the most

employed in theoretical biomechanics. Comparing our exper-

imental data with models, we will make the simplest choice

possible for the constitutive laws that we will use in our

growth problem (see §5). We consider here the Gasser–

Ogden–Holzapfel model [27] (called G–O–H model hereafter),

and a more simple model presented first in reference [28], then

extended in reference [29] for cross-linked fibres. Very few

studies concern the stretch of cuboids, (except [30,31]) where

the three-dimensions are fully involved. Peng and Cao exper-

imentally examined the mechanics of woven composite fabrics

both in experimental uniaxial tests and numerical simulations

in two dimensions. Their experimental relationship between

force and stretch is very similar to the present study with fibre

breakage but indicates an ascending curvature at low stretch.

Annaidh et al. [31] have performed a similar experiment for the

dermis and propose a model for fully anisotropic three-dimen-

sional collagen distribution with the G–O–H model [27]. Note

that this model introduces only I4 and can be limited for strongly

anisotropic materials where the invariant I5 has to be introduced

[32,33]. The sensitivity of this coupling between invariants has

been the subject of theoretical works such as [34]. Here, we

take the viewpoint of the simplest model able to represent our

data with the minimal set of independent parameters knowing

that we are faced with fibre remodelling and breakage. First,

we consider well-defined cross-linked oriented bundles, then

we introduce dispersion and remodelling, and finally breakage.
4.1. An hyperelastic fibre model combined with
Monney – Rivlin model at fixed orientation

Let us begin with the CB model [28] with fixed orientation u0,

u0 being the angle between the fibres and the stretch direction

(X-axis).

WCB ¼
m1

2

X
j¼1,2

qjðfCe þ C�1
e � 2IÞ:ðEj � EjÞg, ð4:1Þ

where qj is the material parameter indicating the fibre

reinforcements along the direction Ej. For anisotropic

materials and an in-plane cross-linked fibre networks, these

parameters are a function of the density of fibres multiplied

by the strength of these fibres in the u0-direction. Assuming

that the main directions are symmetric with respect to the

X-axis with equal strength and density, we get

WCB ¼
q
2
m1 l2

1 þ
1

l2
1

� 2

� �
cos2 u0 þ l2

2 þ
1

l2
2

� 2

� �
sin2 u0

� �
,

ð4:2Þ
with anisotropy only determined by the orientation. This

orientation can be dispersed and can remodel with stretching,

inducing a decrease of u0. This will be considered in §4. As a

result of the lack of knowledge of a preferred orientation, we

take cos2 u0 ¼ sin2 u0 ¼ 1=2, which also corresponds to an

averaged fibre energy for a fully disorganized fibre network

and we find in this case

WCB ¼
q
4
m1 l2

1 þ
1

l2
1

þ l2
2 þ

1

l2
2

� 4

� �
, ð4:3Þ

which simply modifies the coefficients of the Mooney–Rivlin

contribution chosen for the ground matrix, making it stiffer.

The elastic density energy is then the sum of both energies

as WMR þWCB. In this case, the calculus of the force can be

achieved analytically and gives

F ¼ mA0

(
l1ð1þ r1ð1� TÞÞ � ðrþ r1ð1� TÞÞ

l3
1

þ rl4
1ðrþ r1TÞ � ð1þ r1TÞ

l2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrl2

1 þ r1T þ 1Þð1þ l2
1ðrþ r1TÞÞ

q
)

ð4:4Þ

with r1 ¼ qm1=m, (r1 being a dimensionless number charac-

terizing the strength of the fibre network), and T ¼ sin2 u0

which gives to leading order

F � mA0fC3ðl1 � 1Þ þ C4ðl1 � 1Þ2g ð4:5Þ

C3 ¼
3ðrþ 1Þ2 þ 4r1ðrþ 1Þ þ 4r2

1ð1� TÞT
1þ r1T þ r

and C4 ¼ �6ð1þ rþ r1ð1� TÞÞ

þ 3

2

ðrþ 1Þð2ð1þ rÞ þ r1Tð3� rÞ
ð1þ r1T þ rÞ2

9>>>>>>>=
>>>>>>>;

ð4:6Þ

As a necessary but not sufficient condition, the model

requires, C3 to be positive, because it is proportional to the

shear modulus. Problems can occur when r is negative but

only a negative r can allow a change in the sign of the

curvature (force versus stretch). Because C3 vanishes for

r+¼�1� ð2=3Þr1ð1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3Tð1� TÞ

p
, r can be negative

and smaller than –1, the limit of stability of the Mooney–

Rivlin model with fibres. Because we allow remodelling,

the sign of C3 will also change with T, so we must work in

a domain of parameters where C3 is always positive for any

value of T, 0 � T � 1. However, another limitation comes

from the fact that the force F can diverge. Indeed, looking

at equation (4.4), a singularity automatically occurs as soon

as r ¼ �ðr1T þ 1Þ=l2
1, which occurs for negative r values,

when we increase the stretching if the structure of the

sample persists. Of course, this range of parameters must

be eliminated if we keep this model.
4.2. Discussions on the parameters
In §4.1, we select the Mooney–Rivlin model for the ground

matrix, which explains the positive curvature of the curve

force versus stretch, the classical model (neo-Hookean)

being in favour of a negative curvature. If r1 ¼ 0, one recovers

C3 ¼ 3(1 þ r) and C4 ¼ 23(1 þ 2r) which seems to be ade-

quate if r . 21. The initial curvature is positive for

�1 , r , �1=2 and negative above –1/2, which allows our

data to be described with a single and simple model, chan-

ging only the coefficient r. Adding fibres increases the

mechanical stability of the model. Various results are plotted
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in figure 3 for fully disoriented samples and for various

orientations. In figure 3a, the force versus stretch exhibits

appropriate behaviour: the force remains positive with

increasing stretch and presents no singularity. In addition,

it exhibits both positive and negative curvatures according

to the r1 values. When T ¼ sin ðu0Þ2 ¼ 1=2, the possibility of

having a positive curvature is reached close to the lower

bound r2. Close to rþ, the initial curvature is negative.

Changing the orientation of fibres may give singularities of

the force showing that the validity of the model depends tre-

mendously on the coefficient. However, such behaviour

occurs in all the constitutive laws of soft tissues. Figure 3b
demonstrates the effect of fibre orientation. Indeed, these

calculations achieved at fixed orientation cannot explain

the effect of remodelling, because it is expected that the

fibres orient themselves in the direction of the stretch as it

increases. In the following, we examine fibre dispersion, the

remodelling that occurs during the experiment.
1

0
1.0 1.1 1.2 1.3 1.4 1.5 1.6

l1

Figure 3. (a) Force versus stretch along the first direction for a sample trea-
ted by Mooney – Rivlin biomechanical energy and fully disordered fibres in
the CB mode (T ¼ 1/2). The shear modulus is chosen as unit, r and r1

varies in order to change the curvature at the origin according to equation
(4.6). (b) Force versus stretch along the first direction for a sample treated
with Mooney – Rivlin biomechanical energy and oriented fibres. The shear
modulus is chosen as unit, r and r1 are fixed to give a priori a negative
curvature with r ¼ 20.85 and r1 ¼ 3, but the fibre orientation
T ¼ sin2 u0 varies.
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4.3. Fibre dispersion and remodelling
In the previous paragraph, the bundles of fibres are assumed

strictly oriented, symmetric to the stretched direction. For

simplicity, we consider an in-plane distribution of fibres

Eu ¼ cosðuÞEX þ sinðuÞEY dispersed around the orientation

Eu0 ¼ cosðu0ÞEX þ sinðu0ÞEY varying between u0 � p=2 and

u0 þ p=2, with the normalization condition

1

p

ðu0þ p
2

u0� p
2

gðu� u0Þdu ¼ 1: ð4:7Þ

For simplicity and the uncertainty of the mean orientation

u0, it is assumed that u0 ¼ 0, and

gðuÞ ¼ ð1� bÞ þ ba2=ð1þ a2 sin2 uÞ
ð1� bÞ þ ba2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p with

a ¼ aðl2
1 � 1Þ

ð4:8Þ

describing in-plane fibre distribution that is symmetric to the

stretched direction, with one part that remains fully disorga-

nized 1 2 b and a part, b that reorients in the direction of the

stretch as the experiment proceeds with increasing stretching

l1 . 1. The coefficient a is responsible for the remodelling

process, often considered as being a very slow process, a

being an efficiency parameter. The two-dimensional structure

tensor [27,31,34] is then given as follows

H ¼ 1

p

ðp
2

� p
2

gðuÞEu � Eu du ¼ kIþ ð1� 2kÞEX � EX, ð4:9Þ

where

k ¼ 1

p

ðp
2

� p
2

gðuÞ sin2ðuÞdu ¼ 2

p

ðp
2

0

gðuÞ sin2ðuÞdu: ð4:10Þ

Once the calculation of the structure tensor is performed, one

gets a diagonal tensor: H ¼ diagf1� k, kg, the k value

having the same significance as T ¼ sin2 u0 in the strictly

oriented case, but evolving with a ¼ aðl2
1 � 1Þ owing to

remodelling (reorientation) with the stretch. In figure 4, we

give an example of k choosing b ¼ 1, a ¼ 0.1, 1, 10 showing

the decrease of k from 1/2 to 0 as the stretching proceeds.

Corresponding results for force versus stretch are also given

in figure 4 to compare with the experimental results in

figure 2. However, the results disagree with the experiments,
so fibre remodelling decreases the sensitivity of the force to

large stretch values.
4.4. Breakage of fibres
Fibre breakage can be observed on our experimental curves

as small discontinuous jumps, which do not excessively dis-

tort the global tendency. Here, we aim to extend the fibre

model to breakage. Assuming that there is no breakage

before stretching, we will take H as the initial condition.

A fibre, oriented along Eu breaks if the stretch along this

direction is above a typical toughness value given by l � 1,

the same for each fibre such that breakage occurs if

l2
1 cos2 uþ l2

2 sin2 u . l
2
: ð4:11Þ

For stretching l1 . 1 . l2, equation (4.11) is equivalent to

u � u ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

l2
1 � l

2

l2
1 � l2

2

, 0

 !vuut : ð4:12Þ

Breakage occurs only if l1 � l. So the structural tensor

H depends on l1, l2 and l via �u by the following modified

formula

H�u ,u ¼
2

p

ðp=2

�u

gðuÞEu � Eu du, ð4:13Þ
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Figure 4. (a) Force versus stretch in a case of remodelling for values of the a
parameters. (b) Modification of the fibre orientation k as a function of the
stretch l1 in a case of remodelling according to different values of a.
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Figure 5. Fibre breakage: (a) F drops and increases slightly during further
stretches. (b) Lateral stretch l2 versus longitudinal stretch l1 when fibre
breakage occurs.
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which can be simplified to

H�u ,u ¼ diag{x� k�, k�}, ð4:14Þ

where

k� ¼ 2

p

ðp=2

�u

gðuÞ sin2ðuÞdu ð4:15Þ

and

x ¼ 2

p

ðp=2

�u

gðuÞdu: ð4:16Þ

Note that k* ¼ k and x ¼ 1 when �u ¼ 0, thus

Hu,u ¼ H ¼ diag{1� k, k} where we recover the remodelling

case.

x actually provides the overall strength of distributed

fibres left from breaking. When b ¼ 1, by equation (4.8),

x ¼ 1� 2 tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

tanð�u ÞÞ
p

ð4:17Þ

and

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

ðp� 2 �u Þ þ 2 tan�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p

tanð�u ÞÞ � p

p a2
:

ð4:18Þ

Note that when a ¼ 0 (no remodelling), we have

k� ¼ 1=2ðp� 2 �uþ sinð2 �u Þ=p. When �u . 0 and a! 1, we

have x! 0 and k! 0. When �u ¼ 0, we have x ¼ 1, regardless

of a. The corresponding modified CB model considering

dispersion and breakage is transformed into

WCB ¼
q
2
m1 l2

1 þ
1

l2
1

� 2

� �
ðx� k�Þ þ l2

2 þ
1

l2
2

� 2

� �
k�

� �
:

ð4:19Þ
For �u . 0, we can no longer solve l2 by cancelling t2 expli-

citly. So we numerically solve both l2 and F together as a

function of l1. When there is no breakage, the numerical

solver in MATHEMATICA is consistent with the analytical for-

mula in equation (4.4). See figure 5 for the existence of a

sudden drop in F followed either by a quasi-plateau or an

ascending curve according to the different values of the

breaking threshold l. It seems the remodelling parameter a

does not control the trend of F after breaking, and it is r1

and r that mostly controls the trend. So it is the ratio between

the fibre stiffness and the ground material that controls F after

breaking.
4.5. Exploration of the G – O – H model
From reference [31], we can see that the G–O–H model,

considering distributional fibres with the neo-Hookean

ground material, can reproduce the upward concavity of

the stress–strain curve. Although concavities of the stress–

strain and force–strain are not equivalent, we try to explore

what the G–O–H model can provide for our case. For

multiple families of fibres, we have

WGOH ¼
m

2
ðl2

1 þ l2
2 þ l2

3 � 3Þ þ Si
ki,1

ki,2
ðeki,2½Ce : H�1�2 � 1Þ

� �
,

ð4:20Þ

where ki,j’s are positive dimensionless stiffness parameters.

ki,1 is related to the stiffness of the fibres in the small strain

regime, whereas ki,2 is related to large strain-stiffening behav-

iour of the fibres [31]. This suggests that if the breaking is to

be considered at the yielding phase, it should only modify

ki,2, not ki,1. If we consider two families of fibres symmetric

to the stretched direction with the angle deviation +u0, as



0

–4

–6

0

40
C4

C4

C4

20

0

0

0.1

0.2

0.3
0

2

4

0

2

4

0.1

0.2
k

k

k

0.3

0

2

2

0

–2

4

k1

k1

k1

0.1

0.2

0.3
(b)

(a)

(c)

Figure 6. The initial curvature coefficient C4 deduced from the G – O – H
model, for orientation of the fibre perpendicular to the stretching direction
(u0 ¼ p/2) (a), randomly distributed u0 ¼ p/4 (b) and parallel to the
force u0 ¼ 0 (c) as a function of k1 and of the dispersion coefficient k
(according to the definition given in equation (4.21)). Note the extreme sen-
sitivity of this coefficient to k1, which is equal to C4 ¼ 23 for k1 ¼ 0 (neo-
Hookean value) and reaches C4 ¼ 45 for k1 ¼ 4, whereas for high levels of
dispersion, which coincides with k ¼ 1/3, we get C4 ¼ 23.
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in reference [31], we have

Wk1,k2,u0
¼ m

2

(
ðl2

1 þ l2
2 þ l2

3 � 3Þ

þ 2
k1

k2
ðek2½kðl2

1þl
2
2þl

2
3Þþð1�3kÞðl2

1 cos2 u0þl2
2 sin2 u0�1Þ�2 � 1Þ

)
: ð4:21Þ

The k coefficient gives the level of dispersion around the

direction fixed by u0. First, let us see what the model does

without breakage depending on k1 and k2. Let us calculate

the low stretch behaviour, because it may be very useful as

an indication of the parameter range for fitting. We consider

the three typical orientations, distributed along the stretched

direction u0 ¼ p/2, u0 ¼+p/4 and along the transverse

direction u0¼ 0 given different level of dispersion k. We

then calculate the initial stiffness C3 given with or without

dispersion and the initial curvature C4 (given here for k ¼ 0

for simplicity but plotted in figure 6), according to equation

(4.5). For u0 ¼ p/2, we have

C3 ¼
3þ 8ð1� 3kÞ2k1

1þ 2ð1� 3kÞ2k1

and C4 ¼
�3ð1þ 8k1 þ 2k2

1ð9þ 8k1ÞÞ
ð1þ 2k1Þ3

9>>>>=
>>>>;

ð4:22Þ

Note that for this orientation, C4, is always negative. For u0 ¼

p/4, we have

C3 ¼
6þ 4ð1� 3kÞ2k1

2þ ð1� 3kÞ2k1

and C4 ¼
3ð�8� 4k1 þ k2

1ð3þ 2k1ÞÞ
ð2þ k1Þ3

9>>>>=
>>>>;

ð4:23Þ

Note that for u0 ¼ p/4 the initial curvature of the force versus

stretch changes for k1 . 1.5265 from negative to positive. For

u0 ¼ 0 (orientation of the fibres along the forcing), we have

C3 ¼ 3þ 8ð1� 3kÞ2k1

and C4 ¼ �3þ 12k1:

)
ð4:24Þ

In this case, C4 changes sign from negative to positive for

k1 . 0.25. The effect of the dispersion is shown in figure 6,

which also demonstrates the extreme effectiveness of the

dispersion coefficient k on the C4 value. When the fibre orien-

tation is unknown, extracting any conclusion is difficult from

experimental tests. We also have tested the two-dimensional

G–O–H model in detail for fully in-plane fibre distribution.

Interestingly, this model gives the same coefficients C3 and C4

as the three-dimensional model when k ¼ 0.

We can easily apply fibre remodelling and breaking on

this model by considering the large strain stiffness parameter

k2 affected by x (from equation (4.16)). The overall strength of

distributed fibres after breakage reads

Wk1,k2,a,l ¼
m

2
ðl2

1 þ l2
2 þ l2

3 � 3Þ þ 2k1

k2x
ðek2 ½H�u,u : Ce�x�2 � 1Þ

� �
:

ð4:25Þ

Now, we have the remodelling parameter a (the same as in

equation (4.8)) and the breaking threshold l (the same as in

equation (4.11)) and we explore the effect of them on top of

k1 and k2. The remodelling of fibres (figure 7) contributes to

the increased sensitivity of the force to the stretch; however,
the breaking is probably more interesting and has to be com-

pared with the Mooney–Rivlin–CB fibre model. In figure 8,

we show the effect of breaking on the force versus stretch

in parallel to l2 versus the stretch l1. It is similar to applying

the Mooney–Rivlin–CB fibre model. One of the interesting

things is we may be able to identify fibre breakage from

remodelling in the experiment. Remodelling contributes to

more compression in l2 (shown in figure 8); however, break-

age contributes to an instant increase of l2 after breaking.

This may be caught during the experiment (figure 2).
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4.6. Comparison of the models for parameter
determination of the hyperelastic laws

In the previous theoretical study, we compared two different

fibre models and their ability to recover traces of our force–

stretch curve. Our main limitations are the finite size of our

surgical tissues and the lack of information of the orientations

inside the sample. Focusing on the simplest model, CB, the fit
obtained in figures 9a and 10a is satisfactory compared with

the most established three-dimensional G–O–H model,

which has added parameters such as the dispersion coeffi-

cient k. According to equation (4.6) and figure 3, the CB

model gives a positive curvature at low stretch for r , 20.5

and r1 � 0, which may correspond to a capsule of low

Baker grade with low fibre density. When the fibre density

increases with a well-defined organization, as for contracted

capsules [19], r1 increases and the curvature becomes nega-

tive. This model explains the main characteristics of our

biomechanical experiments well (figure 2a,b) with a change

of parameters, which physically corresponds to the histologi-

cal findings of Bui et al. [19]. In addition, we explored the

two-dimensional version of the G–O–H model, which is jus-

tified by the small thickness of the capsular tissue; however,

in this case, the fit was unsatisfactory. Our theoretical analy-

sis, however, proves the extreme sensitivity of the

parameters, especially for G–O–H, and the fact that the

orientation is unknown produces serious uncertainty regard-

ing the determination of the constitutive law of these tissues.

For the fit, we always take the orientation at u0 ¼ p/4. The

real advantage of the CB model is to provide an analytical

answer, and that remodelling and fibre breakdown can be

incorporated easily. To discriminate between the models, it

would be useful to have experimental information regarding

the transverse direction y because the models behave differ-

ently at breakdown. Both models show different lateral

contraction l2 (compare figure 5 and figure 8), which may

be experimentally verified in future studies. For the CB

model, unphysical singularity occurs for large stretching

for a set of parameters that are well behaved at low stretch.

However, at large stretches, the sample structure may

evolve via plastic deformation. These results, to the authors’

knowledge, however, are the first concerning fibrotic tissue

in human beings, and are enough to explain the problems

induced by an inflammatory reaction to implants. In §4.5,

we discuss the consequences of the growth of this capsule.
5. Evaluation of the stresses during capsule
formation

The capsule is the result of the growth of a thin layer of con-

nective tissue. In case of breast reconstruction, the fat and

gland tissues are eliminated, and the implant is covered

simply by the nascent capsule and skin. The capsule adheres

to the implant, having no possibility to slide or detach. As a

result, the growth process is mainly directed along the implant

along the normal, making the growth anisotropic and generat-

ing automatically compressive stresses. These stresses, which

appear in the tissue and the implant, are called passive.

They exist each time the growth is forced in a direction

owing to the implant and consist of a particular case of Biot

instability [35]. They also exist for an ordinary swelling process

of polymeric gel attached on a solid substrate as shown by

Tanaka [36] in pioneering works and, among others, [37–41]

(for a review see reference [42]). In addition, these stresses

induced a buckling of the growing layer that distorts the

implant. As mentioned, the implant has a semi-spherical geo-

metry with a radius of Ra ¼ 6.2 cm. The spherical geometry

protects the implant from stresses; however, as soon as the

sphericity is lost, deformation and stresses occur also in the

implant. For completeness, we evaluate the Young modulus
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Figure 9. Fitting values of the nominal stress in the CB model (a) and three-dimensional G – O – H model (b) corresponding to the experimental curves of figure 2a.
Coloured lines are experimental results, black dotted lines correspond to theoretical model with the best-fit parameters. Note the strong nonlinearities of the tissue
at low stretch values.
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Figure 11. Typical implant for evaluation of the Young modulus using com-
pression and the elastic Hertz contact theory.
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of our silicone implant by the method of Hertz contact [43]

(figure 11) and obtain 14.7 kPa. Although the theory concerns

Hookean elasticity, and silicone is mostly neo-Hookean, we

get a good fit, as shown by figure 12. Our stress estimation needs

to be compared with shear moduli for healthy breast fat, which

varies with the experimental technique between 2 kPa [44] up

to 20 kPa [45] and stiffens in the vicinity of lesions: 45.6 kPa

for benign one up to 146 kPa for malignant [46]. These results

have been derived with elasto-sonography in vivo. We aim

now to evaluate the stresses in the capsular tissue and perhaps

to evaluate the active stresses if any. Let us evaluate first the

radial deformation owing to growth.
5.1. The geometric and elastic deformation tensor
We consider a three-layered system with spherical symmetry

(figure 13). The implant having the shape of a cap of radius

Ra, the capsule occupies the space between Ra and Rb and

the thin skin layer the space between Rb and Rc. Because

of the presence of the fibres, the growth is assumed anisotropic

and the growth tensor is Fg ¼ diagðgr, grgu, grguÞ. gr represents

the relative growth in the radial direction, whereas gu is an aniso-

tropic coefficient, identical along meridians and parallels for

simplification. The relative volume increase JG is then given by
JG ¼ g3
r g2

u. In addition, the tissue can be prestretched because

of active cells and these stretches appear parallel to the implant

surface. The prestretch tensor is also a compressive one,

Fpt ¼ diagð1, Lu, LfÞ, so the deformation gradient becomes

F ¼ @x=@X ¼ FeFgF pt and the elastic tensor is then

Fe ¼
1

gr
diag

@r
@R

,
1

Lugu

r
R

,
1

Lfgu

r
R

� �
, ð5:1Þ

Note that both L0s are smaller than 1 in the case of a compres-

sive active stretch, which is expected here, as a spontaneous
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reaction of the immune system against the implant. The local

volume increase, JG, is larger than 1 when the capsule grows.

Owing to the hypothesis of incompressibility, which is valid

for living tissues and elastomers, det Fe ¼ 1, so

r2

R2

@r
@R
¼ JGLuLf ¼ J ð5:2Þ

with J ¼ 1 for the implant and also the skin. Focusing only on

the determination of the order of magnitude for the stresses

involved in the capsule formation, we restrict to a base

state of deformation, which respects the spherical geometry,

and we do not treat the full buckling of the capsule with

the implant. J represents a control parameter of the buckling

process, being a growing function of time if the pathology

persists. This full buckling instability is rather technical,

some examples can be found in reference [15] for the aniso-

tropic spherical case and in references [18,34] for the

cylindrical geometry. The evaluation of the threshold instabil-

ity given by the critical radial geometric stretch r/R is derived

via the solution of an eigenvalue problem involving the con-

trol parameters which are, here, the prestretch values and the

growth eigenvalues gr and gu. Restricting to the simplest

radial solution with an undeformed implant, with the cap-

sule expanding radially, we get the new position of the

layers which is

rðRÞ ¼
R 0 , R , 1

fJR3 þ ð1� JÞg1=3
1 � R � Rb

fR3 þ ðJ � 1ÞðR3
b � 1Þg1=3 Rb � R � Rc,

8><
>: ð5:3Þ

where r(R) is the new position of the layer, which was

initially at a radius R. r(R) respects the continuity at the

border zones. Each layer is very thin. In equation (5.3) and

in the following, the radius of the implant is chosen as the

length unit Ra.
5.2. Radial stresses
For simplicity, let us assume Lu ¼ Lf. In the spherical coordi-

nate system and in the current configuration, the equilibrium

equation for the Cauchy stress si ¼ lið@W=@liÞ � pi (i refers

to each layer) gives

r
dðsðiÞrr Þ

dr
þ 2ðsðiÞrr � s

ðiÞ
uuÞ ¼ 0, ð5:4Þ
which we can transform using the elastic stretch t ¼ r=ðGiRÞ
into

ds
ðiÞ
rr

dt
¼ Ai

ðAi � G3
i t

3Þ
Ŵ 0 ð5:5Þ

with Ai, the coefficient of R3 into equation (5.3): Ai ¼ J for the

capsule layer and Ai ¼ 1 both in the implant and the skin.

Gi ¼ Lugugr and Ai ¼ J for the capsule layer while Gi ¼ 1

for the implant and the skin. As in references [15,24], Ŵ
is the elastic energy density for incompressible material

Ŵ ¼Wðt�2, t, tÞ, function of a unique stretch eigenvalue, Ŵ 0

being its derivative with respect to the stretch t. This simplifica-

tion assumes transversely isotropy. In practice, the radius of the

implant (Ra ¼ 6.2 cm) is larger than the thickness of the layers,

of the order of millimetres, both for the capsule and the

dermis. So the relative thickness eb of the capsule and ec

the dermis are small dimensionless parameters giving

Rb ¼ 1þ eb, Rc ¼ 1þ eb þ ec in the reference configuration. To

fix the stresses, we begin with the skin and we impose at

the outer surface of radius,srrjRc
¼ 0, corresponding to mechan-

ical equilibrium. So the radial stress inside the skin layer (where

no distinction is made between epidermis and dermis) is then

given by

sðskinÞ
rr ¼ �

ðtc

t

1

1� ~t3
Ŵ 0

skin d~t: ð5:6Þ

Remember that Ŵ 0
skin is scaled by mskin the shear modulus

coefficient of the skin density energy and tskin is given by

tskin ¼
R3 þ ðJ � 1ÞðR3

b � 1Þ
R3

� �1=3

�1þ ðJ � 1Þð1

� 3eÞeb: ð5:7Þ

The skin is obviously stretched; however, the stretch differs

from 1 inside the skin by a second-order coefficient, because

e is the distance from Rb. So the compression of the skin is

given by

sðskinÞ
rr � 1

3
Ŵ 0

skin log
ðtc � 1Þ
ðt� 1Þ �Ŵ 0

skinðe� ecÞ: ð5:8Þ

Because e is a dimensionless number corresponding to the

radial position R – Rb divided by the implant radius Ra, we

recover the Laplace Law where the surface tension g can be

identified as Ŵ 0
skine=2 with e given now in international

units. For the growing capsule, we have

s
cap
rr ¼ s skin

rr jRb
�
ðtb

t

1

1� Lugut3
Ŵ 0

cap dt: ð5:9Þ

However, owing to the small thickness of this capsule com-

pared with the initial radius of curvature of the implant, we
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can estimate the elastic stretch inside the capsule to be

t � 1

grguLu

ð1þ ðJ � 1ÞeÞ: ð5:10Þ

In this limit of small thickness, t is close to a constant inside

the capsule, being given by tcap ¼ 1=ðgrguLuÞ. It is to be noted

that in practice it is difficult to estimate these factors indepen-

dently and only t�1
cap can be estimated. The radial stress is then

s
cap
rr ¼ s skin

rr jRb
þ 1

grguLu

JŴ 0
capjt¼tcap

ðe� ebÞ: ð5:11Þ

The capsule remains rather thin except for very advanced

cases, with a thickness that varies from half a millimetre

(corresponding to Baker grade I) to 2 or 3 mm (for Baker

grade III), which remains small compared with a radius of

curvature of order 6 cm, for the implant. Again, the radial

stress scales as the thickness of the layers. Finally, in the

implant, a radial stress exists at the border given by

s
imp
rr ¼ s

cap
rr je¼0, but our radially symmetric solution does

not treat implant deformation. Nevertheless, for a layer

size that doubles from grade I to grade III, a buckling of

the layers occurs as shown in [12,15], the hoop stress

being compressive. So now, we evaluate this quantity in

each layer.
5.3. Layer-by-layer evaluation of the order of
magnitude for radial and hoop stresses

In each layer, in radial geometry, we have

suu ¼ sff ¼ srr þ
t

2
Ŵ 0: ð5:12Þ

For the skin, taking into account equations ((5.7) and

(5.8)), we obtain

s skin
uu �Ŵ 0

skinjt¼1
e� ec þ

1

2

� �
: ð5:13Þ

This calculation assumes that there is no proliferation of

dermal skin induced by this tensile state, which is probably

not true. This point will be discussed later. In the capsular

tissue, we have

s
cap
uu ¼ s skin

rr jRb
þ tcapŴ 0

capðJðe� ebÞ þ
1

2
ð1þ eðJ � 1ÞÞ, ð5:14Þ

with tcap ¼ ðgrguLuÞ�1 and Ŵ 0
cap being defined for t ¼ tcap

value, which is smaller than 1. So the stress is compressive. It

is important to note that the hoop stress is quite independent

of the relative thickness of the layer.
5.4. Stresses, buckling and pain
Here, we aim to estimate the mechanical stresses during fibro-

sis. Between a capsule of size 0.5 mm, a size we take as the

initial condition, to a capsule of 2 mm, the size is multiplied

by 4, which is above the stability limit of a spherical layer

according to [12,15]. Indeed, the threshold for buckling instabil-

ity is of the order of 1.5 for gr for a stiff substrate and decreases

when the substrate is much softer than the layer. We can surely

claim that in grade III, we are above the stability of the spheri-

cal symmetry and the whole system will buckle. In addition,

our mechanical tests indicate that the tissue itself becomes

more and more stiff, the stiffness being confirmed clinically,

as part of the diagnosis. Nevertheless, it is interesting to
evaluate the stresses involved, which manifest themselves by

deforming the breast and implant, explaining the pain, and

occasionally, the rupture of the implant. Let us begin with

the skin. There are few data on the skin, including the

dermis, in vivo. Here again, the thickness involved is of

the order of millimetres. The Langer lines [31], which give

the main orientation of the collagen inside the dermis of the

skin, can be assumed along parallels and meridians at the

level of the breast. Although we know that the skin’s elasticity

varies a lot along the body, we are not aware of a study of the

skin at the level of the breast, for young women. In reference

[31], a very precise analysis comprising biopsies, traction

measurements and modelling was performed, confirming

that the Langer lines of surgeons correspond to the main orien-

tation of the collagen fibres of the dermis and the G–O–H

model was shown to correctly represent the skin’s elasticity

in a range of traction identical to our traction test. The structural

parameters were evaluated with the coefficients mskin ¼

0.2014 MPa, k1 ¼ 243.6 and k2 ¼ 0.1327, whereas the dispersion

coefficient k ¼ 0.1404. The skin is stretched by the growth of

the capsule. Keeping the G–O–H model of the skin [31], we

find sskin
uu � mskin=4 so the tension is 50 kPa. This number can

be overestimated, however, because it assumes no cell pro-

liferation. Being under tension, so under the homeostatic

threshold, skin can grow to relax this tensile effect. In the cap-

sular tissue, t is a quantity that is significantly smaller than 1

and we will choose 1/2 as an appropriate estimation. Taking

this value, we derived s
cap
uu ¼ ð1=32Þmcapð505þ 126rþ 285r1Þ.

In the examined cases, we obtain a compressive stress varying

between 7 and 10 MPa. This estimation is several orders of

magnitude higher than the values of breast fat and may explain

the sensation of stiffness of the capsule, the discomfort and the

pain induced by nerve compression.
6. Conclusion
Here, we present a biomechanical study of the contracture

of the breast capsule at different degrees of fibrosis. A

tensile test experiment of thin samples obtained a few

hours post-surgery enables the detection of two different con-

stitutive laws that comply with the clinical classification.

Baker grade I samples seems to present more anisotropy

owing to well-oriented fibres, with breakage of the weakest

filaments as the stretch increases. Baker grade III samples

are stiffer; however, the orientation effect seems to be lost,

indicating perhaps an increase in the internal disorder. The

experiment covers stretch values of 1.6 corresponding to an

elongation of 60%. We test two models of cuboid fibrotic tis-

sues under tension with the difficulty that these models,

although common in the literature of biomechanics, exhibit

singular behaviour at large strains for part of the range of

the parameters which is difficult to predict a priori. However,

an estimate of the parameters corresponding to our results is

possible, allowing estimation of the stresses. Our conclusion

is that the contracted tissue is stiffer in the normal capsule

(grade I) and severe capsule (III/IV) compared with the stiff-

ness of the implant and the fat of the breast. This explains the

discomfort if the fibrotic tissue grows as a result of the

inflammatory reaction. In addition, a buckling instability is

expected, beginning at grade III, leading to painful distortion

of the implant (grade IV), unaesthetic appearance and some-

times implant rupture. This is also explained by the ratio



rsif.royalsocietypublishing.org

13
between the shear modulus of the implant and the contractile

hoop stress of 3%. The existence of active cells (myofibro-

blasts) can also be suspected at grade III/IV. However,

several tests done on the samples with arbitrary cuts as

performed in references [5,6] do not reveal the existence

of pre-stresses. Pre-stretches are automatically included in

the model, whereas pre-stresses can be introduced following

the analysis of reference [17]. The study of fibrous tissues as a

consequence of the immune system and inflammatory

response is not limited to capsular contracture and may be
applied to other disease entities such as cancer and severe

obesity for example. Future work will concern more

advanced critical contractors and the relation between the

structure at the microscopic scale and the constitutive elastic

laws valid at macroscopic scales.
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