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Abstract

Background Prominent studies continue to measure the

hospital volume-outcome relation using simple logistic or

random-effects models. These regression models may not

appropriately account for unobserved differences across

hospitals (such as differences in organizational effective-

ness) which could be mistaken for a volume outcome

relation.

Objective To explore alternative estimation methods for

measuring the volume-outcome relation for six major

cancer operations, and to determine which estimation

method is most appropriate.

Methods We analyzed patient-level hospital discharge

data from three USA states and data from the American

Hospital Association Annual Survey of Hospitals from

2000 to 2011. We studied six major cancer operations

using three regression frameworks (logistic, fixed-effects,

and random-effects) to determine the correlation between

patient outcome (mortality) and hospital volume.

Results For our data, logistic and random-effects models

suggest a non-zero volume effect, whereas fixed-effects

models do not. Model-specification tests support the

fixed-effects or random-effects model, depending on the

surgical procedure; the basic logistic model is always

rejected. Esophagectomy and rectal resection do not

exhibit significant volume effects, whereas colectomy,

pancreatic resection, pneumonectomy, and pulmonary

lobectomy do.

Conclusions The statistical significance of the hospital

volume-outcome relation depends critically on the regres-

sion model. A simple logistic model cannot control for

unobserved differences across hospitals that may be mis-

taken for a volume effect. Even when one applies panel-

data methods, one must carefully choose between fixed-

and random-effects models.
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Key Points for Decision Makers

We illustrate (i) how to apply the fixed-effects and

random-effects regression frameworks and (ii) how

to determine which regression framework is most

appropriate for given data.

We find that both random-effects and fixed-effects

model are more appropriate than a simple logistic

model for measuring the volume-outcome effect. For

four operations, the random-effects model is

sufficient. However, for two operations, the fixed-

effects model is more appropriate.

Policy makers who may be considering the

centralization of complex operations to improve

patient outcomes may falsely conclude that a

volume-outcome relation exists, if decisions are

based on analysis from simple logistic models.

Implementation of panel-data methods (like the

fixed-effects and random-effects frameworks)

following the example in this paper may lead to more

reliable policy recommendations.

1 Introduction

For years, numerous studies have asserted a positive cor-

relation between hospital or surgeon volume and patient

outcome. Halm et al. [1] systematically reviewed over 130

volume-outcome studies, approximately 70 % of which

found a significant volume effect. Halm et al.’s review was

published in the Annals of Internal Medicine, and the

majority of volume-outcome studies have also been pub-

lished in clinical journals. Based on findings such as these,

many researchers and policy groups advocate centralizing

procedures at a small number of hospitals, in order to take

advantage of the volume effect [2].

The majority of volume-outcome studies to date use

simple regression models, such as basic logistic regressions,

that ignore omitted-variable bias. This approach potentially

leads to spurious conclusions and improper policy recom-

mendations. For example, suppose that certain large-vol-

ume hospitals are particularly effective at organizing

surgical teams that reduce complications. A regression that

does not control for organizational skill will find a positive

association between hospital volume and patient outcome.

However, it is organizational expertise, not higher hospital

volume, that drives improved patient outcomes.

Panel data sets provide means to help control for

omitted-variable bias, specifically via the fixed-effects and

random-effects1 regression frameworks. Both frameworks

control for time-invariant heterogeneity, i.e. unobserved

fixed factors that differ across hospitals. The random-ef-

fects framework does this under the assumptions that this

heterogeneity is uncorrelated with the other explanatory

variables and follows a known distribution. The fixed-ef-

fects framework is more general, allowing correlation with

other explanatory variables and making no parametric

assumption about the distribution.

The tendency to use basic logistic models when esti-

mating the volume effect continues to this day. Searching

Google Scholar and PubMed with keywords ‘‘volume-

outcome relationship’’ for publications from 2008 to 2013,

we located 87 peer-reviewed studies. Only 11 employed

panel-data methods, and only three used fixed-effects

models. In addition, studies using fixed-effects and ran-

dom-effects models often fail to validate that the assump-

tions underlying these frameworks are satisfied by the data.

These publication trends are not limited to smaller journals:

for example, the New England Journal of Medicine in

2010, 2011, and 2013 published studies on the volume

effect that do not explicitly consider fixed-effects models

[3–5].

Cancer procedures are of particular interest regarding

improved outcome and efficiency. According to the

American Cancer Society, cancer is the second-leading

cause of death in the USA, ‘‘accounting for nearly one of

every four deaths’’ [6]. In addition to the human toll, the

National Institutes of Health estimates that cancer cost the

US economy approximately US$86.6 billion in direct

medical costs in 2009 and US$130 billion in lost produc-

tivity due to premature death [6].

Previous research on the volume-outcome relationship

in cancer procedures is conflicted. The survey by Halm

et al. [1] mentions that nine of ten studies on pancreatic

cancer and three of three studies on esophageal cancer find

a significant volume effect at the hospital or surgeon level.

Several recent clinical studies, dating from 2008 to 2012,

report similar findings [4, 7–10]. However, Lapar et al. [11]

finds no significant association between hospital procedure

volume and patient mortality for several surgical proce-

dures, including pancreatic and esophageal resection.

This study addresses three major questions. First, does a

volume effect exist in any of six major cancer resection

procedures? Second, how does the regression framework

used affect this answer? Third, for a given data set, which

regression framework is most appropriate? To address

these questions, we analyze a 12-year panel data set of

hospital-discharge data of patients who underwent one of

six cancer procedures. We fit the data for each of these

1 In this paper, ‘‘random-effects model’’ means a model whose

intercept includes a random effect.
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procedures to basic logistic, fixed-effects logistic, and

random-effects logistic regressions. We could have taken a

different approach, using Monte Carlo simulation to gen-

erate samples with and without volume-outcome effects

and testing whether each of the three estimation approaches

correctly identify the presence or absence of a relationship

between procedure volume and outcomes. We chose

instead to focus on an application involving actual clinical

data. This approach is more relevant to clinicians and

policy makers, who are most likely to shape future deci-

sions on whether or not to centralize complex care.

2 Previous Literature

The vast majority of studies dealing with binary patient

outcomes such as mortality employ a simple logistic

regression framework. A few studies have used the ran-

dom-effects model [3, 12–16]. However, most studies

using the random-effects model do not check whether their

data satisfy the assumptions of the random-effects model,

nor do they test alternative model specifications. Moreover,

most do not discuss omitted-variable bias as justification

for their model choice.

The fixed-effects regression framework uses the varia-

tion within a group to exclude omitted-variable bias from

time-invariant factors [17]. With a few exceptions [18–20],

the fixed-effects model is rarely used in the volume-out-

come literature. However, previous research confirms that

controlling for unobserved heterogeneity by using a fixed-

effect model can yield drastically different results. In a

study of child immunization in China, Xie et al. [21] uses a

fixed-effects model to control for community- or house-

hold-level time-invariant characteristics, rendering

insignificant what appeared to be a significant effect of

wealth. In a study of hip-fracture patients, Hamilton et al.

[22] also find that a significant volume effect disappears

when using a fixed-effects model.

It is crucial for researchers to correctly measure volume-

outcome effects, because there are potential unintended

consequences of centralization. Kessler et al. [23] and

others have shown that hospital competition tends to

enhance patient welfare. Centralization typically reduces

the competitiveness of healthcare markets. It is not clear a

priori whether the benefit (if any) from a volume effect

would outweigh the welfare loss associated with reduced

competition.

In his seminal 1979 paper identifying an empirical

relation between surgical volume and mortality for 12

different operations, Luft et al. [24] cautioned that the

observed volume-outcome association could be

attributable to selective referral; more patients may be

drawn to hospitals that have better outcomes. More

recently, economists have applied instrumental variables

analysis to distinguish between volume driving patient

outcomes (a learning by doing effect), versus better out-

comes leading to higher volume (selective referral). In

these studies, distance to providers or the number of

patients and other hospitals within close vicinity of a par-

ticular hospital are used as instruments for hospital volume

that are unlikely to be confounded by selective referral [25,

26]. These studies find that the proposed instruments are

valid predictors of hospital volume. Hypothesis tests also

reveal no evidence for selective referral. Another paper

conducts hypothesis tests for the exogeneity of hospital

volume in explaining patient mortality and finds no evi-

dence that the volume-outcome relation is the result of

selective referral [27].

Given that past studies that test for patient selection in

the volume-outcome relation find no evidence of selective

referral, we chose not to apply instrumental variables

analysis in this paper. Instead, we focus on comparing

random- and fixed-effects models. The majority of clini-

cians consult clinical journals when they seek to learn

whether a volume-outcome relation exists for a particular

operation [1, 28]. And the overwhelming majority of

clinical studies apply a simple logistic regression to test for

a volume-outcome relation, while most of the rest apply

random-effects analysis. Estimation with fixed effects can

be readily applied to the same data sets that have been

analyzed in these published studies. It is critical for clini-

cians and policy makers to know whether failing to control

for potentially systematic but unobservable differences

between high- and low-volume hospitals can yield mis-

leading conclusions regarding the presence of a volume-

outcome effect.

3 Methods

3.1 Study Population

We use hospital-discharge data from Florida, New Jersey,

and New York for the 12 years 2000–2011, containing all

patients discharged during this time.2 Based on previous

literature [29], we selected patients with an International

Classification of Diseases 9th Revision, Clinical Modifi-

cation (ICD-9-CM) cancer diagnosis and a principal pro-

cedure code for colectomy, esophagectomy, pancreatic

resection, pneumonectomy, pulmonary lobectomy, or rec-

tal resection. We apply three additional inclusion criteria:

the patient was 21 years or older at admission, the patient

was not transferred to another hospital (as opposed to being

2 All data were obtained from the respective states’ Departments of

Health.
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discharged home or to a rehabilitation hospital, or died

during the hospital stay), and the patient was successfully

matched with hospital-level data from the American

Hospital Association (AHA) Surveys.3 Because the state-

level discharge data do not provide a persistent patient-

specific identifier, we could not control for multiple

admissions of the same patient within a year. However,

analysis suggests that this problem, if present, is negligi-

ble.4 Annual hospital-level data were obtained from the

AHA Surveys, 2000–2011.

3.2 Variables

Our outcome measure is in-hospital mortality. To define

hospital volume, we compute the total number of patients

treated by each hospital for each procedure within each

year. Volumes are computed before applying inclusion

criteria to avoid endogeneity.5 Hospital-specific charac-

teristics for each year include total facility expenses, full-

time-equivalent physicians, ownership status, teaching

status, and urban status. Patient characteristics include

admission status, age, cancer stage, Elixhauser co-mor-

bidities, race, and sex.

3.3 Statistical Analysis

For each procedure, we fit three models with cluster-robust

standard errors: logistic, conditional fixed-effects logistic,6

and random-effects logistic. For each model, the log odds

of mortality is regressed on patient characteristics, hospital

characteristics, and indicator variables for each subproce-

dure (if any) and year.

In fitting the fixed-effects model, estimating an indicator

variable for each hospital would lead to inconsistent esti-

mates, known as the incidental-parameters problem. To

avoid this, we use the conditional logistic distribution

suggested by Chamberlain [30]. By conditioning the like-

lihood function on the sum of the dependent variables, a

sufficient statistic, we obtain a conditional likelihood

function that does not depend on the hospital indicator

variables.7 Thus, to fit the fixed-effects model, we do not

have to estimate the hospital indicator variables, allowing

us to avoid the incidental-parameters problem. In Stata, this

approach is effected by the -clogit- command.

Two aspects of our analysis merit brief discussion. First,

we do not include surgeon fixed effects. The cancer pro-

cedures analyzed here typically have very low surgeon

volume: the median surgeon volume, summed over the

12-year sample period, ranged from one (esophagectomy)

to seven (lobectomy). As one might expect with such low

volumes, the percentage of surgeons having nontrivial

variation in outcome (i.e., at least one patient survives and

does not survive the operation during the sample period)

does not exceed 15 % in any of the surgical procedures;

these surgeons account for no more than 25 % of obser-

vations in the respective procedure. Because the fixed-ef-

fects model uses only within-group variation, including

surgeon fixed effects would have required discarding more

than 75 % of the data.8

Second, we run each model specification both with and

without a surgeon-volume variable.9 Most existing studies

of the hospital-level volume effect omit surgeon volume, so

to facilitate comparison, we focus on results from the

regressions without surgeon volume. This specification

risks misattributing a surgeon-level volume effect to the

hospital level. For our data, the main findings are robust

under both specifications.

3.4 Model Specification Tests

After fitting the three models, we perform model-specifi-

cation tests. To compare the fixed-effects and random-ef-

fects models, one typically uses the Hausman test.

However, the standard Hausman test is invalid for clustered

data [33]: the clustered structure causes the error terms of

observations in the same group not to be independently

distributed, which in turn implies that the random-effects

estimator is not efficient. Several alternative approaches

have been proposed; we adopt the approach proposed by

Mundlak [34]. We briefly present this approach in the

linear setting, for simplicity. (The extension to the
3 Patients under the age of 21 years are dropped to avoid issues

arising from different patterns of cancer treatment for children and

adults. Transfer-out patients are dropped to avoid endogeneity issues.

For each procedure, less than 0.5 % of patients were unlinked to

hospital-level data.
4 Specifically, for each procedure and within each year, we count the

number of observations whose age, sex, and state agreed (an estimate

for an upper bound on the number of multiple admissions). The

maximum number of duplicate patients is at most 0.10 % of a

procedure’s sample; see Appendix 2 in the Supplemental Material.
5 Surgeon volume, used in some robustness-check specifications, is

defined analogously.
6 The conditional likelihood function, introduced in [30], avoids the

incidental-parameter problem.

7 See section 17.4.4 in Greene [31].
8 If surgeons perform all or nearly all of their procedures in a single

hospital, then including both hospital and surgeon fixed effects in a

regression will cause problems of multicollinearity. In this case, if

identifying both effects is important, one can use a two-way nested

model: e.g., a fixed term for the hospital effect and a random term for

the surgeon effect. See Schielzeth et al. [32].
9 Because surgeons can perform procedures across multiple hospitals,

an ideal setting would account for correlation of error terms at both

the hospital and physician level. Stata does not currently appear to

handle clustered standard errors under multi-level clustering. Due to

this limitation, in our models we implement cluster-robust standard

errors at the hospital level only.
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nonlinear case is similar) [31]. In our study, we apply this

approach within the logistic framework.

Consider nested panel data (patients, indexed by i, are

clustered within hospitals, indexed by j, which are

observed over time t), and the basic linear regression model

Y ¼ Xbþ e:

We assume that the error term eijt can be decomposed

into

eijt ¼ cj þ dt þ uijt

where cj is a constant capturing time-invariant unobserved

characteristics of hospital j, dt is a time fixed effect, and uijt
is the error term associated with patient i in hospital j at

time t. The random-effects model assumes that cj is

uncorrelated with the other regressors Xijt. This assumption

allows us to treat cj as a random variable conditional on

Xijt. If the unobserved characteristics cj are correlated with

the other regressors, then the estimates of the random-ef-

fects model are inconsistent. The fixed-effects model

makes no assumption about the correlation between cj and

the other regressors; in particular, they are allowed to be

correlated.

Mundlak [34] proposes the following approach. Let Z be

the subset of hospital-specific variables in X. For each

hospital j, we take the time average of the observed hos-

pital characteristics, �Z ¼ 1
T

PT
t¼1 Zjt, and include these

averages in the random-effects model, obtaining

Y ¼ Xbþ �Zcþ e: ð1Þ

Under the assumption that

E cjjZj
� �

¼ �Zjc ð2Þ

c = 0 implies that cj and Zj are uncorrelated.
10 Empirically,

then, fitting model (1) and performing a significance test on

c gives us a way to compare the fixed-effects and random-

effects models: A c significantly different from zero

implies that the noncorrelation assumption underlying the

random-effects model fails to hold. In this case, the fixed-

effects model is preferred.

We compare the fixed-effects and pooled logistic mod-

els by fitting a seemingly unrelated regression. Let b and ~b

denote the coefficients of the fixed-effects and pooled

logistic models, respectively. We estimate Cov b; ~b
� �

via a

seemingly unrelated regression assuming correlation of the

error terms in the two models, then use this result to

compare Var b� ~b
� �

via its expansion Var bð Þ þ Var ~b
� �

�
2Cov b; ~b

� �
: This variance is used to construct the usual

Wald-type test statistic for comparing two models.

4 Results

4.1 Descriptive Statistics

After applying the three inclusion criteria in section 3.1,

we obtained 164,804 cancer patients hospitalized for

colectomy, 4827 for esophagectomy, 14,246 for pancreatic

resection, 5043 for pneumonectomy, 54,448 for pulmonary

lobectomy, and 36,046 for rectal resection.11 Table 1 pro-

vides descriptive statistics for these data.

The average patient age is between 63 and 71 years. The

racial composition is 76–86 % White, 4–11 % Black,

5–9 % Hispanic, and 5–9 % other. Females comprise

roughly half of the patient population for all procedures

except esophagectomy (19.35 % female) and pneumonec-

tomy (36.51 % female). The percentage of patients with

nodal cancer is 16–40 %; the percentage of patients with

metastatsized cancer is 7–28 %. Counting hospitals in

different years as unique (to allow for changes in hospital

status), public ownership ranges from 10 to 15 %, and

teaching status ranges from 16 to 42 %.

The fixed-effects framework estimates the volume-out-

come relationship using only within-hospital variation,

ignoring variation across hospitals. If most hospitals

experience little volume variation over the sample period,

one will obtain noisy estimates. Figures 1 and 2 present

measures of within-hospital variation in volume for our

data. The coefficients of variation plotted in Fig. 1 show

the relative size of standard deviation and mean volume

within each hospital. In general, these coefficients of

variation are around 0.5; that is, a given hospital tends to

have a standard deviation equal to about half its mean. The

histograms of absolute deviation from mean hospital vol-

ume (computed separately for each hospital) in Fig. 2 show

that for all procedures, our data have relatively good cov-

erage of deviations between 0 and the sample mean (i.e.,

the mean volume over all hospitals). Moreover, for these

procedures, we observe a reasonable number of deviations

greater than the sample mean. Using Stata’s -xtsum-

command, we find that the within-hospital variation is at

least 29 % for each of the six procedures.12 These results

suggest that our data possess sufficient within-hospital

variation to allow us to credibly fit the fixed-effects model.

10 Given c ¼ 0 and (2), the law of iterated expectations and the

definition of correlation yield the stated result.

11 Before the three inclusion criteria in 3.1 were applied, the number

of patients for each procedure was as follows. Colectomy: 165,729;

esophagectomy: 4854; pancreatic resection: 14,357; pneumonectomy:

5065; pulmonary lobectomy: 54,620; rectal resection: 36,199.
12 The exact within-hospital variations for each procedure are as

follows: Colectomy: 30.11 %; esophagectomy: 37.92 %; pancreatic

resection: 33.88 %; pneumonectomy: 43.75 %; pulmonary lobec-

tomy: 29.60 %; rectal resection: 37.39 %.
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4.2 Regression Models and Analysis

Coefficient estimates for the explanatory variables in all

three regressions (basic logistic, fixed-effects, and random-

effects) for each procedure are in the Supplementary

Material. Neither teaching status nor public ownership

appear to significantly affect in-hospital mortality. All

regression frameworks find the probability of mortality

increases with age. The regressions reveal a small number

of significant correlations between race and mortality, but

no clear trend emerges either within or among procedures.

Cancer stage is significantly correlated with an increased

Table 1 Descriptive statistics

Variable Colectomy Esophagectomy Pancreatic

resection

Pneumonectomy Pulmonary

lobectomy

Rectal

resection

Number of patients 164,804 4827 14,246 5043 54,448 36,046

Length of stay (mean), days 10.21 16.74 15.67 8.92 8.41 9.31

Mortality (mean), %

2000

Small 8.20 13.89 14.94 15.23 7.00 0

Medium 3.67 10.71 10.10 5.88 4.22 1.98

Large 2.50 5.56 4.44 10.20 2.33 0.93

2011

Small 2.48 9.38 2.27 5.88 4.44 2.52

Medium 2.37 14.29 8.33 2.56 3.15 2.14

Large 1.96 0 5.41 17.39 0 1.19

Number of hospitals 520 235 377 343 425 500

Publicly owned, % 10.66 14.06 14.27 11.33 10.06 10.29

Teaching hospital, % 16.89 41.11 30.23 27.16 20.43 18.25

Volume (hospital)

2000–2011

Meana 27.94 2.60 3.93 2.02 11.51 6.67

Std deva 7.02 1.41 1.97 0.94 4.22 2.86

2000

Mean 33.10 3.48 4.28 2.87 12.58 9.06

Max 198 56 126 42 304 151

2011

Mean 27.76 6.00 9.44 2.67 15.46 6.54

Max 238 87 149 17 263 122

Age (mean), years 70.65 63.41 65.77 63.31 67.61 66.20

Race

Black, % 10.79 4.58 9.09 5.97 6.13 7.52

Hispanic, % 8.11 6.86 8.67 5.61 5.02 8.41

White, % 76.88 85.91 76.82 83.98 85.00 78.74

Other, % 6.84 5.84 8.73 6.96 5.87 8.17

Sex, female, % 52.76 19.35 49.33 36.51 51.83 43.09

Stage of cancer

Nodal, % 27.35 29.58 36.21 39.90 16.90 25.33

Metastasized, % 18.22 8.89 27.54 15.45 7.85 14.38

The mortality measure used is in-hospital mortality, i.e., a discharge code of 20 in the hospital-discharge data. For this table, we define ‘‘small,’’,

‘‘medium,’’, and ‘‘large’’ hospitals using quartiles within the given year: small hospitals are defined as those that fall in the lowest quartile;

medium hospitals, in the middle two quartiles, and large hospitals, in the highest quartile. ‘‘Number of patients’’ excludes patients less than

21 years of age at the time of admission, transfer-out patients, and patients unmatched to hospital-level data
a The mean and standard deviation presented here are computed by first computing the mean and standard deviation of volume within each

hospital, then taking the mean of these values over all hospitals in the sample (with each hospital receiving equal weight)
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probability of mortality for only half of the procedures

studied here (metastatic: colectomy, pulmonary lobectomy,

rectal resection).

Of particular interest are the coefficients on hospital

volume and their discrepancies among the regression

frameworks. The estimates for the hospital volume variable

are presented in Table 2. For all procedures except

esophagectomy (for which all regression models find no

significant volume effect), the logistic and random-effects

regressions find a volume effect with p\ 0.05 or better.

The direction of this effect is consistent with previous

findings in the literature: higher volume is correlated with

lower mortality. In contrast, the fixed-effects regressions

find no significant volume effect in any of the procedures.

Given the differences between models, we implement

the two specification tests described above. In Table 3, the

first test compares the fixed-effects and random-effects

models: we run the regression proposed by Mundlak [34],

followed by a test of the null hypothesis that all mean

variables of hospital characteristics are jointly zero. In this

case, rejection of the null hypothesis favors the fixed-ef-

fects model. For two of the six procedures—esophagec-

tomy and rectal resection—we reject the null hypothesis

with p\ 0.0132 and p\ 0.0163, respectively. The second

test assesses unobserved heterogeneity by comparing the

logistic and fixed-effects models: we first run a seemingly

unrelated regression using the two models, implemented

via Stata’s -suest- command, followed by a test of the null

hypothesis that the coefficients of all variables common to

both models are identical. For all six procedures, this test

strongly rejects the null hypothesis: for colectomy,

p\ 0.0037, and for the other five procedures, p\ 0.0001.

These results imply that the hospital-specific indicator

variables introduced by the fixed-effects framework cap-

ture relevant unobserved heterogeneity.

As shown in Table 2, the standard errors on the hospital-

volume variable in the fixed-effects regressions are typi-

cally within one to two times the magnitude of those in the

random-effects regressions. Note also that the point esti-

mates of the volume coefficient move closer to zero (typ-

ically twice as close to zero) in the fixed-effects regression

compared to the random-effects regression. This suggests

that the absence of significant volume effects in the fixed-

effects models is not due to insufficient within-group

variation.

We conclude that, of the three regression frameworks

analyzed here, the fixed-effects framework is most appro-

priate for esophagectomy and rectal resection, while the

Fig. 1 Coefficient of variation for hospital volume (within-hospital).

For each hospital, the coefficient of variation is computed by dividing

the standard deviation of volume for the hospital by the hospital’s

mean. The values are plotted here as histograms. See Appendix 4 in

the Supplemental Material for quantiles of hospital volume for each

procedure
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random-effects framework is most appropriate for the other

four procedures. In particular, this implies that we find no

significant volume effect for esophagectomy and rectal

resection. These two procedures have comparable sample

sizes to other surgical procedures studied here, so this

result does not seem to be a product of insufficient data.

Similarly, neither the in-hospital mortality rate nor the

magnitude of the volume coefficient in these two proce-

dures differs drastically from those in the other procedures.

4.3 Robustness Checks

We subject our findings to several robustness checks. To

investigate the possibility that the volume effect is

Fig. 2 Absolute deviation from mean of hospital volume (within-

hospital). For each hospital, for each year the hospital is active (i.e.,

performs at least one surgery) we compute the absolute value of the

difference between the hospital’s yearly volume and its mean over the

12-year period. We plot all results here as histograms. The mean

hospital mean volume, aggregated over all hospitals (counting each

hospital once), is plotted in red. For each procedure, the bottom plot

zooms in on small values of the vertical axis, offering a better view of

the right tail
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nonlinear, we fit the regression models using linear splines

with four knots (see Appendix 1 in the Supplemental

Material). In almost all cases, no statistically significant

difference is found between slopes in adjacent regions; in

addition, in all cases, the coefficient of the highest-volume

region is not significantly different from the coefficient of

the lowest-volume region. These results indicate no con-

cavity, suggesting that our linear specification of volume is

reasonable.

Despite this absence of concavity, as an additional check

we fit the regression models using the square root of hos-

pital volume, following Seider et al.13 The results corre-

spond closely to those of the main analysis in Table 2. In

particular, for rectal resection, model specification tests

continue to favor the fixed-effects framework, which does

not find a volume effect, over the random-effects frame-

work, which does. We also fit the regression models

including a surgeon-level volume variable. Again we

observe discordant findings for volume among the speci-

fications, and again the fixed-effects regression is preferred

in the case of rectal resection, with no significant volume

effect. All of these results are presented in Table 4.

5 Discussion

Many studies have measured the relationship between

hospital volume and outcome. However, different studies

report contradictory findings, and few studies report results

from more than one model specification. This study uses a

12-year panel data set to investigate the volume-outcome

relationship for six cancer procedures, applying three dif-

ferent regression frameworks, and tests their validity.

For our data, the basic logistic regression model—the

most commonly used model in the literature to date—is

always strongly rejected in favor of models that control for

time-invariant heterogeneity. A study of coronary artery

bypass grafts by Huesch [25] finds similar results, always

rejecting the basic logistic model. For our data the random-

Table 2 Coefficient and standard error on hospital volume

Procedure Regression model N

Logistic regression Random-effects

model

Fixed-effects

model

Logistic regression,

Random-effects model

Fixed-effects

model

Colectomy -0.0041*** (0.0009) -0.0038*** (0.0010) -0.0025 (0.0016) 164,204 163,447

Esophagectomy -0.0039 (0.0068) -0.0076 (0.0089) 0.0010 (0.0086) 4785 4239

Pancreatic resection -0.0116*** (0.0030) -0.0118*** (0.0025) -0.0054 (0.0044) 14,166 13,469

Pneumonectomy -0.0248** (0.0080) -0.0237* (0.0093) -0.0093 (0.0194) 5016 4087

Pulmonary lobectomy -0.0031*** (0.0008) -0.0036*** (0.0011) -0.0020 (0.0017) 54,351 51,239

Rectal resection -0.0072** (0.0026) -0.0070* (0.0027) -0.0039 (0.0091) 35,833 28,932

These regressions results are from the sample excluding patients less than 21 years of age at the time of admission, transfer-out patients, and

patients unmatched to hospital-level data

Significance levels: * p\ 0.05, ** p\ 0.01, *** p\ 0.001

Table 3 Model specification tests

Colectomy Esophagectomy Pancreatic resection Pneumonectomy Pulmonary lobectomy Rectal resection

-suest-

df 61 59 61 57 59 62

v2 94.64 3693.65 1583.33 270,000.00 1184.64 4769.47

p value 0.0037 0.0000 0.0000 0.0000 0.0000 0.0000

Mundlak

df 7 7 7 7 7 7

v2 3.08 17.74 4.52 6.51 13.36 17.18

p value 0.8772 0.0132 0.7185 0.4817 0.0638 0.0163

To compare the logit versus fixed-effects specifications, we use Stata’s -suest- command to fit a seemingly unrelated regression model using the

logit and fixed-effects models; we then use the -test- command to test the equality of all coefficients common to the two regressions. To compare

the fixed-effects versus random-effects specifications, we fit a Mundlak model (described in Sect. 3.3); we then use the -test- command to test

whether the four hospital variables are jointly zero in this model

13 See the working paper, Seider, Gaynor, Vogt. Volume-outcome

and Antitrust in US Health Care Market. 2004.
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effects model always finds a significant volume effect

(except for esophagectomy), whereas the fixed-effects

model never does. Whether the fixed-effects or random-

effects model is preferred varies across surgical

procedures.

We find no significant volume effect for esophagectomy

and rectal resection; we find a precisely estimated volume

effect for the other four cancer operations. Esophagectomy

is the least common procedure in our sample (N = 4827),

and rectal resection is the third most common

(N = 36,046). Esophagectomy has some of the highest

mortality rates in the sample (comparable to pancreatic

resection), whereas mortality rates for rectal resection are

the lowest. The difference in nature between these two

operations suggests that both infrequent and common

operations, as well as operations of differing difficulty,

should be carefully examined for a volume effect.

While not the focus of this paper, for those procedures

that display a significant volume effect, one may ask

whether this association results from a practice-makes-

perfect mechanism (also known as learning by doing) or a

selective-referral mechanism. Under the practice-makes-

perfect hypothesis, repeatedly performing a procedure

yields experience (to the operating physician, surgical

team, etc.), which in turn improves future outcomes. Under

the selective-referral mechanism, better outcomes attract

more patients. Practice makes perfect supports centraliza-

tion, whereas selective referral does not.

If one could construct a computationally feasible

instrument for hospital volume using exogenous variation,

then the direction of causality could be investigated. One

commonly used instrument for hospital volume is distance

to hospital, e.g., the distance between the patient’s and

hospital’s zip codes. For emergent conditions such as a

heart attack, distance to hospital is likely to be a significant

predictor of hospital volume, which is likely uncorrelated

with patient outcomes [23, 35].

However, most admissions for cancer surgery are non-

urgent. Patients need not go to the nearest hospital, but

consider other factors like hospital quality in their hospital

choice. Thus, distance to hospital is unlikely to be a good

predictor of hospital volume. Two previous studies

involving elective surgery use distance to hospital as an

instrument for hospital volume on market concentration

(derived from volume measures) and conclude that the

instrumental variables analysis yields similar results to

analyses without an instrument for volume [26, 36]. Further

progress in testing the practice-makes-perfect hypothesis

awaits identification of a valid instrument for volume in

non-urgent procedures. Future studies should also consider

using a measure of specialization (the number of a specific

operation performed as a percentage of total hospital

admissions) as a determinant of patient outcomes [37].T
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In addition to providing an analysis of six cancer pro-

cedures, this study highlights the benefits of (i) long-time-

frame panel data and (ii) the appropriate use of fixed-ef-

fects and random-effects frameworks in controlling for

unobserved heterogeneity. Application of the most appro-

priate statistical model improves the chances that referrals

to high-volume centers will be made only when doing so

improves patient outcomes.
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