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Transcriptional landscape and clinical utility
of enhancer RNAs for eRNA-targeted therapy
in cancer
Zhao Zhang 1,7, Joo-Hyung Lee1,7, Hang Ruan1,7, Youqiong Ye 1, Joanna Krakowiak 1, Qingsong Hu2,

Yu Xiang1, Jing Gong1, Bingying Zhou3, Li Wang3, Chunru Lin2, Lixia Diao4, Gordon B. Mills5, Wenbo Li1,6* &

Leng Han 1,6*

Enhancer RNA (eRNA) is a type of noncoding RNA transcribed from the enhancer. Although

critical roles of eRNA in gene transcription control have been increasingly realized, the

systemic landscape and potential function of eRNAs in cancer remains largely unexplored.

Here, we report the integration of multi-omics and pharmacogenomics data across large-

scale patient samples and cancer cell lines. We observe a cancer-/lineage-specificity of

eRNAs, which may be largely driven by tissue-specific TFs. eRNAs are involved in multiple

cancer signaling pathways through putatively regulating their target genes, including clinically

actionable genes and immune checkpoints. They may also affect drug response by within-

pathway or cross-pathway means. We characterize the oncogenic potential and therapeutic

liability of one eRNA, NET1e, supporting the clinical feasibility of eRNA-targeted therapy. We

identify a panel of clinically relevant eRNAs and developed a user-friendly data portal. Our

study reveals the transcriptional landscape and clinical utility of eRNAs in cancer.
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Enhancer is a distal regulatory DNA that enhances the
transcription of a target gene by interacting with target gene
promoter1. Traditionally considered to be DNA elements

that nucleate transcription factor (TF) binding, enhancers were
recently found to also transcribe noncoding RNAs, which are
referred to as enhancer RNAs (eRNAs)2. Tens of thousands of
eRNAs have been identified in human cells, many of which were
shown to play important roles in transcriptional circuitry to
mediate the activation of target genes3.

In human cancers, activation of oncogenes or oncogenic sig-
naling pathways often converges to enhancer activation and pro-
duction of eRNAs. For example, the activation of ESR1 can globally
increase eRNA transcription in breast cancer4. Oncogene-induced
eRNAs can under certain circumstances directly promote tumor-
igenesis. For example, KLK3e, an androgen-induced eRNA reg-
ulating gene KLK3, can scaffold the androgen receptor (AR)-
associated protein complex to control AR-dependent gene
expression in prostate cancer5. Tumor suppressors can also induce
eRNAs to contribute to tumor repression processes. For example,
TP53-induced eRNAs were found to be involved in p53-dependent
cell cycle arrest in multiple cancer cell lines6. Together these evi-
dences reveal significant roles of eRNAs in tumorigenesis and
suggest their clinical utility in eRNA-targeted therapy7.

The Encyclopedia of DNA Elements (ENCODE) project8,
Functional Annotation of the Mammalian Genome (FANTOM)
project9, and Roadmap Epigenomics project10 have annotated a
large number of regulatory elements, including enhancers, while
The Cancer Genome Atlas (TCGA) collected multi-omic data
and clinical information in ~10,000 tumor samples11. In addition
to patient samples, Cancer Cell Line Encyclopedia (CCLE)12

collected omics data in ~1000 cancer cell lines. Furthermore,
Cancer Therapeutics Response Portal (CTRP)13, and Genomics
of Drug Sensitivity in Cancer (GDSC)14 provided pharmacoge-
nomics data from ~ 500 anticancer compounds across > 1000
cancer cell lines. These data resources provide unique opportu-
nities to characterize the expression landscape, functions and
drug response of eRNAs across different cancer types.

Results
Dynamic expression landscape of eRNAs in human cancers.
We obtained enhancer annotations from ENCODE, FANTOM,
and Roadmap Epigenomics, and selected enhancers annotated in
at least two datasets. Given the fact that eRNA transcription
region could be wider than the enhancer ChIP-seq peaks15, we
defined the ± 3 kb regions around the middle point of these
annotated enhancers as potential eRNA-transcribing regions16.
To avoid counting the transcriptional signal from known coding
genes, we excluded eRNA regions that overlap with known
coding genes and lncRNAs (with 1 kb extension from both
transcription start site and transcription end site) (Supplementary
Fig. 1A and Methods). To characterize the expression landscape
of eRNAs across human cancers, we mapped TCGA RNA-seq
reads to eRNA regions and defined those eRNAs with average
expression value (reads per million, RPM) ≥1 as detectable eRNA
for each cancer type (Supplementary Fig. 1A and Methods). This
analysis identified a total of 9108 detectable eRNAs in human
cancers (Fig. 1a and Supplementary Fig. 1B). The number of
detectable eRNAs ranged from 457 in liver hepatocellular carci-
noma (LIHC) to 2267 in stomach adenocarcinoma (STAD)
(Supplementary Fig. 1B, Supplementary Data 1). We classified
these detectable eRNAs into three groups: 652 ubiquitous eRNAs
expressed in ≥10 cancer types, 3124 intermediately specific
eRNAs that are expressed in 2–9 cancer types, and 5332 cancer-
type-specific eRNAs that are expressed in only one cancer type
(Fig. 1a). The ubiquitous eRNAs account for 20.0% of detectable

eRNAs in STAD, but for 64.8% of eRNAs in uterine corpus
endometrial carcinoma (UCEC). Interestingly, the ubiquitous
eRNAs have higher expression levels than the intermediately
specific eRNAs (Wilcoxon test p-value < 2.2 × 10–16) and the
cancer-type-specific eRNAs (Wilcoxon test p-value < 2.2 × 10–16,
Supplementary Fig. 1C). This phenomenon is reminiscent of
features of protein-coding genes, among which the housekeeping
genes are generally expressed at high levels as compared with
tissue-specific genes17. Numbers of cancer-type-specific eRNAs
showed a broad range, from 4 in colon adenocarcinoma (COAD)
to 987 in STAD (Fig. 1a). We still observed cancer-type-specific
pattern even with a much more stringent cutoff (RPM ≥ 5, Sup-
plementary Fig. 1D), suggesting that the cancer-type-specific
patterns of eRNA expression is not due to expression levels.

The expression similarity between any two tumor samples
further showed a strong cancer-type-specific pattern, in that
samples from the same cancer type clustered together (Fig. 1b).
Furthermore, cancer types with similar histological features
clustered at higher levels of hierarchy, such as pan-kidney cancers18

(kidney renal clear cell carcinoma [KIRC], kidney renal papillary
cell carcinoma [KIRP] and kidney chromophobe [KICH]), pan-
squamous cell carcinomas19 (bladder urothelial carcinoma [BLCA],
head and neck squamous cell carcinoma [HNSC], cervical
squamous cell carcinoma and endocervical adenocarcinoma
[CESC] and lung squamous cell carcinoma [LUSC]), the
sarcomas20 (sarcoma [SARC] and uterine carcinosarcoma [UCS]),
and the neuronal cancers20 (glioblastoma multiforme [GBM], brain
lower grade glioma [LGG], pheochromocytoma and paraganglioma
[PCPG], skin cutaneous melanoma [SKCM], and uveal melanoma
[UVM]). This cancer-type-specific pattern is further confirmed by
t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis
(Supplementary Fig. 1E), suggesting that eRNAs may be powerful
biomarkers with clinical utility in specific cancer types7.

Analysis of transcription factor and eRNA relationship. TFs
have been shown to mediate the biogenesis of eRNAs2,8; however,
the global regulation of eRNAs is still unclear. Here, we collected
human transcription factors (TFs) from JASPAR21, DBD22,
AnimalTFDB23, and TF2DNA24, and calculated Spearman’s
correlation between individual TF expression and individual
eRNA expression in each cancer type. We defined TFs that show
significant correlation (Rs ≥ 0.3; false discovery rate [FDR] <0.05)
with an individual eRNA in a specific cancer type as its putative
regulators, and further defined those putative regulators sig-
nificantly correlated to ≥ 25% of individual eRNAs in a specific
cancer type as putative master regulators. Taking breast invasive
carcinoma (BRCA) as an example, we identified 84 putative
master regulators, including three well-known regulators,
FOXA125 (highly correlated with 28.6% of all eRNAs in BRCA),
ESR115 (29.2%), and GATA326 (25.3%, Fig. 2a and Supplementary
Data 2). Applying this computational predictions, we have
identified 845 putative master regulators across cancer types
(Supplementary Fig. 2A and Supplementary Data 2). The
majority of these putative master regulators (693/845, 82.0%)
exhibits strong expression correlation with a large number of
eRNAs in only one or a few cancer types (i.e., <5), suggesting that
the TF-eRNA correlation is tissue-specific and may imply direct
regulatory functions of these TFs in that cancer type (Supple-
mentary Fig. 2B). For example, OLIG2 is a TF highly expressed in
brain and highly correlate with the expression of 33.5% of eRNAs
in LGG, suggesting its potential importance in enhancer/eRNA
control therein (Supplementary Fig. 2C). Our global analysis of
TF-eRNA correlation indicates that cancer- and/or lineage-
specific patterns of eRNAs can be largely mediated by lineage-
specific TFs.
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We further identified 54 general putative master regulators that
play significant roles in ≥ 10 cancer types (Fig. 2b). We performed
GO analyses and observed that these TFs are enriched in the
functional categories related to transcriptional process (Supplemen-
tary Fig. 2D-2E). These general master regulators can be classified
into 17 families base on Pfam annotation (https://pfam.xfam.org/),
and they are significantly enriched in four families, including MDB,
ARID, GTF2I, and MYB (FDR <0.05, Supplementary Fig. 2F). More
importantly, we manually examined the functions of these TFs and
found 35.2% (19/54) of them are associated with genomic instability
(Fig. 2b). For example, NR2C2, which can mediate genomic
rearrangements by a telomere-related pathway27, is highly correlated
with eRNAs in 20 cancer types, ranging from 26.3% in PRAD to
53.7% in KIRP. NFAT5, which can induce genomic instability by

regulating inflammation28,29, is highly correlated with eRNAs in 17
cancer types, ranging from 27.0% in READ to 63.4% in KIRP. These
general master regulators are enriched in functions related to
genomic instability, which provides a potential explanation to a
previously observed positive correlation between somatic copy
number alteration and enhancer activation in many cancer types30.

Putative effects of eRNAs on signaling pathways. It remains a
challenge to establish the direct interaction between eRNA and its
target genes. We built a global eRNA-gene regulatory network
across cancer types based on the physical distance (≤ 1MB) and co-
expression between individual eRNAs and their putative target
genes (Spearman’s correlation Rs ≥ 0.3, FDR < 0.05, Supplementary
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Fig. 3A)2. We identified 11,593 (56.5% of all protein-coding genes)
putative target genes that are significantly correlated with 88.8%
(8086/9108) of eRNAs in at least one cancer type. High-
throughput chromosome conformation capture (Hi-C) data can
reveal the interaction between an enhancer and its target gene,
while active enhancer usually produce eRNA31–33. Therefore, we
investigated Hi-C interaction for all putative eRNA-gene connec-
tions across 20 tissues, and observed that more than 80% eRNA-
gene connections are supported by significant Hi-C interactions in
at least one tissue (Supplementary Fig. 3B). The proportion of Hi-
C supported eRNA-gene connection is significant higher than the
background of random pairs (permutation test, bootstrap=
10,000, p < 0.0001, Supplementary Fig. 3B). To explore the reg-
ulatory roles of eRNAs in cancer, we collected 229 genes involved
in 10 cancer signaling pathways, including Myc, PI3K, and p53
pathways34 (Supplementary Data 3). The majority (185/229,
80.8%) of these genes are correlated with eRNAs in at least one
cancer type (Fig. 3a and Supplementary Data 3). For example, all
six genes in the p53 pathway (i.e., TP53, MDM2, MDM4, ATM,
CHEK2, and RPS6KA3) were found to correlate with eRNAs in at
least one cancer type (Supplementary Fig. 3C and Supplementary
Data 3). In support of this, most eRNA-gene associations in
pathways (91.9%, 170/185) were found to form chromatin inter-
action by Hi-C (Supplementary Fig. 3D and 3E), including
MAML2-associated eRNA (hereafter we will refer to eRNAs based
on their associated, putative target gene, i.e., MAML2e,
ENSR00000043746) and MAML2, CDK6-associated eRNA
(CDK6e, ENSR00000215101) and CDK6, and TCF7L2-associated
eRNA (TCF7L2e, ENSR00000033597) and TCF7L2 (Supplemen-
tary Fig. 3F). Our results suggested important roles played by
eRNAs in regulating various cancer signaling pathways.

To further understand the meaningful contributions of eRNAs
in cancer signaling pathways on drug response, we calculated
eRNA expression levels across ~1000 cancer cell lines from the
Cancer Cell Line Encyclopedia (CCLE), and then analyzed
Spearman’s correlation between eRNA expression levels and drug
sensitivity of these cells (Area Under Curve [AUC]), which is
available from the Cancer Therapeutics Response Portal (CTRP).
We identified 512 eRNAs in all 10 cancer signaling pathways, the
expression of which displayed high correlation with 63 anticancer
drugs (FDR < 0.0535, Fig. 3b and Supplementary Fig. 3G),
suggesting significant roles of eRNAs in the response to anticancer
drugs. For example, 217 eRNAs are highly correlated with
belinostat, a drug that targets the Notch pathway. Among these,
32.7% (71/217) of their putative target genes are within the Notch
pathway (Supplementary Fig. 3H), such as PSEN2-associated
eRNA (PSEN2e, ENSR00000257043), RBX1-associated eRNA
(PBX1e, ENSR00000257043), and NOTCH4 associated eRNA
(NOTCH4e, ENSR00000320261). More interestingly, the putative
target genes of the remaining eRNAs (146/217, 67.4%) are in cross-
pathways, such as MDM2-associated eRNA (MDM2e,
ENSR00000053727) in the p53 pathway, CDK6-associated eRNA
(CDK6e, ENSR00000215101) in the cell cycle pathway, and
RNF43-associated eRNA (RNF43e, ENSR00000096250) in the
Wnt pathway (Supplementary Fig. 3H). We further confirmed this
eRNA-drug connection using another drug database, Genomics of
Drug Sensitivity in Cancer (GDSC), and observed some similar
pattern (Supplementary Fig. 3I and 3J). Indeed, belinostat
treatment could alter the expression of 46 eRNAs (35.7%) within
the target pathway and 83 eRNAs (64.3%) in a cross-pathway in
A549 cells (Supplementary Fig. 3K). Taken together, our results
suggest a strong association between eRNAs and anticancer drugs,
either within the target pathway or through a cross-pathway. It will
an important future direction to examine the molecular basis of
eRNA-gene-drug correlation, and potential roles eRNAs played in
modulating cancer cell drug response.

Putatively regulation of eRNAs on CAGs and ICs. Based on the
finding that eRNAs were tightly associated with cancer signaling
pathways and drug-associated pathways, we further asked if
eRNAs were directly linked to cancer therapy. We collected 135
clinically actionable genes (CAGs), and observed that 107 of them
(79.3%) were correlated to eRNAs in at least one cancer type
(distance ≤ 1MB, Spearman’s correlation Rs ≥ 0.3 and FDR < 0.05,
Supplementary Data 4). Among these, 36 clinically actionable
genes are correlated with eRNAs in at least five cancer types
(Fig. 4a), suggesting that these genes are potentially regulated by
eRNAs in multiple cancers. Increased numbers of samples
enhance the ability to detect and analyze molecular data. In
particular, the pan-cancer analysis will help to identify master
events that play a critical functional role in different tumor
contexts36–38. Furthermore, 91.7% of these correlations (33/36)
could be supported by Hi-C interactions in at least one tissue,
which further support the potential regulatory roles of eRNAs on
clinically actionable genes (Fig. 4b and Supplementary Fig. 4A).
For example, MDM2- and MDM2-associated eRNA (MDM2e,
ENSR00000053727) are positively correlated in 12 cancer types,
and Hi-C data supports their chromatin interaction in 20 tissues
(Fig. 4c and Supplementary Fig. 4A). MYC- and MYC-associated
eRNA (MYCe, ENSR00000333355) are positively correlated in six
cancer types, and Hi-C data supports their interaction in all 20
tissues (Fig. 4d and Supplementary Fig. 4A).

We further investigated the relationship between individual
eRNAs and immune checkpoints (ICs, Supplementary Data 5),
and observed six checkpoints were correlated with eRNAs in at
least five cancer types (Fig. 4e). All these putative eRNA-
checkpoints interactions again were supported by Hi-C data in
at least one tissue (Fig. 4f and Supplementary Fig. 4B). For
example, CD200- and CD200-associated eRNA (CD200e,
ENSR00000156542) are positively correlated in 12 cancer types,
and Hi-C data supports the interactions in all 20 tissues (Fig. 4g
and Supplementary Fig. 4B). Taken together, our analysis showed
putative interactions between eRNAs and clinically actionable
genes and/or immune checkpoints, suggesting the potentially
clinical utility of eRNAs in cancer therapy.

Characterizing the functional roles of eRNA in cancer. To
further characterize the functional roles of eRNAs in cancer, we
examined the differentially expressed eRNAs (|fold change| >1.5
and FDR <0.05) across 16 cancer types with ≥5 tumor-normal
paired samples (Supplementary Data 6). Overall, there were more
upregulated eRNAs in tumor samples, ranging from 22.0% in
thyroid carcinoma (THCA) to 68.9% in cholangiocarcinoma
(CHOL), with a median of 42.2%. The downregulated eRNAs
ranged from 1.9% in STAD to 27.9% in KICH, with a median of
9.9% (Fig. 5a). Taking BRCA as an example, we identified 208
upregulated eRNAs and 166 downregulated eRNAs (Fig. 5b).
Among these, one eRNA located ~ 90 kb downstream of the
oncogene NET139, which we referred to as NET1-associated eRNA
(NET1e, ENSR00000023843), showed the largest expression
alteration between tumor and normal samples (fold change= 5.8,
FDR= 3.7 × 10–13, Fig. 5b and Supplementary Fig. 5A). NET1e
exhibited much higher expression levels in BRCA, including all
subtypes (Supplementary Fig. 5B). High level of NET1e was asso-
ciated with worse survival (log-rank test p-value= 0.0004, Fig. 5c).
Of interest, NET1 gene itself is not associated with the breast
cancer patient’s survival (Supplementary Fig. 5C), suggesting that
NET1e may be a predictor irrelevant to NET1 in breast cancer
patients. NET1e was highly correlated with NET1 across all BRCA
subtypes (Fisher’s transformation, Rs’= 0.45, p′= 1.58 × 10–4),
including the basal subtype (Spearman’s correlation, Rs= 0.53,
p= 1.95 × 10–11, Supplementary Fig. 5D). We further examined
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NET1e signaling in MCF7, a breast cancer cell line (Fig. 5d). This
region harbors classical enhancer features, such as the enrichment
of histone H3K4me1 modification; it also exhibits strong enrich-
ment of active enhancer markers such as histone H3K27ac mod-
ification and binding of transcription co-factor p300 (Fig. 5d).
There are multiple p300 binding peaks densely distributed in the
NET1e region, indicating it might be a potential super-enhancer in
MCF7. NET1e transcription was also detected by GRO-seq data in
MCF7 cells (Fig. 5d). Furthermore, we observed a chromatin
interaction between NET1e and NET1 by RNA Pol II ChIA-PET21,
suggesting a direct interaction for regulation.

To further characterize NET1e, we applied CRISPR activation
(CRISPR/dCas9-SAM)40 to epigenetically induce NET1e expres-
sion in MCF7 cells (Fig. 5e). We successfully achieved >30-fold

NET1e upregulation by two different sgRNAs, which interestingly
led to strong upregulation of NET1 mRNA (Fig. 5e). Consistent
with the role of NET1 as a breast cancer oncogene39, CRISPR-
SAM induction of NET1e increased cell proliferation significantly
(Fig. 5e). To delineate a role of the eRNA per se, we designed
three locked nucleic acid GapmeR (LNAs) to knockdown NET1e.
With efficient reduction of NET1e expression, we found that cell
proliferation was significantly reduced in both MCF7 cells
(Fig. 5f) and MCF7 cells with CRISPR-SAM treatment (Fig. 5g).
These data, together with their chromatin looping (Fig. 5d),
suggested that NET1e contributes to breast cancer progression via
upregulation of the important breast cancer oncogene NET1. In
addition, knockdown of NET1e did not significantly impact cell
proliferation in non-breast cancer cell lines, including MCF10A
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and Hela, in which NET1e shows low expression level
(Supplementary Fig. 5E and 5F), suggesting a specific effect of
NET1e in breast cancer growth. It supports a minimal off-target
effects/toxicity of NET1e LNA and the potential to target cancer-
specific eRNAs for effective treatment. More importantly,
expression of NET1e is negatively correlated (sensitive, Spear-
man’s correlation, FDR <0.05) with 14 and 15 compounds
response (AUC) while positively correlated (resistance, Spear-
man’s correlation, FDR < 0.05) with 56 and 31 compounds
response (AUC) in CTRP and GDSC, respectively, which
suggested that altered expression of NET1e could influence
response to these drugs (Fig. 5h and Supplementary Data 7).
Indeed, in situ overexpression of NET1e led to the resistance of
MCF7 cells to a PI3K inhibitor, BEZ235 (Fig. 5i), and a BCL-2
Inhibitor, Obatoclax (Fig. 5j) in MCF7 cells. We also examined
the effects for the other three drugs (CHIR-99021, BX-795, and
(5Z)-7-Oxozeaenol) and observed a similar trend but not
statistically significant. Cells showed strong growth inhibition

when we knocked down NET1e in MCF7 (Fig. 5f, g), therefore we
could not test drug response in NET1e KD cells. Of interest, NET1
is not significantly correlated with BEZ235 (FDR= 0.15) and
obatoclax (FDR= 0.80). Taken together, these results revealed
that NET1e is an oncogenic eRNA in BRCA and may be a
promising target for eRNA therapy.

Identification of clinically relevant eRNAs. Clinical relevance is
used to define cancer-related clinical features, including association
with survival, differential expression among subtypes, stages, grade,
and different groups of smoking history41–43. To further investigate
the clinical utility of eRNAs, we identified 5715 clinically relevant
eRNAs (i.e., associated with clinical relevance) that account for
62.7% (5715/9108) of the total detectable eRNAs in cancers (Fig. 6a
and Supplementary Data 8). For example, TAOK1-associated
eRNA (TAOK1e, ENSR00000092917), which putatively targets the
Hippo signaling pathway gene TAOK144, is associated with overall
survival in KIRC (Fig. 6b, log-rank test, FDR= 7.97 × 10–5);
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EN1-associated eRNA (EN1e, ENSR00000122295), which puta-
tively targets the BRCA-basal marker gene EN145, is highly
expressed in the BRCA-basal subtype (Fig. 6c, Analysis of variance
[ANOVA], FDR < 2.2 × 10–16); CELF2-associated eRNA (CELF2e,
ENSR00000024385), which putatively targets the tumor suppressor
gene CELF246, is highly expressed in stage III STAD (Fig. 6d,
ANOVA, FDR= 4.7 × 10–7); APH1A-associated eRNA (APH1Ae,
ENSR00000013533), which putatively targets the oncogene
APH1A47, is highly expressed in grade-3 LIHC (Fig. 6e, ANOVA,
FDR= 6.4 × 10–5); and SCRIB-associated eRNA (SCRIBe,
ENSR00000232146), which putatively targets the oncogene
SCRIB48, is differentially expressed among patients with LUAD
according to different categories of smoking history (Fig. 6f,
ANOVA, FDR < 4.3 × 10–3). These results suggest that appreciable
levels of eRNAs are clinically valuable.

A comprehensive data resource to explore eRNAs in cancer.
We developed a user-friendly data portal, eRNA in cancer (eRic)
(https://hanlab.uth.edu/eRic), to facilitate broad access to these
data by the biomedical community. eRic includes four modules:
expression, clinical relevance, target genes and drug response

(Fig. 6g). In the eRNA-expression module, users can explore the
expression of eRNA across TCGA cancer types and samples and
the eRNA location by Ensembl ID or genomic location. The
clinical relevance module aims to help users identify clinically
relevant eRNAs, including those that showed differentially
expressed patterns between tumor and normal samples among
different groups of cancer subtypes, stages, and grades and dif-
ferent categories of patient smoking history, and in association
with patient survival times. The target genes module allows users
to identify eRNA target genes (Supplementary Fig. 6A). We also
integrated the drug response data from GDSC and CTRP, which
allows users to investigate whether an eRNA shows sensitivity or
resistance to drugs (Supplementary Fig. 6B and 6C). In addition,
eRic provides a download module, which allows users to down-
load the expression, clinical relevance, targeted genes, and drug
response data. This valuable resource will be of significant interest
to the research community49.

Discussion
eRNA are increasingly realized to play important roles in the
regulation of gene transcriptional circuitry in human cancers. We
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Fig. 6 Clinically relevant eRNAs and the eRNA data portal in cancer (eRic). a Number of clinically relevant eRNAs across different cancer types. For survival
analyses, we use cox model to analyze the relationship between eRNA expression and survival time, and considered FDR < 0.05 as significant. For other
clinical relevance, we used Student’s t test to test the difference between two groups and analysis of variance (ANOVA) to test the difference among
multiple groups, and considered FDR < 0.05 as significant. Scale bar denotes number of clinically relevant eRNAs. b–f Examples of clinically relevant eRNAs
for patient survival time (b), cancer subtype (c), tumor stage (d), tumor grade (e), and patient smoking history (f). The boxes in (c–f) show the median ± 1
quartile, with whiskers extending from the hinge to the smallest or largest value within 1.5 interquartile range from the box boundaries. g The four modules
in eRic: expression landscape, clinical relevance, putative target genes, and drug response
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developed a computational pipeline to reveal the global expres-
sion landscape of eRNAs across multiple cancer types. By inte-
grating multi-omics data from TCGA, CCLE, ENCODE,
FANTOM, Roadmap Epigenomics, and 4D Nucleome projects, as
well as pharmacogenomics datasets from GDSC and CTRP, we
have revealed novel insights on the expression landscape and
clinical utility of eRNAs in cancer (Supplementary Fig. 7 and
Supplementary Table 1). We demonstrated a strong cancer-type-
specific expression pattern of many eRNAs, suggesting that
eRNAs may be powerful diagnostic and/or prognostic markers in
cancer therapy. The cancer-type-specific pattern is aligned well
with the previous studies characterizing the regulatory elements
(e.g., enhancers) based on ATAC-seq50, as well as activated
enhancers30. The sequencing depth may still cause some batch
effects. For those cancer types with 75/76 bp pair-end reads,
including OV, STAD, and GBM, only STAD showed the relative
more eRNAs. In contrast, COAD, READ, and UCEC with 76 bp
single-end reads have relative fewer eRNAs. The majority (25 out
of 31) of cancer types with 48/50 bp pair-end reads showed vast
difference in detectable eRNAs ranging from 457 in LIHC to 1790
in TGCT (Supplementary Data 1). The number of eRNAs is not
correlated with the sequencing depth in these cancer types (Rs=
0.02, p= 0.93). These results suggested that the tissue-specific
pattern of eRNAs is robust. We identified a series of transcription
factors as the potential regulators for eRNA biogenesis, which
greatly expanded our knowledge about eRNA biogenesis. Inter-
estingly, we observed that the general putative master regulators
of eRNAs, including NR2C2 and NFAT5, displayed an intriguing
enrichment of functions in modulating genomic instability, sug-
gesting a potential mechanistic link between eRNA expression/
biogenesis and genome instability.

Integrative analysis showed that more than 80% genes in the
canonical cancer signaling pathways are highly correlated with
specific eRNAs in at least one cancer type, suggesting potentially
important regulatory roles of eRNA in cancer. Due to the lack of
Hi-C data in large number of tumor tissues, we can only confirm
the eRNA-gene connections support by Hi-C interaction in at
least one normal tissue. It will be more appropriate to use the Hi-
C data in matched samples to confirm the regulatory roles of
eRNAs. We also observed associations between eRNAs and
anticancer drugs, either within the target pathway or through a
cross-pathway. Furthermore, many clinically actionable genes
and immune checkpoints were putatively regulated by eRNAs,
emphasizing the clinical utility of eRNA in anticancer treatment.
Nevertheless, our integrative analysis demonstrated the putative
regulatory roles of eRNAs, and further experiments are necessary
to confirm their regulatory roles.

We demonstrated the functional importance of an individual
eRNA, NET1e, which is highly expressed in breast cancer.
CRISPR activation of NET1e accelerated cell growth in MCF7,
suggesting its oncogenic effect in cancer cell lines, while NET1e
LNA specifically decreased cell proliferation in MCF7, and has
shown limited or no off-target effects and toxicity. More
importantly, in situ overexpression of NET1e will lead to drug
resistance to BEZ235 and Obatoclax in MCF7 cells. To our
knowledge, this is the first evidence showing that eRNA could
affect drug response in cancer. Taken together, our results suggest
the promising clinical importance of NET1e.

RNA-target drugs are now becoming a major new branch of
pharmaceuticals. For example, US FDA has approved the first
siRNA drug in 2018 (i.e., to use Patisiran infusion for the treatment
of peripheral nerve disease like polyneuropathy), and there are
extensive ongoing efforts to target disease-relevant RNAs in the
pharmaceutical industry. We identified an appreciable number of
clinically relevant eRNAs and further demonstrated their clinical
utility in diagnostic and/or eRNA-targeted therapy. To facilitate

utilization of the expression landscape and clinical relevance of
eRNAs by the broad biomedical community, we have built a data
portal, eRic, offering a comprehensive resource for further inves-
tigation of eRNA expression landscape, clinical relevance, target
genes, functions in tumorigenesis or response to anticancer drugs.
This is the first data portal in eRNA field and will be a valuable
resource for further investigation of cancer therapy that targets
eRNAs. In particular, the related data will help the researchers to
identify key eRNAs in cancer patients, and to select the appropriate
cancer cell lines for their functional investigations.

Methods
Data collection. We downloaded RNA-seq BAM files, clinical features and the
mRNA expression matrix from TCGA data portal (https://portal.gdc.cancer.gov/)11.
GRO-seq data and ChIP-seq for MCF7 were collected from our previous paper4.
ChIA-PET data were obtained from WASHU EpiGenome Browser (https://
epigenomegateway.wustl.edu/)21. RNA-seq data of cancer cell lines were down-
loaded from the Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/
ccle/about)46. Drug sensitivity datasets were downloaded from GDSC14 and CTRP51.
The Hi-C interactions across 20 human tissues were downloaded from http://
promoter.bx.psu.edu/public/HiCPlus/matrix/52. Clinically actionable genes were
collected from previous literatures37,38,53, and cancer immune checkpoints were
collected from a previous literature54. RNA-seq data for A549 treated by belinostat
(GSE96649) was downloaded from Gene Expression Omnibus (https://www.ncbi.
nlm.nih.gov/geo/), and processed by Hisat2 software55 and SAMtools toolkit56.

Quantification of eRNA expression. Annotation of enhancers were collected
from Ensembl (https://useast.ensembl.org/)57, FANTOM (http://fantom.gsc.riken.
jp/index.html)9, and Roadmap Epigenomics (http://www.roadmapepigenomics.
org/)10. The annotation from ENCODE and Roadmap considered H3K4me1 and
H3K27ac marks57, and annotation from FANTOM considered CAGE marks. We
combined all three datasets and used those enhancers annotated in at least two
datasets. Annotation of protein-coding genes was collected from GENECODE58

and UCSC Genome Browser59 (hg38). We used the ± 3 kb of the middle loci of
enhancer to define eRNA region16. We also filtered out those eRNA regions that
overlapped with known coding regions and lncRNAs (with 1 kb extension from
both transcription start site and transcription end site). In particular, the ~ 500 bp
(uaRNA) region was also excluded from our analysis. We also excluded all blacklist
regions, including rRNA repeats.

We downloaded RNA-seq BAM files from TCGA data portal (https://portal.
gdc.cancer.gov/)11. The RNA-seq raw data were processed by TCGA consortium as
described on the official website (https://docs.gdc.cancer.gov/Data/
Bioinformatics_Pipelines/Expression_mRNA_Pipeline/). We downloaded BAM
files for our downstream analysis. We mapped RNA-seq data to these eRNA
regions and calculated the expression level as RPM60 for each eRNA in each
sample. We normalized eRNA expression by reads per million. We averaged all
RPMs annotated to the eRNA from all samples in a cancer type, and defined those
eRNAs with average expression level (RPM) ≥1 as a detectable eRNA. We
converted different genomic versions of the human genome by liftover59. We
present t-SNE analysis using R package Rtsne61. Our method may only detect a
subset of polyadenylated eRNAs at their steady state since TCGA and CCLE only
included the poly(A) RNA-seq. Our method may not distinguish functional eRNAs
from those may just be the side effect of active enhancer.

Biogenesis of eRNAs. We collected TFs from multiple TF resources, including
JASPAR (http://jaspar.genereg.net/)21, DBD (http://www.transcriptionfactor.org/)22,
AnimalTFDB (http://bioinfo.life.hust.edu.cn/AnimalTFDB/)23, and TF2DNA
(http://www.fiserlab.org/tf2dna_db/)24. We identified putative regulators of eRNAs
based on the co-expression between individual eRNA and each TF in a given cancer
type, and considered Spearman’s correlation Rs ≥ 0.3 and FDR < 0.05 as significant.
For each cancer type, TFs that significantly correlated with more than 25% of the
detectable eRNAs were defined as master regulators. Master regulators that exist in
more than 10 cancer types were defined as general master regulators. The functional
enrichment analyses of these general master regulator were performed by DAVID62

and GSEA63.

eRNA putative target genes and drugs. We identified eRNA putative target
genes based on close distance (≤ 1MB) and co-expression (Spearman’s correlation
Rs ≥ 0.3 and FDR < 0.05) between individual eRNAs and their putative target genes
in each cancer type58. We filtered out eRNAs located in the intronic regions of
target genes for correlation analysis. We collected 229 genes associated with 10
cancer signaling pathways34: p53, PI3K, Myc, RTK/RAS, cell cycle, Wnt, TGF beta,
Nrf2, Notch, and Hippo. Due to the lack of Hi-C data in large number of tumor
tissue, we used 20 Hi-C data from normal tissues52 to confirm the putative eRNA-
gene connections. Hi-C interaction was evaluated by O/E value, which is calculated
as observed value (estimated with normalized mapped reads) divided by expected
value (estimated with a genome-wide model of interaction probability over the
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genomic distance)64. We also estimated the Hi-C interactions based on random
eRNA-gene pairs throughout genome as background, and performed permutation
test (bootstrap= 10,000) to compare with eRNA-gene pairs with the background
of random pairs. For those eRNAs identified in TCGA, we examined their
expression across ~1000 cancer cell lines in CCLE. GDSC and CTRP collected drug
response data across >1000 cancer cell lines. We used matched cell lines to calculate
the Spearman’s correlation between eRNA expression in CCLE and drug response
value (AUC) of more than 500 anticancer drugs from CTRP and GDSC, and
defined FDR < 0.05 as significant35.

Clinically relevant eRNAs. We used the Student’s t test to assess the statistical
difference between tumor and paired normal samples and defined significantly
aberrant expression as |fold change| > 1.5 and FDR < 0.05. We used Student’s t test
for two groups and analysis of variance (ANOVA) for multiple groups to assess the
statistical difference of patient smoking history and cancer subtype, stage, and
grade (FDR <0.05). Only groups with ≥ 5 samples were included in these analyses.
We used the univariate Cox model or log-rank test to assess whether eRNA
expression was associated with the overall survival times of cancer patients and
considered FDR < 0.05 as significant.

Lentivirus generation. A mixture of 3 μg of psPAX2, 1 μg of pMD2.G, and 4 μg of
target sgRNA vector was transfected into 293T cells using Lipofectamine 2000 (Life
Technologies). After 16 h, the media was changed, and the supernatants were collected
at 48 and 72 h posttransfection for two independent infections. The collected super-
natants were filtered using 0.45 μm syringe filter (Fisher) and used to infect MCF7 cells
after being mixed with polybrene (final concentration of 8 μgml−1, Sigma). Target
cells were incubated in complete media with an equal amount of lentiviral particle-
containing media for 24 h for each infection. After the second infection, the cells were
selected over at least one week with selection markers to achieve a stable line.

Cell culture and transfection. We originally purchased MCF7 and MCF10A cells
from American Type Culture Collection. We maintained the MCF7 and Hela cells
in Dulbecco’s modified Eagle’s medium (DMEM) (Corning) media, supplemented
with 10% fetal bovine solution (FBS) (GenDEPOT) and maintained the MCF10A
cells in DMEM/F-12 (Corning) supplemented with 5% horse serum, 20 ng ml−1

EGF, 0.5 mg ml−1 hydrocortisone, 100 ng ml−1 cholera toxin, 10 μg ml−1 insulin in
a 5% CO2 incubator at 37 °C4,65. Transfection of LNA GapmeRs (Qiagen) into the
cells was carried out using Lipofectamine 2000 (Life Technologies) according to the
manufacturer’s protocol and at a final concentration of 60 nM. For NET1e eRNA
knockdown, a mixture of NET1e LNA 1, 2, and 3 was transfected into the cell. The
sequence information for LNA is described in Supplementary Table 2.

CRISPR/dCas9-SAM. We followed the experimental procedures in Konermann
et al.40. In brief, we generated the MCF7 stable cell line expressing dCAS9-VP64-Blast
and Lenti MS2-p65-HSF1-Hygro using lentivirus. Infected cells were selected in
DMEM supplemented with 10% FBS, 300 μgml−1 Hygromycin, and 5 μgml−1

Blasticidin. After 1 week of selection, we infected the stable cells with the lentiviral
particle expressing sgRNA and selected the infected cells in DMEM with 10% FBS,
300 μgml−1 Hygromycin, 5 μgml−1 Blasticidin, and 300 μgml−1 Zeocine for 1
additional week. All plasmids for CRISPR/dCAS9-SAM were purchased from
Addgene (#61425, 61426, and 61427). The target gRNA sequence was chosen using
http://crispr.mit.edu/. Target gRNA sequences were cloned into plasmid 61427
(Supplementary Table 2).

qRT-PCR for eRNA expression. RNA was extracted from cells using Quick RNA-
miniprep (Zymo Research) and the RNA was reverse-transcribed using Super-
Script® III Reverse Transcriptase with random hexamer (Invitrogen) or qScript
XLT cDNA SuperMix (QuantaBio). We performed qRT-PCR in QuantStudio 3
qPCR systems (Applied Biosystems, Thermo Fisher) using 2X Ssoadvanced Uni-
versal Sybr Green Supermix (Bio-Rad). We used glyceraldehyde-3-phosphate
dehydrogenase for normalization. We used a two-tailed Student’s t test to obtain
the p-values. The sequences of qPCR primers are provided in Supplementary
Table 2. All RT-qPCRs were performed with at least biological duplicates. Each
biological replicate has three technical repeats.

Cell growth assay. Cells were trypsinized and plated at 3000 cells per well in a 96-
well plate (Corning). Photos of each well were taken every 24 h using Incucyte Live
Cell Imager (Essen Bioscience), and cell confluence was measured by Incucyte
Software (Essen Bioscience) for 72 h. To normalize the confluences, the values for
each time point were divided by the mean value at 0 h. In order to test the effects of
NET1e to drug sensitivity in MCF7, we examined the half maximal inhibitory
concentration (IC50) for PI3K inhibitor (BEZ235), BCL-2 Inhibitor (Obatoclax) in
MCF7 Crispr/SAM control and NET1e using Incucyte live cell imager.

Data portal. We constructed the data portal based on Rscript and JavaScript. The
expression profile, clinical relevance, putative target genes, Hi-C data, and drug
responses of eRNAs are available on the data portal (https://hanlab.uth.edu/eRic/).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All accession codes, unique identifiers, or web links for publicly available datasets are
described in the paper. All data supporting the findings of the current study are listed in
Supplementary Data 1–8, Supplementary Fig. 7, and our online data portal (https://
hanlab.uth.edu/eRic/).

Code availability
All codes are available upon reasonable request.
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