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Abstract: A lesser known but crucially important downstream effect of Rho family GTPases is the
regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of
which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is
myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the
nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then
drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix
organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical
and chemical stimuli, affects a plethora of functions with physiological and pathological relevance.
These include cell motility, development, metabolism and thus metastasis formation, inflammatory
responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-
to-date summary about the basic biology and regulation of this versatile transcriptional coactivator;
and to highlight its principal involvement in the pathobiology of kidney disease. Acting through
both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated)
role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast
transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.

Keywords: actin cytoskeleton; Rho GTPases; transcription factors; nucleocytoplasmic shuttling; gene
expression; profibrotic epithelial phenotype; myofibroblast; kidney fibrosis

1. Introduction

Rho family GTPases are prime regulators of the cytoskeleton [1]). Precise cytoskeletal
control, in turn, is a prerequisite for normal renal structure and function. For example, the
delicate morphology of podocyte foot processes, the structural basis of the filtration barrier,
is fundamentally dependent upon subtle and highly regulated F-actin organization [2–5].
The cytoskeleton is also the structural basis of cell motility. It is thus not surprising that
alterations in the activities of Rho family proteins, either due to genetic defects or provoked by
cellular injuries, are associated with, and play significant pathogenic roles in acute and chronic
kidney diseases [6–9]. However, the cytoskeleton affects organ function not only through
its structural roles; the cytoskeleton is a regulator of gene expression as well. It exerts this
(somewhat less appreciated yet not less important) function predominantly by controlling the
nucleocytoplasmic shuttling of a select set of transcription factors. This mechanism renders the
cytoskeleton a cell fate-determining device, i.e., a key determinant of phenotype transitions,
plasticity, cell survival/death and injury/repair, critical processes in health and disease. Based
on these functions, the cytoskeleton emerges as an essential “structure-function converter”, a
signaling hub that integrates an array of diverse chemical (e.g., cytokines) and mechanical
(e.g., pressure, tissue stiffness) inputs and links them to gene expression [10–12]. Rho GTPases,
responsive to both mechanical and chemical stimuli [13–15], represent a major afferent arm
of this transcriptional regulation. Central among the Rho family/cytoskeleton-controlled
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transcriptional regulators (coactivators) is the myocardin-related transcription factor (MRTF)
family (see Sections 2–4), comprising of two isoforms, MRTF-A and B, encoded by separate
genes. In this review we use the term “MRTF” when the effect of the two isoforms is not
specifically distinguished. Substantial evidence has been accumulating that MRTF, and its
nucleus-resident transcription factor partner, serum response factor (SRF) play important
roles in proliferation, phenotype control (e.g., epithelial-mesenchymal transition, fibroblast-
myofibroblast transition), secretory profile, matrix generation, oxidative state, intermediate
metabolism, cytoskeleton organization, contractility and cell migration, and thereby in the
pathogenesis of multiple disease states (see Section 5). MRTF, primarily through its transcrip-
tional and epigenetic actions, has emerged as a crucial mediator of organ fibrosis [16–18].
Considering the kidney, MRTF has been implicated in fibrogenesis in the context of dia-
betic and obstructive nephropathy as well as in the pathobiology of acute kidney injury (see
Section 6). Indeed, MRTF contributes to a slew of distinct fibrogenic processes in various
renal cell types, including podocytes, tubular, mesangial and endothelial cells, fibroblasts and
macrophages, encompassing the glomerular, tubular, interstitial and immune compartments
(Sections 5 and 6). Ubiquitously expressed in both epithelial and mesenchymal cells, MRTF is
also a key factor in the crosstalk between these tissue compartments (epithelial-mesenchymal
interaction), a process of key importance during injury/repair. Finally, it is worth noting
that MRTF forms interactive networks with other major fibrogenic transcriptional regulators,
including the TGFβ-controlled Smad proteins [19,20], and the Hippo pathway effectors, YAP
and TAZ [21–23], all of which are involved in the pathogenesis of (renal) fibrosis. The nuclear
accumulation of YAP and TAZ are also directly regulated by the acto-myosin cytoskeleton [24],
representing another major pathway whereby Rho family GTPases affect gene expression.

In this overview, we will summarize pertinent information regarding the basic biology
of MRTF and its role in renal pathobiology, highlighting the underlying cellular and
molecular mechanisms. We point to outstanding questions and hope to raise awareness
about the central importance of this transcriptional regulator in kidney disease, and about
its potential exploit as a therapeutic target.

2. MRTFs: Their Discovery and Modus Operandi

SRF was long known to activate two disparate programs: it can drive immediate early
genes (like c-fos), involved in growth factor-mediated cell proliferation, and it can also induce
expression of muscle genes, specifying a tissue differentiation program [25–29] (reviewed
in [30]). However, the molecular mechanism that could act as a switch between such distinct
functions remained an enigma for a while. It was then discovered that (1) RhoA-activating
mediators, such as lysophosphatidic acid, can stimulate SRF-dependent transcription, and
(2) the active forms of RhoA, Rac1 and Cdc42 are also potent inducers of this process [31,32].
Moreover, while SRF was known to associate with members of the ternary complex factor
(TCF) family [33], and the TCF/SRF complex was shown to bind to gene promoters via
neighboring cis-elements (TCE, and SRE, respectively), Rho family-induced activation of SRE
was TCF-independent [31,34,35]. Importantly, actin polymerization per se was shown to drive
SRF-dependent transcription [35,36]. These results forecasted the existence of another SRF
interactor that might link this transcriptional pathway to Rho GTPases and the cytoskele-
ton. The breakthrough arrived with the near-parallel discovery of MRTF (also known as
Megakarocytic Acute Leukemia (MAL); megakaryoblastic leukemia (MKL) or Basic, SAP And
Coiled-Coil Domain (BSAC) Protein) and its mode of action by the Olson [37] and Treisman
laboratories [38]. The identification of MRTF and its modus operandi explained both the Rho-
dependence of the SRF pathway (see below), and the disparate roles of SRF as an early gene
inducer vs. a differentiation driver. The former action manifests when SRF is in complex with
TCF, and the latter when SRF pairs up with MRTF or myocardin, the eponymous, (cardiac)
muscle-specific family member [39].

Initially myocardin was identified in a search for muscle-specific SRF activators [40]. It is
expressed in smooth and cardiac muscle during development but is restricted to cardiac muscle
in adult life. Myocardin binds to and activates SRF, which occupies the CC(A/T)rich6GG cis
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element or GArG box (the canonical SRE) on the DNA. Myocardin belongs to the SAP (SAF-
A/B, Acinus, PIAS) family of chromatin-remodeling proteins, and similar to other members,
it is constitutively nuclear. Importantly it is not activated by Rho GTPases. From here, the
identification of MRTFs and their connection to Rho signaling followed two (converging)
paths. Based on gene homology, Wang et al., from the Olson group cloned mouse MRTF-A
and MRTF-B [37], and showed that these proteins are expressed in a large variety of tissues
and organs, and are potent activators of SRF-dependent transcription. It was also uncovered
that MRTF-A is identical with MAL, a previously cloned human protein, the gene of which
undergoes chromosomal translocation (t(1;22)) and fusion with the gene encoding OTT, an RNA-
binding protein [41,42]. The resulting gene product, OTT-MAL, is a deregulated, constitutive
activator of SRF [43,44] and the pathogenic culprit of megakaryoblastic acute leukemia [42,44].
Finally, coming from an immunological angle, BSAC, an anti-apoptotic transcription factor was
described, which exhibited strong capacity to activate CArG-containing promoters [45], and
proved to be identical with MRTF.

In parallel with these genetic studies, Miralles et al., in the Treisman lab [38] identified
MAL (MRTF) as the RhoA/actin-regulated SRF activator, thereby finding the hitherto
missing link. As opposed to myocardin, MRTF is predominantly cytosolic in resting cells
and Rho activation induces its nuclear translocation (Figure 1).
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Figure 1. The regulation of MRTF subcellular localization and transcriptional activity by the actin 
cytoskeleton MRTF-A/B are transcriptional coactivators regulated by F/G actin ratio. Cytosolic 
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Figure 1. The regulation of MRTF subcellular localization and transcriptional activity by the actin
cytoskeleton MRTF-A/B are transcriptional coactivators regulated by F/G actin ratio. Cytosolic
G-actin binds MRTF masking a Nuclear Localization Sequence (NLS) (see Figure 2). Activation
of small Rho GTPases promotes F-actin polymerization, thereby reducing the cytosolic G-actin
pool, and causing G-actin to dissociate from MRTF to unmask the NLS, which enables importin
α/β-dependent nuclear translocation. In the nucleus (1) MRTF binds SRF forming the MRTF/SRF
complex which induces the transcription of various genes (SRF-dependent transcription); (2) MRTF
can independently facilitate transcription of genes via its SAP domain (SAP-dependent transcription);
and (3) MRTF can bind other TFs (e.g., smad3, TAZ) which induce transcription via alternative non-
CArG dependent cis-elements. Additionally, the nuclear F/G actin ratio regulates MRTF function.
Increased mDia activity enhances MRTF/SRF transcriptional activity, while nuclear G-actin binding to
MRTF supports CMR1-dependent nuclear export. Together, the actin cytoskeleton acts as an integral
regulator of MRTF-dependent gene expression (dotted arrows). (Created with BioRender.com,
accessed on 15 April 2021).
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Table 1. Posttranslational modifications/modifiers of MRTF: phosphorylation, acetylation, and SUMOylation. 
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Figure 2. Schematic of MRTF domain architecture, co-factor interaction, and posttranslational modification. MRTFs contain 3
N-term RPEL domains (R1–3) enabling actin binding, 2 interspersed basic amino acid regions (B3, B2) containing the nuclear
localization sequence (NLS); Leucine Zipper (LZ) which is necessary for MRTF dimerization and MRTF/SRF-dependent
transcription; B1 region, Q region, SAP domain, PPxY motif, and a Transcriptional Activation Domain (TAD), all of which
are necessary for binding various regulators and co-factors to regulate MRTF-dependent transcription. Posttranslational
medications (PTM) of these domains regulate MRTF nuclear accumulation and/or transcriptional activity (see Table 1).
Residues indicated include those known to be modified by phosphorylation (P), acetylation (Ac) or SUMOylation (S),
with the modifiers noted above. Green indicates that the residue/PTM enhances MRTF activity, red indicates that the
residue/PTM suppresses MRTF activity, and blue indicates no known role. Molecules with known interaction sites within
MRTF are depicted spanning the domains which they are suggested to bind. This includes: (1) regulators of MRTF activity
(Figure 1); (2) regulators of PTM with known binding sites; and (3) transcription factors (TF) or co-factors, which bind to
MRTF and regulate downstream gene activation (see Table 2). (Created with BioRender.com, accessed on 01 June 2021).

Table 1. Posttranslational modifications/modifiers of MRTF: phosphorylation, acetylation, and SUMOylation.

Enzyme Site
Modified

Domain
Modified Binding Site Effect on MRTF

Localization/Stability
Effect on MRTF
Transcriptional

Activity
Reference

Phosphorylation

ERK S98 between
RPEL 1 and 2 RPEL1 Promotes MRTF nuclear

import/prevents nuclear + [46]

ERK S33 N-term
of RPEL1 N/D Promotes MRTF

nuclear export N/D [46]

ERK S454 Between SAP
and LZ N/D Promotes G-actin binding

and MRTF export N/D [47]

P38 N/D N/D N/D +

MK2 S351/371 Between Q
and SAP N/D N/D No effect [48]

ROK S82/T92 RPEL 1 +

GSK3β N/D N/D

Binds MRTF via
Smad3-

dependent
mechanism

Promotes MRTF
ubiquitin-mediated

degradation
− [49]

Ubiquitination

Ubiquitinase

CHIP N/D N/D TAD
Promotes MRTF

ubiquitin-mediated
degradation

− [50]
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Table 1. Cont.

Enzyme Site
Modified

Domain
Modified Binding Site Effect on MRTF

Localization/Stability
Effect on MRTF
Transcriptional

Activity
Reference

Acetylation

Histone Acetyl Transferase (HAT)

P300 K235/237/253/255N-term
Binds

myocardin
C-term

N/D −/+ [51]

Lysines are
conserved
between

myocardin
and MRTF

B1 Binds MRTFA
C-term (TAD) N/D + [52]

pCAF

Lysines are
conserved
between

myocardin
and MRTF

B1 N/D Promotes MRTF nuclear
translocation + [53]

Histone Deacetyl Transferase

HDAC5 N/D N/D
Binds MRTF

(domain
undescribed)

Prevents MRTF-A nuclear
translocation − [54,55]

HDAC6 N/D N/D
Binds MRTF

(domain
undescribed)

Regulates MRTF-A total
protein (supresses) − [56]

SIRT1

Lysines are
conserved
between

myocardin
and MRTF

B1
Binds MRTF

(domain
undescribed)

N/D + [57]

SUMOylation

UBC9 K499, 576,
and 624

C-term region
(C-term LZ?) N/D No effect − [58]

SUMO-
1/PIAS1 K445 C-term region

(C-term LZ?)

385–586 aa
(C-term after

SAP?)
No effect + [59]

N/D, Not Determined; − or + notes if the molecule affects MRTF transcriptional activity negatively or positively.

Table 2. Transcription factors and transcriptional co-factors interacting with MRTF.

Transcription
Factor Domain Bound Effect on MRTF

Localization/Stability
Effect on MRTF

Transcriptional Activity Reference

SRF B1/Q N/D + [37]

FHL2 N-term
(RPEL/B1-3/Q)

Increased myocardin
protein levels + [60,61]

N-term
(RPEL/B1-3/Q)

Increased MRTF-A
protein levels +

B1/Q Decreased MRTF-B
nuclear localization −

YAP/TAZ C-term (PPxY) Decreased MRTF
nuclear accumulation −/+ [22]

Smad3 B1 Promotes MRTF degradation non-CArg = +; CArG = − [19,20]

SP1 N/D N/D + [62]

NFκB/p65 B1/Q N/D −/+ [63,64]

Stat5 Q N/D non-CArG/ICAM-1 = + [65]

Stat3 N/D N/D + [66]

N/D, Not Determined; − or + notes if the molecule effects MRTF transcriptional activity negatively or positively.
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Moreover, the effect of Rho is conferred by actin remodeling. MRTF is an actin
monomer- (G-actin) binding protein and its association with G-actin inhibits its nuclear
accumulation. This is, in part, due to G-actin-mediated masking of MRTF’s nuclear localiza-
tion signal (NLS) [67] but also to the faster export of the MRTF/G-actin complex from the
nucleus [68,69]. These findings unraveled a strikingly elegant and powerful mechanism.
MRTF rapidly cycles across the nuclear membrane in resting cells. Upon cytosolic Rho
activation, due to the ensuing F-actin assembly, G-actin “is stolen” (dissociates) from MRTF,
facilitating its import; in parallel nuclear Rho activation, via the ensuing nuclear actin
polymerization, inhibits MRTF efflux. Furthermore, actin binding to MRTF in the nucleus
also inhibits its transcriptional activity [12,68]. Taken together, compartmentally regulated
increases in actin polymerization shift MRTF to the nucleus, and unleash its transcriptional
potential. A plethora of factors (e.g., guanine nucleotide exchange factors (GEFs), GTPase
activating proteins (GAPs) [9,70–72] regulate Rho GTPases and/or induce posttranslational
modification of proteins involved in actin sequestering (e.g., thymosin [73]), severing (e.g.,
cofilin [36,74–76]) and polymerization (e.g., mDIA [69,77]) or modify actin itself [78]. All
of these regulate MRTF, which thus emerged as a major highway connecting cytoskeletal
state to gene expression.

3. Structure

MRTF-A (MAL, MKL1) and MRTF-B (MAL16, MKL2) are encoded by different genes
(chromosomes 22 and 16 in human, respectively) but share a high level of homology and
a similar domain structure. They contain three N-terminal RPEL motifs (named for the
corresponding amino acids), interspersed with two basic regions (B3, B2) comprising a
bipartite NLS, followed by another basic region (B1), a glutamine-rich sequence (Q), the
family-defining SAP domain, a coiled-coil leucine zipper (LZ) motif and a C-terminal
transactivation domain (TAD) (Figure 2).

The RPEL motifs are the G-actin binding sites, which along with two spacer regions
allow the formation of a pentameric G-actin/MRTF complex [79,80]. Occupancy of the N-
terminus by 5 actins buries the bipartite NLS, thereby inhibiting importin α/β-dependent
nuclear import [80–82]; in fact, the importin α/β complex competes with actin for the
RPEL motif [81]. Association of actin with the spacer regions (between the RPELs) may
also be necessary for exportin-1- (CRM-1)-mediated export [79,83]. Moreover, actin binding
is cooperative, and the trimeric G-actin/MRTF complex is still mainly cytosolic. Thus,
MRTF could respond sharply to changes in G-actin concentration around a threshold
level [79]. Overexpression of non-polymerizable G-actin [38], or actin depolymerization by
the monomer sequestering drug, latrunculin A completely abolishes nuclear MRTF accu-
mulation, as expected. However, paradoxically, Cytochalasin D or Swinholide, two toxins
that also induce F-actin disassembly, are potent inducers of MRTF nuclear translocation
because they disrupt the MRTF-G-actin interaction [36,84].

The B1 basic domain is also necessary for nuclear import [38], and—together with the
Q-rich stretch—for the binding of SRF [85]. The Q-domain also harbors one of the leucine-
rich sequences (L2), which serves as a CRM1-dependent nuclear export signal (NES). L1
is located in the RPEL region, and disruption of either L1 or L2 induces nuclear accumu-
lation [83]. The SAP domains function as adaptors in protein-protein interactions and
have DNA binding capacities, through which they regulate chromatin organization [86,87].
Accordingly, MRTF can also directly contact DNA [85], a feature that has at least two
important functional connotations: first, MRTF (partly through this mechanism) may affect
transcription in an SRF-independent manner, and second, MRTF emerges as an important
epigenetic factor [63,88–91] regulating the histone code (acetylation, methylation) and
chromatin remodeling. These actions represent an important facet of the pathophysiologic
roles of MRTF, as will be detailed in the context of various disease states. The LZ motif is in-
volved in homo- and heterodimerization of MRTF isoforms [39,92], which may impact the
rate of MRTF shuttling and thus duration of its action, constituting an understudied aspect
of MRTF regulation. The TAD lends potent transcriptional activity to MRTF-interacting
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transcription factors, primarily to SRF but also alternative partners (e.g., SP1 and Smads,
see below).

4. Regulation

MRTF activity is controlled primarily by its nuclear import and export, which are
in turn dictated by the state of the actin cytoskeleton, set by a large cohort of Rho family
regulators and effectors, as discussed above. Furthermore, cytoskeleton-regulating proteins
may affect MRTF not only through their direct effect on cytoskeleton dynamics (actin
polymerization). For example, actin nucleation-promoting factors N-WASP, WAVE2 and
JMY activate MRTF because they directly compete with it for G-actin binding through
their WH2 domain [93,94]. In addition to the level of available G-actin, MRTF is also
regulated by two other main factors: its posttranslational modification and interaction with
other regulatory proteins. These inputs impact MRTF’s localization, transcriptional activity
and stability.

4.1. Posttranslational Modifications

It was observed early on that activation of either the Ras or the Rho signaling pathway
elicits upward shifts in the molecular mass of MRTF, consistent with phosphorylation [38].
Indeed, MRTF contains 26 putative S/T phosphorylation sites, which can positively or
negatively modify its activity [46,47] (see Table 1). Based on pharmacological and/or bio-
chemical approaches, a variety of kinases have been implicated in MRTF phosphorylation
including ERK [38,47], p38 MAPK (p38) [95] and its downstream effector MK2 [48], as
well as GSK3β [49]. These can either directly or indirectly alter MRTF phosphorylation
and consequently its localization or stability. Rho kinase (ROK), the most plausible link
connecting Rho signaling to MRTF phosphorylation also impacts MRTF localization and ac-
tivity [16,96] but it remains unclear if this involves direct phosphorylation. Some pertinent
mechanisms are summarized below.

ERK-mediated phosphorylation of S98 in the RPEL motif of MRTF-A facilitates nuclear
accumulation by inhibiting actin binding [46]. This finding suggests that in addition to the
cellular G-actin level, G-actin affinity of MRTF can also be modulated, which calibrates its
cytoskeletal sensitivity without a change in the cytoskeleton per se. Moreover, the same
kinase can target multiple sites, with differing effects: e.g., ERK-mediated phosphorylation
of S454 in the LZ motif was reported to promote nuclear exit of MRTF, presumably because
it facilitates G-actin binding that supports nuclear efflux [47]. Thus, ERK may induce
increased nuclear import (“on” effect) followed by enhanced nuclear export (“off” effect),
overall accelerating MRTF shuttling.

The activation of p38, downstream from cell-cell contact disruption [97], osmotic
stress [76] or TGFβ stimulation [95] is required for nuclear accumulation and/or increased
transcriptional activity of the already nuclear MRTF. We found that pharmacological
inhibition or siRNA-mediated downregulation of p38 reduced the TGFβ-induced shift in
the molecular mass of MRTF, indicating an effect of phosphorylation [95]. Inhibition of p38
also prevented the nuclear accumulation of MRTF in vivo in a right ventricular pressure
overload-induced cardiac fibrosis model [98]. Relevantly, p38 has a paramount role in organ
(e.g., renal) fibrosis [99], and the p38 inhibitor Pirfenidone—the sole antifibrotic drug in
clinical practice [100,101] was also shown to reduce TGFβ-induced MRTF phosphorylation
in tubular cells [95]. Nonetheless the scenario is complex as SRF is also phosphorylated and
activated by p38 [102]. Finally, the p38 effector MK2 was shown to directly phosphorylate
MRTF (S351, S371) but the functional consequences remain unclear [48]. Taken together,
p38 has emerged as an important and therapeutically targetable modulator of MRTF, but
future work is warranted to address the exact underlying mechanisms.

GSK3β was described to phosphorylate myocardin and suppress its transcriptional ac-
tivity, thereby limiting atrial natriuretic factor-induced hypertrophy of cardiomyocytes [103].
Subsequently, we have shown that GSK3β is recruited to MRTF by Smad3, and induces
phosphorylation, consequent ubiquitination and degradation of MRTF in tubular cells.
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β-catenin competes for Smad3 with GSK3β, and thus it stabilizes MRTF [49]. Since GSK3β
is the key enzyme responsible for β-catenin degradation as well, and both β-catenin and
MRTF are important mediators in organ (e.g., kidney) fibrosis, GSK3β could suppress
fibrogenesis, in part, by promoting the degradation of these transcriptional regulators.
Phosphorylation-dependent ubiquitination of myocardin is mediated by E3 ligase C termi-
nus of Hsc70-interacting protein (CHIP) [50]. While proteasomal degradation of MRTF has
been well documented [49,104], the phosphodegron and the responsible ubiquitin ligases
remain to be identified.

As mentioned above, active Rho provokes MRTF phosphorylation [38], and ROK
inhibition abrogates S1P- [96,105], TGFβ- [106], osmotic stress- [76] or force transmission-
induced [74] MRTF activity. However, to our best knowledge, direct phosphorylation of
MRTF by ROK has not been shown (as yet). Nonetheless MRTF does contain ROK target
motifs, and we found that phosphomimetic mutations of these (S82D and T92D) in the
MRTF-B RPEL domain redistributes MRTF from the cytosol to the nucleus in tubular cells
(P. Speight and A. Kapus, unpublished observation, (Figure 3). Thus, it is conceivable that
ROK directly targets MRTF, which in turn might impact its actin affinity, a hypothesis
worthwhile of further study.
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Such putative effect may be superimposed on the indirect-cytoskeletal—impact of
ROK on MRTF, which seems to be brought about by two mechanisms. First, ROK promotes
actin polymerization by activating LIM kinase, which phosphorylates and thereby inhibits
cofilin, leading to reduced actin severing and higher F/G actin ratio [107]. Indeed, the
operation of this pathway was shown to be critical for the serum induced rise in SRF
activity [108] and for the force-triggered nuclear translocation of MRTF [74]. Second,
ROK promotes myosin light chain phosphorylation and thereby myosin-dependent con-
tractility [109]. Intriguingly, inhibiting myosin activity by a dominant negative myosin
light chain mutant or by the drug blebbistatin dramatically reduced TGFβ- or cell contact
injury-induced, MRTF-dependent activation of the α- smooth muscle actin promoter, and
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contact disassembly-induced MRTF translocation in kidney tubular cells [16]. These find-
ings suggest that contractility per se might be a regulator of MRTF. While the underlying
mechanisms remain to be defined, acto-myosin dependent force transmission from the
extracellular matrix and the cytoskeleton to the nucleus via the linker of the nucleoskeleton
to the cytoskeleton (LINC) complex [110] emerges as a significant regulator of the traffic of
mechanosensitive transcription factors, including MRTF [111–113]. The LINC complex and
the nucleoskeleton may act by modulating extra- or intranuclear actin assembly [111,112]
or the permeability of the nuclear pore complexes [114,115]. Interestingly both the LINC
complex and myosin were shown to regulate genome-wide transcriptional responses,
with a subset of common target genes [116]. Future work should explore the role of the
LINC complex and myosin in the control of MRTF-dependent transcription, a potentially
important facet of mechanotransduction and the pathobiology of mechanical stress-related
fibrogenic states (tissue stiffness and distension). This aspect may have particular relevance
in renal pathologies since myosin mutations (e.g., in MYH9) show strong association with
chronic kidney disease [117]. Considered together, phosphorylation plays a major role in
MRTF regulation, and the combinatorics of 26 target residues provides enormous versatility
for fine-tuning. Much remains to be learned about this type of control under physiological
and pathological conditions.

In addition to phosphorylation, MRTF is controlled by acetylation (Table 1). The
histone acetyl transferase (HAT) p300 was shown to acetylate myocardin [51], and it likely
mediates MRTF acetylation as well, as HAT and MRTF can form a complex [52]. p300-
mediated acetylation was associated with increased MRTF/SRF activity on promoters
of muscle genes (e.g., MYH9, MYL9 as well as those encoding the matricellular protein
Cyr61 [52]). Conversely, MRTF interacts with Histone Deacetylase 6 (HDAC6) [56], an
enzyme localized predominantly in the cytosol, HDAC5 [54] (present in both cytosol
and nucleus), and Sirtuin 1 (SIRT1) [57], a NAD-dependent deacetylase, localized in the
nucleus. While each can deacetylate MRTF, the functional consequences were different.
HDAC6 inhibition (i.e., increased acetylation) promoted MRTF activity to drive SRF-
dependent α-smooth muscle actin expression; similarly HDAC5 overexpression (reduced
acetylation) mitigated SRF/MRTF-mediated induction of antiapoptotic genes in neuronal
cells [54]. In keeping with this, HDAC5 inhibition (increased acetylation) promoted the
MRTF-dependent proinflammatory gene transcription by stimulating the activity of the
MRTF/Nuclear Factor Kappa B (NFκB) (p65) complex in macrophages [55]. In contrast,
SIRT1 overexpression (i.e., reduced acetylation) increased the capacity of MRTF to activate
the collagen I promoter [57]. Together these results raise two important points. First,
acetylation is a powerful modulator of MRTF, which may have a role in the promoter-
selective regulation of its activity. The overall impact of acetylation may depend on a
variety of factors including (a) the given promoter region; (b) TFs that MRTF partners with
on a promoter; (c) the particular lysine residues targeted by acetylation/deacetylation;
and (d) the cellular compartment in which MRTF is deacetylated. Second, MRTF forms
complexes with histone-modifying enzymes at promoters, wherein its own modification
by these may be a regulator of MRTF’s epigenetic and transcriptional effects.

Sumoylation of myocardin was reported to increase its activity on cardiogenic genes [59],
while—interestingly—MRTF sumoylation at three lysine residues were shown to have a
suppressive effect. Rho enhanced MRTF sumoylation [58], which may act as an inbuilt break
in the control of MRTF activity. Again, this aspect of regulation warrants further studies.

4.2. Regulatory Protein Interactions

In addition to posttranslational modifications, MRTF is controlled by physical interac-
tions with a number of proteins (Table 2). Four and half LIM domain protein 2 (FHL2), a
multifunctional adaptor, is both a target (an MRTF/SRF-dependent gene) and a regulator
of SRF/MRTF signaling. It binds to both SRF and MRTF, and while it stabilizes MRTF,
it can either inhibit or stimulate the transcriptional activity of the SRF/MRTF complex,
depending on the MRTF isoform and the particular promoter [60,61]. Interestingly FHL2
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has been shown to be upregulated in and contribute to the pathogenesis of a variety of renal
diseases, including interstitial fibrosis in diabetic, obstructive or hypertensive nephropa-
thy [118–122]. Importantly, fibroblast-specific deletion of FHL2 attenuated myofibroblast
accumulation (α-SMA expression) and matrix deposition (collagen, fibronectin) in the
unilateral ureteral obstruction (UUO) model of renal fibrosis [122]. The likely mechanism is
that FHL2 is a potent activator of the Wnt/β-catenin and TGFβ/β-catenin pathways (major
drivers of renal fibrosis), and accordingly its absence abrogates the nuclear accumulation
and activity of β-catenin [118,122]. FLH2 also binds to focal adhesion kinase (FAK), which
in turn activates Rac; this pathway was proposed to underlie podocyte effacement in
hypertensive kidney disease. Indeed, FLH2 knockout mice were partially protected against
hypertension-induced albuminuria [121]. Since renal fibrogenesis is associated with MRTF
overexpression [123,124], and MRTF is a driver of FHL2 gene, it is conceivable that MRTF
plays a key role in increased FHL2 expression associated with these pathologies. Moreover,
positive feedback loops may augment these effects, since both β-catenin and FHL2 can
stabilize MRTF, contributing to its upregulation.

Suppressor of cancer cell invasion (SCAI) is a binding partner and inhibitor of MRTF,
which reduces cancer cell migration primarily by suppressing the MRTF-induced β1
integrin production in cancer cells [125]. Remarkably, SCAI is downregulated during
clinical and experimental renal fibrosis [126], which may be one of the reasons for enhanced
MRTF signaling in these pathologies, as will be addressed further in the corresponding
sections. Finally, a variety of transcription factors can bind to MRTF, including Smad3,
TAZ/YAP, SP1, NFκB. These interactions impact not only (mutual) transcriptional activities
but also the nuclear traffic of MRTF; the interplay between MRTF and these TFs will be
further discussed in the relevant sections.

4.3. Regulation of MRTF Transcription

MRTF is also regulated at the transcriptional level, although the underlying mecha-
nisms remain largely uncharacterized. Nonetheless, β-catenin has been recently identified
as an inducer of the MRTF gene [127], suggesting that β-catenin not only stabilizes MRTF
but also enhances its synthesis. While this observation was made in a tumor context, it
may well be relevant in organ fibrosis as well. A very recent report shows that YAP can
also activate the transcription of MRTF [128]. Since MRTF is a key transcriptional regulator
of TAZ [22,95,124], MRTF and the hippo pathway effectors TAZ/YAP appear to form
a positive feedback loop in each other’s transcriptional control. Future studies should
address other regulators of MRTF expression. It is worth noting that several microRNAs
have been implicated in MRTF expression (e.g., [129,130]). This branch of research is in a
nascent state but will likely unearth key mechanisms in regulation of MRTF expression.

5. Targets, Functions, Actions

MRTF regulates a whole spectrum of processes, including development (of skeletal,
cardiac, smooth muscle, neuronal and hematopoietic tissues), cell migration, phenotype
shifts (e.g., EMT), mechanotransduction, wound healing/regeneration, extracellular matrix
formation, cell cycle control, lipid and glucose metabolism and others. Accordingly, MRTF
is involved in several pathologies, most prominently in cancer metastasis formation and
organ fibrosis (for reviews of the various aspects see [11,17,18,125,131–139]). Overall, these
widespread functions are brought about by three sets of mechanisms: MRTF can act as a

(1) transcriptional co-activator for SRF or other TFs
(2) regulator of epigenetic processes and chromosome organization
(3) “moonlighting” protein, when it exerts its effect independent of its role in gene expression.

Each of these mechanisms plays important roles in physiological and pathological processes.

5.1. MRTF as a Transcriptional Coactivator

The most complete assembly of MRTF/SRF target genes was published by Esnault et al. [140],
using MRTF chromatin-immunoprecipitation followed by deep mRNA sequencing (ChIP-
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seq) in fibroblasts. To identify genes likely regulated by MRTF, stringent criteria were
used including (a) serum-inducibility; (b) MRTF ChIP; (c) inhibition by latrunculin A; c)
stimulation by Cytochalasin D. Of the serum-inducible set, 921 genes showed at least
one other criterion, and 683 genes exhibited all of them, with 398 genes containing a
CArG box within 2 kB of the transcription start site (“direct”) and 285 genes within
70 Kb (“near”). Gene ontology (GO) analysis revealed that the corresponding gene prod-
ucts are related to cytoskeleton/focal adhesions, development, transcription, signaling,
growth and metabolism, in accordance with the results of functional studies. Here we
provide examples of “famous” target genes that were shown to be (a) MRTF-dependent
in kidney cells and/or (b) directly related to renal pathologies. These include the con-
tractility protein myosin [16,141], the myofibroblast hallmark α-SMA [16,20,104,142,143],
actin-severing (cofilin), capping (CapZ) [20]) and bundling (filamin) [144]) proteins; fo-
cal adhesion and cell-matrix components (α and β integrins [145]), tenascin [144,146]);
extracellular matrix proteins (collagen [62,147], CTGF [124,148–150]); caveolar proteins
(caveolin 1 [144,151]), fibrogenic cytokines (TGFβ [124]), cell cycle regulators (p21 [152]),
NADPH oxidases [153,154]; and transcription factors, encompassing SRF itself [20], the
EMT drivers Snai1/2 and ZEB2 [155–157] and the Hippo effector TAZ [22,95]. Moreover,
SRF/MRTF-targeted CArG motifs are frequently located in the vicinity of AP1 and TEAD
sites (that are activated by YAP/TAZ), showing that these TFs often regulate the same
genes, and may act synergistically with MRTF [23]. In addition to driving protein genes,
MRTF was shown to induce microRNAs as well in CArG-dependent manner [158]. An
intriguing example is miR-21, which is responsible for the “mechanical memory” of mes-
enchymal stem cells [159]. When plated on stiff surfaces these cells mobilize a fibrogenic
program, and through MRTF-induced upregulation of miR-21 they “remember their stiff
past” (for as long as two weeks) even when subsequently placed on soft surfaces. This
mechanism is of major significance since fibrogenic phenotype shifts represent a serious
impediment in stem cell therapies.

MRTF can impact gene expression not only by pairing up with the “canonical” SRF,
but also with other TFs. These “alternative” interactions can also contribute to (renal)
pathogenesis. In these cases MRTF does not act via the CArG box but through the cis-
element targeted by its alternative partner. E.g. in kidney tubular cells TGFβ was shown to
induce the interaction of MRTF with Smad3 [19,20] and this complex can drive, through a
non-conventional Smad-binding element, the transcription of Snai2 (a.k.a SLUG), a key
EMT-provoking gene suppressor. Snai2 in turn induces the downregulation of epithelial
junction proteins (e.g., E-cadherin) [19]. Interestingly, while Smad3 is necessary for this
CArG-independent MRTF action, binding of Smad3 to MRTF inhibits, the “classic” CArG-
dependent effect of MRTF, e.g., the induction of the α-SMA promoter [20]. Thus, Smad3
has the capacity to act as a switch, redirecting MRTF to alternative targets (see also next
section). The collagen promoter contains a non-canonical CArG box adjacent to a specificity
protein-1 (SP1) sites. Interestingly, mutating these sites or the SP1 inhibitor mithramycin
abrogated the MRTF-induced activation of the collagen promoter. This indicates that SP1 is
necessary for the action of MRTF and the two factors work synergistically [62]. MRTF also
drives the TNFα-induced expression of the RhoA/Rac GEF, GEF-H1 in tubular cells in an
SP1-dependent manner (S. Venugopal, A. Kapus and K. Szaszi, manuscript in preparation).
MRTF can also interact with Stat5, and this complex appears to be critical for driving
fibronectin and ICAM-1 expression-through Stat5 sites—in mesangial cells stimulated
by advanced glycation end product (AGEs) [65], which accumulate during diabetes and
aging [65]. Further, MRTF was shown to physically interact with the NF-κB subunit p65
(RelA), resulting in a mutual inhibition of the action of these TFs. This mechanism underlies
the bone morphogenic protein 4 (BMP-4)-induced anti-inflammatory response in vascular
smooth muscle cells [64], and the reduction in ICAM-1 expression in endothelial cells [160].
On the other hand, MRTF was reported to promote lipopolysaccharide (LPS)-provoked,
p65-dependent induction of inducible nitric oxide synthase (iNOS). Binding of MRTF to
p65 modifies the histone mark at the iNOS promoter [63,91]. These studies indicate that
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CArG-independent actions of MRTF are also important regulators of gene expression, and
they might be inductive or suppressive, depending on the particular genes or the cellular
context. Furthermore, ChIP-seq analysis revealed that MRTF can act as a gene suppressor
as well. This understudied area is a fertile ground for future research.

5.2. MRTF as an Epigenetic Modifier

Epigenetic control (e.g., via histone methylation, acetylation and chromatin remodel-
ing) is a major factor in the regulation of gene expression, and MRTF impacts this process
by several mechanisms (Table 3). MRTF deficiency erased key histone modifications in LPS-
stimulated macrophages. As a determinant of the “trimethyl landscape”, MRTF recruits
SET1, the H3K4 trimethyl transferase to NFκB sites in the promoters of proinflammatory
genes [161], thereby stimulating their expression. H3K4 methylation is also enhanced via
the interaction of MRTF with Ash2/Wdr5 methylation complex in response to angiotensin
induction of the endothelin gene [162]. Interestingly MRTF was also reported to be impor-
tant for demethylation of certain loci (H3K9) [163,164] via recruiting demethylases (e.g.,
KDM3A); these can also augment expression of select set of genes, e.g., those for NADPH
oxidases [164]. MRTF regulates histone acetylation (e.g., at H3K9, H3K18, H3K27, H4K16)
as well by recruiting various histone acetyl-transferase components, including p300, pCAF,
TIP60 and MOF [52,91,123,164]. Conversely, through interaction with histone deacetylases
(as detailed in Section 6) MRTF could contribute to acetylation/deacetylation cycles. Finally,
MRTF controls chromatin remodeling too: e.g., it can recruit Brg1/Brm, components of
the SWI/SNF ATP-dependent chromatin-remodeling complex to endothelin [165] and
other promoters [162]. Since many of these modifications are relevant in various models of
kidney disease, an integrated functional view will be provided in Section 6.

Table 3. MRTF epigenetic modifiers.

Epigenetic
Modifier Modification Type Gene Effect on

Gene Activity Reference

Methylation

SET1 H3K4 trimethyl
transferase

Proinflammatory
genes + [161]

Ash2/Wdr5 H3K4 trimethyl
transferase

Endothelin,
COL1A1/COL1A2 + [123,162]

KDM3A H3K9 demethylase CTGF + [90]

Jmjd1a H3K9 demethylase SMC differentiation
markers − [163]

Acetylation

p300 H3K18/H3K27
acetyltransferase COL1A1/COL1A2 + [123]

TIP60 H4K16
acetyltransferase iNOS + [91]

MOF H4K16
acetyltransferase NOX1/4 + [164]

− or + notes if the epigenetic modifier effects gene activity negatively or positively.

5.3. ”Moonlighting” Functions of MRTF

Our recent studies (manuscript under revision) indicate that both SRF and MRTF are
necessary for serum-induced resorption of the primary cilium (PC). The PC is a microtubule-
based, membrane-surrounded mechanochemical antenna [166,167] that acts as a flow sen-
sor in the tubular epithelium [168,169], and a key regulator of cell division, differentiation
and metabolism in all nucleated cells [170–172]. Ciliary defects are associated with a large
set of severe diseases, so called ciliopathies, the prime examples of which are various forms
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of polycystic kidney disease (PKD) [173–176]. The PC is a dynamic organelle that develops
from the basal body (BB) that arises from the membrane-anchored mother centriole as
the cell leaves the cell cycle, and gets resorbed during cell cycle reentry. PC dissolution is
necessary for cell proliferation because it liberates the BB, which in turn can function as
a mitosis organizing center [177–180]. We found that MRTF downregulation eliminates
serum-induced PC resorption and facilitates ciliogenesis. While SRF and MRTF can impact
the cell cycle and may also drive genes necessary for cilium resorption, our results suggest
that their role in PC regulation goes beyond such transcriptional effects. Remarkably, they
localize to the PC or the BB, and MRTF physically interacts with cilium resorption proteins
(e.g., Aurora A kinase), and ciliogenesis regulators (e.g., CEP290). In accordance with these
findings, a recent BioID screen by the Gingras group showed that MRTF can be in complex
with various BB/PC/centrosomal proteins (https://prohits-web.lunenfeld.ca (accessed
on 15 April 2021). While the mechanistic details await further elucidation, these findings
point to the fact that MRTF and SRF operate not only as TFs. Such moonlighting functions
signify a new chapter in MRTF biology. In addition, they raise the possibility that MRTF
might play a role in the pathogenesis of cystic diseases.

5.4. MRTF Knockouts

Given the wide range of regulated genes and processes, it is surprising that MRTF-A
knockout mice are grossly normal. However, they are unable to nurse their offspring,
because MRTF-A is indispensable for the proper development and function of mammary
myoepithelial cells, and thus for milk ejection [181,182].

The likely reason for the lack of other defects is that MRTF-B (or myocardin) may
fulfill most of MRTF-A’s critical functions. Nonetheless, MRTF-A KO animals show altered
responses in a wide range of disease models and are useful tools to define the pathobiologic
roles of MRTF (detailed for the kidney in Section 6). In contrast, MRTF-B knockouts
are embryonically lethal due to serious cardiovascular defects related to the failure of
differentiation of smooth muscle cells in the brachial arteries [183]. Thus, deletion of
both MRTF-A and B can be achieved only in a tissue-specific manner. This has been
accomplished in the context of the kidney, namely in podocytes, the highly specialized
epithelial cells of the glomeruli. This cell type is a very relevant choice, as tight control of its
subtle actin skeleton is indispensable for proper foot process formation, dynamics and slit
diaphragm structure, which in turn are indispensable for normal glomerular filtration. A
recent elegant study indicates that podocyte-specific deletion of either SRF or MRTF-A and
B (but not one of them alone) causes foot process effacement, proteinuria, azotemia and
reduced expression of podocyte markers [184]. These findings indicate that the SRF/MRTF
system plays a fundamental physiologic role in the kidney. Currently no tubule-specific
MRTF-A and/or B knockout animals exist; their generation would greatly facilitate the
assessment of the physiologic and pathologic functions of MRTF in that compartment.

6. MRTF in Kidney Diseases

Considering the widespread role of MRTF in many processes, it is important to provide
an overall conceptual framework to interpret its contribution to kidney disease. The major
unifying notion is the role of MRTF in phenotype shifts, predominantly as it relates to
organ fibrosis. To highlight these common mechanisms, first we will summarize those
(mostly in vitro) studies that allowed insight into the cellular basis of this function.

6.1. The Epithelium as a Key Initiator of Fibrosis

Fibrosis is a dysregulated form of regeneration characterized by excessive ECM deposi-
tion, and the consequent disruption of tissue architecture and function [185,186]. Regarding
the kidney, essentially all chronic renal diseases, from congenital disorders (like PKD or
Alport syndrome) to acquired nephropathies (e.g., of diabetic, hypertensive, immune-
mediated or obstructive origin) culminate in kidney fibrosis, which histologically manifests
as glomerulosclerosis and/or tubulointerstitial fibrosis [187,188]. The cellular culprit of
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fibrosis is the myofibroblast, a contractile and ECM-producing cell type hallmarked by
the expression of α-SMA. Myofibroblasts can originate from a multitude of cell types
(fibroblasts, endothelial and epithelial cells, pericytes, bone-marrow derived fibrocytes),
and the identification of their sources has been the focus of intensive research for over two
decades (reviewed in [135,189–192]. It was recognized early on that epithelial (tubular)
injury (e.g., due to high glucose levels, hypoxia, hydrostatic pressure, etc.) is one of the
key initiating events of kidney fibrosis. Moreover, epithelial injury was also shown to
be sufficient to trigger robust renal fibrosis. For example, proximal tubule-specific (Six2
Cre-driven) expression of diphtheria toxin (DT) receptor allows selective injury of this
compartment upon administration of low dose DT. This proximal tubule-targeted insult
resulted in robust tubulointerstitial fibrosis (TIF) and glomerulosclerosis [193]. Further
support for the prime role of the epithelium came from genome-wide association studies
(GWAS), characterizing single nucleotide polymorphism (SNPs) in chronic kidney disease
(CKD). These studies revealed that approx. 20% of CKD cases can be linked to certain
single gene variants, while others have a polygenic background with an overall heritability
of 30–50% [194–198]. However, only 5% of these are localized in coding regions of the
genes, pointing to the role of dysregulated expression. Recent elegant work aimed at
linking a given SNP to the actual disease-causing gene built on the hypothesis that dis-
eases are cell-type-specific, and therefore genetic variants are localized to cell type-specific
regulatory regions [199]. To address this presumption, the authors used laser capture
microdissection to isolate the glomerular and the tubular compartments from 151 kidneys,
and then performed a compartment-specific “expression quantitative trait loci (eQTL)”
analysis. Integrating the previous GWAS data, single cell RNA sequencing and epigenetic
studies, they defined correlations between the observed SNPs (eVariants) and the potential
corresponding target genes (eGenes) in a compartment-specific manner. This analysis
identified 27 genes which showed differential expression according to the presence of
the particular GWAS variants. Importantly, large portion of these occurred in (or were
restricted to) the proximal tubules. They concluded that “renal proximal tubules show the
greatest enrichment for GWAS–eQTL target genes (39%)”.

6.2. EMT/EMyT and PEP

While the epithelium initiates the fibrotic process, mesenchymal cells (fibroblasts,
myofibroblasts) are its executors. How is then epithelial initiation linked to mesenchymal
execution? One potential explanation that dominated the field for a long time was that
the epithelium is a key source of (myo)fibroblasts through epithelial-mesenchymal (EMT)
or epithelial-myofibroblast (EMyT) transition (Figure 4). This idea proved to be a fertile
ground to get insight into the underlying cellular pathobiology.

Since the hallmark of the myofibroblast is α-SMA expression, the regulation of this
process in epithelial cells emerged as a key question. The fact that renal epithelial cells
can, in vitro, transform to fibroblasts and myofibroblasts have been documented by a
plentitude of studies [142,200,201]. Moreover, the α-SMA gene, harboring two CArG
boxes in its promoter is a typical SRF/MRTF target. Accordingly, MRTF is regulated by
fibrogenic stimuli [16,97] and is indispensable for epithelial α-SMA expression [97,104].
These early studies allowed us to link MRTF to fibrosis for the first time [16,97]. The
critical inducer of this transformation is TGFβ, the main fibrogenic cytokine. However,
TGFβ- while necessary-is not sufficient for tubular EMT/EMyT. Remarkably the intact
epithelium is resistant to such transformation, and a second hit is needed, which can
be supplied by either the disruption/uncoupling/absence of the intercellular contacts
(which can be induced by wounding, subconfluence or low extracellular calcium concentra-
tion) [16,20,97,202–204] or by mechanical stress (induced by restricted cell geometry, matrix
stiffness, etc.) mboxciteB22-ijms-1204963,B205-ijms-1204963,B206-ijms-1204963,B207-ijms-
1204963. The common factor underlying this second hit is increased cellular tension or
contractility, a result of small GTPase activation and cytoskeleton remodeling. All of these
are potent regulators of MRTF. Interestingly, TGFβ alone is a poor inducer of MRTF nuclear
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translocation [20,95,104,208], while contact injury/mechanical stress triggers robust rise in
nuclear MRTF levels but this is a transient phenomenon. However, TGFβ augments and
prolongs the nuclear accumulation of MRTF [20]. The α-SMA promoter, which contains
cis-elements for three major fibrogenic TF systems—SRF-MRTF (CArG boxes), Smad3
(SBEs) and Yap/TAZ-TEAD (TBEs) side-by-side proved to be an invaluable model to define
the role of these TF pathways under various fibrogenic conditions. Investigation of the
mechanism underlying the synergy between the arms (contact injury and TGFβ) of the
two-hit model of α-SMA expression gave surprising results. TGFβ and injury indeed drive
the α-SMA promoter synergistically but the SBEs are dispensable for this effect; synergy
only requires intact CArG boxes, suggesting that in this system TGFβ acts primarily by
potentiating the effect of MRTF. Moreover, these studies also allowed the definition of
distinct phases of the transition. The first is an early Smad3-phase, when MRTF and Smad3
collaborate to induce a partial EMT. This results in the loss of some epithelial characteristics
and enhanced mesenchymal gene expression. As mentioned above the Smad3/MRTF
complex can induce the expression Snai1/2, major EMT-provoking TFs [19]. The second is
a late Non-Smad3 phase, when MRTF alone turns on a myogenic program [20]. In contrast
to the first phase, the second or myogenic phase is inhibited by Smad3, a finding consistent
with reports showing that Smad3 levels decrease with the progression of (renal) fibro-
sis [209]. Later studies also revealed that combined humoral (TGFβ) and mechanical (cyclic
stretch) stimulation reorders the relationship among the critical TFs. Namely, combined
stimulation favors the association of Smad3 with TAZ. This has two consequences: first,
it liberates MRTF from the MRTF/Smad3 and MRTF/TAZ complexes. Second it allows
Smad3 and TAZ to reach their own cis-elements in gene promoters (e.g., α-SMA) [95].
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Figure 4. Profibrotic epithelial phenotype (PEP) drives fibrosis. Epithelial injury can be secondary
to mechanical forces (stretch and stiffness, intratubular pressure) or chemical insults (high glucose
level, hypoxia), that result in the loss of cell-cell contacts, and inflammation. Together, these events
drive a partial epithelial-to-mesenchymal transition, and the acquisition of the consequent profibrotic
epithelial phenotype (PEP), characterized by increased production and secretion of profibrotic
cytokines. PEP cells communicate with the adjacent stroma via the released cytokines (epithelial-
mesenchymal crosstalk), that stimulate fibroblast-to-myofibroblast transition (F-MyF). Myofibroblasts
secrete additional cytokines that trigger their proliferation, while they also deposit ECM components,
leading to stiffening. On the other hand, PEP reinforces profibrotic stimuli, creating a feed-forward
loop of injury, reinforcement of PEP and accelerated fibrosis.
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While early fate-tracing studies proposed that the tubular epithelium is a major
contributor to the myofibroblast population [210,211], more advanced lineage tracing
methods refuted this scenario (reviewed in [135,190,212]. EMyT is a rare event in situ
and only a small fraction (1–5%) of myofibroblasts is thought to be generated from the
tubular epithelium in various animal models of fibrosis. Instead of a full EMyT, the
epithelium undergoes a partial EMT, characterized by expression of EMT-promoting TFs
(Snai1 and Twist), the loss of solute transporters, upregulation of mesenchymal markers, cell
cycle arrest in G2, reduced fatty acid metabolism, and increased expression of fibrogenic
mediators (TGFβ1) [156,213] and reviewed in [191] and [214]. Although partial, this
mesenchymal shift is critical for fibrogenesis. Accordingly, epithelial deletion of Snai1 or
Twist mitigated fibrosis in various animal models (UUO, folic acid, nephrotoxic serum),
while epithelial overexpression in transgenic animals induced fibrogenesis [156,213]. These
studies indicate that partial EMT is not only a feature but also a driver of renal fibrosis.
How can MRTF be integrated into this refined paradigm? Two important points must be
made. First, MRTF, a master regulator of EMT is a significant contributor to partial EMT as
well. In fact, instead of “partial EMT” we introduced the more accurate term of “profibrotic
epithelial phenotype” (PEP) [124], since the process is not restricted to the features of
EMT (Figure 4). It also involves oxidative reprogramming exemplified by the increased
expression of NADPH oxidases (e.g., Nox4 [153]), metabolic reprogramming, and most
importantly a shift toward a secretory phenotype [124,156,215–219]. The injured epithelium
starts producing fibrogenic cytokines (e.g., TGFβ, CTGF, PDGF, Hedgehog ligands) and
MRTF silencing or pharmacological inhibition (CCG-1423) suppresses the synthesis of
these mediators as well as Nox4 expression [124,153]. The produced cytokines in turn
act on fibroblasts, thereby forming the link between the epithelial and the mesenchymal
compartment (epithelial-mesenchymal crosstalk). MRTF also induces the expression of
TAZ [22,95], another major fibrogenic TF in the kidney [124,153,203,220,221], which also
contributes to cytokine production [124]. Evidence for the MRTF dependence of these
processes in vivo (animal models) will be discussed in the Section 6.3. Second, the role of
MRTF is likely different in the epithelial and mesenchymal compartment. While in the
epithelium MRTF contributes to fibrosis via PEP (Figure 4), in most cases the process does
not go “all the way”, i.e., the epithelium only rarely transforms to myofibroblast. This
inbuilt break against a myogenic program, which is also manifest in the TGFβ resistance of
the epithelium, is worthy of further study. In contrast, in the mesenchymal compartment
MRTF is a key contributor to fibroblast-myofibroblast transition and in fact it is the main
driver of this myogenic transition [17,222,223]. Indeed, MRTF has been described as major
transcriptional driver of fibrosis in a wide variety of organs (including heart, lung, liver,
skin, eye) and disease models [95,123,124,128,153,224–237]. Taken together, on the cellular
level MRTF contributes to fibrosis both by partial EMT/PEP and by driving fibroblast-
myofibroblast transition (Figure 4). In addition, as will be detailed in Section 6.3.3 it also
impacts immune cell regulation.

6.3. MRTF in Animal Models of Kidney Disease
6.3.1. Diabetic Nephropathy (DN)

Diabetes is one of the leading causes of CKD, and conversely≈30% of diabetic patients
(over 460 million people worldwide) develops CKD, indicating the tremendous medical
and social implications of this condition. The first direct indication that MRTF may play an
important role in DN came from the studies of Fintha et al., who showed that the MRTF
inhibitor protein SCAI is downregulated in the kidneys of diabetic rats concomitant with
the development of fibrosis [126]. Definitive evidence was then obtained by Xu et al., who
used two models of DN, high fat diet (HDF) and streptozotocin (STZ)-induced diabetes,
and compared renal function and histology in WT and MRTF-A-deficient (KO) mice [123].
In both models, the absence of MRTF-A improved the serum albumin/creatinine ratio or
mitigated urinary albumin excretion, reduced Type IV and Type I Collagen expression,
immune cell (lymphocyte, neutrophil and macrophage) infiltration, mesangial matrix ex-



Int. J. Mol. Sci. 2021, 22, 6040 17 of 32

pansion and TIF. In addition, both HDF and STZ increased MRTF-A mRNA levels in WT
mice. Importantly, ChIP revealed that both insults increased the binding of MRTF to the
promoters of the collagen genes Col1a1 and Col1a2. To provide mechanistic insight the
authors used WT or KO fibroblasts in vitro and showed that high glucose induced MRTF
engagement of the collagen promoters. They then performed multiple ChIP assays using
various antibodies against either particular histone marks or the enzymes involved in their
generation. Overall, they found that high glucose is associated with histone acetylation
(in histone 3 at lysine 18 and 27, H3K18Ac and H3K27Ac), and trimethylation (H3K4Me3).
Absence or downregulation of MRTF prevented these modifications. Similar observations
were made in DN mice as well. Finally, they found that high glucose triggered the re-
cruitment of the histone acetyl transferase p300 and the histone trimethylase component
WDR5 to collagen promoters, both of which were necessary for collagen promoter acti-
vation. Importantly, genetic deletion or silencing of MRTF prevented the recruitment of
both enzymes. The same lab extended these studies to the induction of CTGF, a critically
important fibrogenic mediator [90]. CTGF was well known to be driven by MRTF via a
classic CArG box [143,238], but this recent report indicates the involvement of epigenetic
mechanisms as well. CTGF induction is reduced in MRTF KO mice. In addition to the
above-described changes in histone acetylation, STZ or high glucose (in vitro) decreased
H3K9 dimethylation (H3K9Me2) at the CTGF promoter, and this effect was also prevented
by the absence/downregulation of MRTF. These results were recapitulated in primary
renal tubular epithelial cells as well, indicating the importance of MRTF in epithelial gene
expression. Finally, the change in H3K9Me2 was attributed to the recruitment of the histone
demethylase KDM3A, a process that required MRTF. KDM3A and MRTF formed a complex
at the CTGF promoter. Taken together, MRTF expression and activity increase during
DN, and MRTF significantly contributes to the ensuing pathology, at least in part, via
epigenetic modulation of gene transcription. Whole body MRTF-A KO animals are substan-
tially protected against the loss of kidney function and the development of fibrosis, which
suggests that—somewhat unexpectedly—MRTF-B cannot substitute for MRTF-A in his
regard. Compartment- and isoform-specific regulation remains to be elucidated. A concise
summary of MRTF’s involvement and the underlying mechanisms in DN-associated and
other kidney diseases is provided in Table 4.

Table 4. MRTF in kidney diseases.

Disease Animal/Cell Model Experimental Conditions Suggested Mechanim Reference

Diabetic
nephropathy

REC cell model
and WT rat

SCAI overexpression,
rat UUO

SCAI→ blocks MRTF-A→ locks
fibrosis [126]

Mrtf-a KO mice and
fibroblasts

In vivo (STZ, high fat diet),
in vitro

(STZ, high glucose)

MRTF-A is necessary to recruit
histone acetyl- transferase and
methyl- transferase to collagen
promoters and activate type I

collagen transcription

[123]

MRTF-A KO mice and In vivo (STZ, high fat diet)
In vitro (STZ, high glucose)

MRTF-A regulates histone
acetylation and methylation on the
CTGF promoter, partially through

interacting with KDM3A

[90]

Obstructive
nephropathy

WT mice, REC
cell model

UUO, in vitro functional
studies

Epithelial MRTF-A links
cytoskeletal and organization to

redox state, through NOX4
[153]

AMPK1α KO
conditional (fibroblast) UUO AMPK1α→ cofilin→F-actin→

nuclear MRTF-A [239]

WT mice UUO, MRTF-A inhibitor
(CCG1423)

RhoA→MRTF-A→ TAZ→ PEP
→ fibrogenesis

[124,220,240,
241]

WT mice UUO+ SCAI inhibition SCAI→ blocks
MRTF-A→ blocks fibrosis [126]
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Table 4. Cont.

Disease Animal/Cell Model Experimental Conditions Suggested Mechanim Reference

Acute kidney
injury

Macrophage-specific
MRTF-A KO mice

Ischemia-reperfusion
lipopolysaccharide

MRTF-A→MYST1→ H4K16Ac
at NOX→ ROS [154]

Polycystic
kidney disease

PKD patients Microarray comparison MRTF-A/SRF transcription
network is upregulated [242]

PKD1 KO in tubules
Loss of PKD→ LARG→ RhoA→

YAP/TAZ→ c-Myc→
cystogenesis

[243]

PKD1 patients
PKD1 KO mice

ROK-inhibitor
(hydroxyfasudyl)

treatment

Loss of PKD→ ArhGAP35→
RhoA/ROK [244]

Pkd2+/−vascular
smooth muscle phenylephrin stimulation Loss of PKD→ RhoA→

F-actin→ αSMA [245,246]

Pkd1 and Pkd2
KO mice

Expression and
localization studies

Increased MRTF expression
and nuclear localization

Kapus lab,
unpublished

data

6.3.2. Obstructive Nephropathy (ON)

Obstructive uropathy is the most prevalent cause of CKD in children [247], and unilat-
eral ureteric obstruction (UUO) is the most frequently used rodent model of TIF [248]. UUO
is a model of mechanically induced fibrosis, inasmuch as the initiating factor is an increase
in hydrostatic pressure along the nephron. The first indication of the potential involvement
of MRTF came from studies showing that during UUO the expression of the NAPDH
oxidase Nox4 increases in the tubular epithelium, and MRTF was shown to be necessary
for the injury-induced induction of Nox4 in vitro in tubular cells [153]. In addition to
MRTF, TAZ—a downstream target of MRTF—was also required for Nox4 expression, and
pharmacological inhibition of TAZ eliminated Nox4 expression in the UUO-challenged
epithelium. In kidney fibrosis Nox4 was proposed to play both a protective role (at low
levels) and a pathogenic one (and high levels) (reviewed in [249]), implying that MRTF
may be involved in these processes. Next, Wang et al. [239] proposed that MRTF might
play a fibrogenic role in UUO in the fibroblast compartment. Their studies were aimed at
explaining the mechanism whereby AMP-activated kinase-α1 (AMPKα1), a major sensor
of cellular energy levels, contributes to renal fibrogenesis [250]. During UUO AMPKα1
levels are increased, whereas global or fibroblast-specific deletion of AMPKα1 reduces
fibrosis [239,250]. The mechanism was investigated in rat kidney fibroblasts in vitro; phar-
macological activation of AMPKα1 led to increased cofilin phosphorylation (i.e., less F-actin
severing), thereby promoting net F-actin polymerization. Concomitantly, the AMPKα1
agonist also induced nuclear translocation of MRTF, which was proposed to be causative of
myofibroblast transition. While this could be one of the MRTF-activating mechanisms, our
recent studies revealed that early UUO leads to robust RhoA activation, predominantly
in the tubular epithelium [124]. Accordingly, we found increased nuclear translocation
of both MRTF-A and B in focal regions of the tubular epithelium, providing direct evi-
dence for MRTF activation in UUO. Moreover, MRTF-A and MRTF-B were increased at the
mRNA and protein levels as well, an effect detectable already 24 h post-injury. To assess
the functional significance of MRTF signaling, mice were treated with the MRTF inhibitor
CCG-1423. In control animals UUO significantly increased the mRNA (or protein) levels of
fibrogenic cytokines, TGFβ, CTGF, PDGF, and Indian hedgehog, and of these, CCG-1423
significantly suppressed TGFβ and CTGF production, concomitant with mitigating ECM
deposition and α-SMA expression. MRTF inhibition also suppressed the induction of TAZ
in the tubular epithelium. Parallel in vitro experiments have shown that mechanical stress
(cyclic stretch) increased the synthesis of all of the above-mentioned cytokines in tubular
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cells, and each was suppressed—to a various degree—by pharmacological inhibition or
downregulation of MRTF or TAZ. To further substantiate the PEP conceptin vivo, we
isolated the tubular compartment using laser capture microdissection and have shown
that UUO enhanced tubular TGFβ, CTGF and TAZ expression, and each of these were
reduced by CCG-1423 [124]. TAZ emerges as a major effector of MRTF, as evidenced by the
fact that TAZ is strongly induced in various fibrotic conditions and its inhibition mitigates
renal fibrosis [220,240,241]. Finally, the MRTF inhibitor SCAI was also downregulated
in UUO [126]. Taken together, these findings show that MRTF expression and activity
increase in obstructive nephropathy. Several mechanisms (RhoA- and AMPKα1 mediated
cytoskeleton remodeling and SCAI downregulation-induced desinhibition) contribute to
this process. In the mesenchymal compartment MRTF directly facilitates myofibroblast
transition, while in the tubular epithelium it promotes PEP, leading to oxidative changes,
TAZ and cytokine expression. Thus, the Rho/MRTF/TAZ pathway emerges as a key
mediator of fibrosis and represents a potential therapeutic target.

6.3.3. Acute Kidney Injury (AKI)

The most common causes of AKI, characterized by a sudden decrease in renal function,
include ischemic insults, sepsis and poisoning, wherein hypoxia, pathogen- or damage-
associated molecular patterns, inflammatory cytokines and environmental toxins or drugs
damage the kidney, and particularly the tubular epithelium [251–253]. Its incidence is high
(estimated to be 2–20% in hospitalized patients) and its mortality remains around 20% [251].
Of recent interest, AKI develops in 10% of hospitalized Covid-19 patients [254]. Beyond the
acute phase, AKI was found to be associated with an 8.8-fold risk for CKD [255]. Thus, AKI
represents a common and major clinical challenge. So far only one study addressed the
role of MRTF in AKI. The results point to a novel cellular mechanism. Liu et al., in the Xu
lab [154] used two AKI models: ischemia/reperfusion (I/R) and lipopolysaccharide (LPS)
injection. Both insults caused deterioration of kidney function (blood urea nitrogen, plasma
creatinine and urinary albumin/creatinine ratio), increased Kidney Injury Molecule-1
expression, high ROS production and a concomitant rise in renal Nox1 and Nox4 levels.
All of these changes were ameliorated in MRTF-A knockout animals or upon MRTF
inhibition by CCG-1423 in WT mice. Nox4 was upregulated in tubular cells but even more
prominently in macrophages, while no change was observed in podocytes. This prompted
the authors to concentrate on macrophages, showing that hypoxia/reoxygenation (H/R)
induces MRTF-dependent Nox1 and Nox4 upregulation in these cells. Most importantly,
myeloid cell-specific deletion of MRTF (crossing MRTF floxed mice with the Lyz2-Cre
animals) was sufficient to improve renal function and reduce injury. Mechanistically, H/R
caused histone modification, particularly H4K16 acetylation in the Nox promoters. The
absence or inhibition of MRTF prevented these changes, as well as the recruitment of Myst1,
one of the acetyl transferases that preferentially targets H4K16. Finally, a pharmacological
Myst1 inhibitor ameliorated renal function and histological changes provoked by I/R.
While this elegant study provided firm evidence for the role of MRTF in the pathogenesis of
AKI, several questions remain open and are worthy of further study. Interestingly the major
NADPH oxidase in macrophages is Nox2, whose deletion does not seem to alter the course
of AKI [256]. Also, the mechanisms whereby MRTF act might be species-dependent, as the
human proximal Nox4 promoter contains an SRF/MRTF-regulated GArG box [153], which
is not present in the mouse promoter. The exact mechanism through which MRTF binds
to promoters to recruit the epigenetic machinery also remains to be elucidated. Further,
besides epigenetic regulation, MRTF might act by transactivating other TFs, such as SP1
and NFκB, both involved in Nox regulation. Indeed, NFκB was shown to bind MRTF in
macrophages [257]. Accordingly, MRTF may have a broad (and largely uncharacterized)
role in the regulation of inflammatory gene expression [91,258]. The role of MRTF in
determining macrophage phenotype (proinflammatory vs. regenerative) also requires
further study. Clearly, as Liu et al. [154] have emphasized, further studies should define “a
more holistic role for MRTF-A in AKI” in particular, and in inflammation in general.
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6.3.4. Polycystic Kidney Disease (PKD)—Solidifying a Hypothesis

PKD is the most common inherited renal disease (≈1:1000) [259,260] and its most
prevalent form, Autosomal Dominant PKD (ADPKD) is caused by mutations in one of
two primary cilium-associated membrane proteins, polycystin 1 (PC1 or PKD1, Pkd1 gene
product, 85%) and polycystin 2 (PC2 or PKD2, Pkd2 gene product, 15%) [175,261]. These
proteins together can form a mechanosensitive cation channel. PKD is characterized by
progressive cyst formation due to enhanced and spatially distorted tubular cell prolifera-
tion [259,262]. Although a large number of mutations have been described in the two genes,
ADPKD is consensually regarded as a loss-of-function disease [261]. Beside cyst formation,
the major histologic feature of ADPKD is robust fibrosis [263,264]. As such, its pathobiology
is a prime example of dysregulated epithelial-mesenchymal communication because the
causative defect (impaired PKD1 or PKD2 function) affects predominantly tubular cells,
while the fibrotic matrix is the product of mesenchymal cells. Although the underlying cell
biology is complex and involves multiple pathways (e.g., cAMP, mTOR, β-catenin signal-
ing) [259,265], there is increasing evidence that abnormal Rho signaling plays an important
role in the pathogenesis of the disease. The relevant facts include the following. Gene
profiling performed on cysts and minimally cystic/normal regions of five PKD1 patients
indicated significant enrichment of transcripts associated with mitogen-mediated prolifera-
tion, cell cycle progression, EMT, hypoxia, aging and immune/inflammatory responses.
When the identified genes were classified according to corresponding TF networks, the
SRF pathway proved to be one of the strongest signatures [242]. Direct evidence of the
involvement of Rho was obtained in a recent study, which investigated alterations in gene
expression in a mouse model with inducible tubular deletion of Pkd1. Under these conditions
YAP and TAZ signaling was strongly upregulated. Looking for a plausible mechanism,
the authors investigated Rho signaling and found that Rho activity (and accordingly ROK
activity and myosin phosphorylation) was increased in Pkd1-deficient cells and animals.
The absence of Pkd1 resulted in the membrane translocation (activation) of the Rho-GEF
LARG, suggesting that PKD1 exerts tonic inhibition on this Rho activator, a key control
mechanism lost in PKD. Moreover, inhibiting ROK or LARG reduced YAP/TAZ-dependent
gene expression and the cystic phenotype. The authors argued that the PKD1-inhibited
LARG-RhoA-ROCK→YAP/TAZ pathway enhances the expression of the proto-oncogene
c-Myc, which in turn provokes excessive tubular cell proliferation and cyst formation. A
very recent study reported that the loss of PKD1 is also associated with loss of ArhGAP35,
a negative regulator of Rho, from the centrosome. This is accompanied by higher RhoA
activity, actin reorganization and shorter cilia. The ROK inhibitor hydroxyfasudyl reversed
cyst expansion [244]. While these studies clearly suggest that Rho activation can contribute
to the dysregulation of cell proliferation and thus cyst formation, we propose that it may
also underlie the other major feature of the disease i.e., fibrogenesis, by promoting PEP.
Moreover, MRTF may play a key role in these transitions, both because it activates the
SRF-dependent genes identified above, and because it induces the expression of TAZ per
se. Further rationale for this hypothesis came from earlier studies showing altered vascular
responsiveness in Pkd2+/− heterozygote mice [245,246]. These animals exhibit exagger-
ated vasoconstriction upon phenylephrin stimulation [245], although their intracellular Ca
level is lower than the WT [266]. Searching for the underlying mechanism, Du et al. [246]
showed that vascular smooth muscle cells from Pkd2+/− animals expressed more αSMA
and exhibited higher F/G-actin ratio under resting conditions. Intriguingly, phenylephrine
induced 3-fold higher Rho activation and 5-fold higher nuclear MRTF accumulation in
Pkd2+/− smooth muscle cells that in WT controls. Thus, the loss of even one Pkd2 allele
is sufficient to potentiate Rho/MRTF signaling in vascular smooth muscle. Finally, our
ongoing studies suggest that MRTF is both overexpressed and shows enhanced nuclear
accumulation in PKD1- or 2-deficient tubular cells and in the tubular epithelium of Pkd2-/-
mice (Mei D, Lichner Z, Pei Y and Kapus A). These observations give strong support to
the notion that enhanced MRTF signaling may be an important pathogenic factor in PKD,
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which could drive both cystogenesis and fibrosis. Conversely, inhibition of MRTF may
signify a potential therapy. These possibilities prompt further research.

6.3.5. Other Renal Diseases

The above sections summarize the documented involvement of MRTF in kidney dis-
eases. However, this list likely represents only a fraction of the relevant pathologies. RhoA
has been documented to play a role in a wide range of kidney pathologies, and in princi-
ple dysregulation of MRTF may play a role in each of these because dysregulated RhoA
signaling can disrupt gene expression primarily via MRTF. Important examples include
congenital and acquired proteinuric glomerular diseases, podocyte and mesangial cell
injuries [8,9,267]. Further, any pathology associated with altered cytoskeleton organization
is a potential “myrtfopathy”, impacting MRTF-dependent transcription. Examples include
various forms of focal segmental glomerulosclerosis [268], or nephropathies associated
with the MYH9, the myosin II heavy chain [117,268]. The emerging role of MRTF in the
regulation of the primary cilium, both as a transcription factor and a cilium constituent,
is fertile ground for future work. It remains to be explored whether MRTF can be linked
to certain ciliopathies. Finally, new studies should be conducted to document enhanced
MRTF signaling in human histological samples for various renal diseases. Such analyses
will not only be important for assessing the role of MRTF in these pathologies, but may link
altered MRTF signaling to different phases of these processes, thereby informing diagnosis
and potentially therapy.

7. Perspectives: MRTF in Therapy

Given the substantial evidence indicating the role of MRTF in kidney diseases, a
critical outstanding question is whether MRTF can be exploited as a pharmacological target
in these conditions. This approach would be advantageous because it targets a hub down-
stream of a slew of stimuli, while at the same time it is less broad, more feasible and more
appropriate for chronic conditions than inhibition of Rho itself. CCG-1423, the prototypic
small molecule MRTF inhibitor was discovered as a suppressor of Rho/MRTF/SRF path-
way downstream of Rho [269]. Strangely, its exact mechanism of action is yet uncertain:
it has been proposed to bind directly to the RPEL motif of MRTF [270], to MICAL-2, a
monooxygenase regulating actin oxidation and polymerization [78], and to pirin, a redox-
sensitive nuclear protein [271]. Irrespective of the exact mechanism, chemical modification
of the parent compound led to a series of MRTF inhibitors (e.g., CCG-100602, CCG-203971,
CCG-222740, CCG-232601) with increased potency, better pharmacokinetics, stability,
bioavailability and less toxicity [237,272–274]. Recently a high throughput screen identified
a new and very potent class of MRTF inhibitors (5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic
acids) [275]. While understanding the exact mechanisms of action of these drugs is an
important goal for current research, there is firm evidence that various MRTF antagonists
can mitigate tissue fibrosis in several models (lung, skin, heart, kidney, ocular, peritoneal
etc.) [123,124,225,227,232,237,271,274]. They also effectively block metastasis formation in
tumor models [273,276]. However, regarding kidney pathologies only the parent com-
pound, CCG-1423 was tested, and only in a few models (DN, AKI, ON) [123,124,154]. The
newer MRTF inhibitors are promising antifibrotics that deserve more attention and further
scrutiny as experimentally—and potentially clinically-useful drugs. Treating fibrosis is
a large unmet need, and MRTF inhibitors may, at least in part, hold the answer to this
enormous problem.
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