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Abstract 

Background:  In many hospitals, operating theatres are not used to their full potential due to the dynamic nature of 
demand and the complexity of theatre scheduling. Theatre inefficiencies may lead to access block and delays in treat-
ing patients requiring critical care. This study aims to employ operating theatre data to provide decision support for 
improved theatre management.

Method:  Historical observations are used to predict long-term daily surgery caseload in various levels of granularity, 
from emergency versus elective surgeries to clinical specialty-level demands. A statistical modelling and a machine 
learning-based approach are developed to estimate daily surgery demand. The statistical model predicts daily 
demands based on historical observations through weekly rolling windows and calendar variables. The machine 
learning approach, based on regression algorithms, learns from a combination of temporal and sequential features. 
A de-identified data extract of elective and emergency surgeries at a major 783-bed metropolitan hospital over four 
years was used. The first three years of data were used as historical observations for training the models. The models 
were then evaluated on the final year of data.

Results:  Daily counts of overall surgery at a hospital-level could be predicted with approximately 90% accuracy, 
though smaller subgroups of daily demands by medical specialty are less predictable. Predictions were generated on 
a daily basis a year in advance with consistent predictive performance across the forecast horizon.

Conclusion:  Predicting operating theatre demand is a viable component in theatre management, enabling hospitals 
to provide services as efficiently and effectively as possible to obtain the best health outcomes. Due to its consistent 
predictive performance over various forecasting ranges, this approach can inform both short-term staffing choices as 
well as long-term strategic planning.
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Background
Operating theatres are one of the costliest components 
in hospital care. Studies have quantified theatre ineffi-
ciency costs (calculated by multiplying the time wasted 
with staff capacity costs and opportunity costs) at ~ $50/
min or approximately $2000/day/theatre [1]. However, 

there are many reasons contributing to theatre ineffi-
ciency including hospital-wide factors such as availability 
of ward beds, transfer of patients and poor pre-operative 
preparations, as well as doctor-related factors such as 
the unavailability of surgeons, anaesthetists and nurses. 
Improving theatre efficiency should therefore be at the 
forefront of efforts to improve health service efficiency. 
Various approaches have been explored towards opti-
mising theatre efficiency, from predicting surgery dura-
tion and operating theatre scheduling optimisation [2, 
3] to predicting surgery demand [4, 5], which can help 

Open Access

*Correspondence:  hamed.hassanzadeh@csiro.au

3 Level 7, Surgical, Treatment and Rehabilitation Service–STARS, 296 Herston 
Road, Herston, QLD, Australia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-022-01893-8&domain=pdf


Page 2 of 17Hassanzadeh et al. BMC Medical Informatics and Decision Making          (2022) 22:151 

improve the utilisation of theatres, assist with staffing, 
and reduce patient waiting times.

The literature in predicting patient demand mostly 
consists of approaches to forecast overall daily demand 
from a hospital-level perspective using statistical model-
ling and time series analysis techniques [6–13]. There are 
few studies that attempted predictions at a finer granu-
larity, and more specifically, for daily surgical caseloads 
[4, 5]. In general, the majority of related approaches 
used seasonal auto-regressive integrated moving aver-
age (ARIMA) techniques that are more reliable for 
short-term forecasts. In order to extend the forecast-
ing horizon, recent approaches adopt machine learning 
models and combine these with time series techniques 
[14–18]. However, these approaches mainly focused on 
predicting daily demands of Emergency Departments 
(ED) or outpatient clinics. There is a gap in the literature 
for a more focused approach as a means for improving 
theatre management and strategy planning by providing 
realistic estimations of theatre demand across both short- 
and long-term horizons.

In this study we developed statistical and machine 
learning models to predict daily surgery caseload to 
an extent of up to one year ahead. Factors associated 
with theatre demand were investigated and a number 
of candidate variables were selected to train the pre-
dictive models, such as day-of-week, time of year, and 
local factors such as public holidays. When testing pre-
dictive accuracy, a recommended approach is to divide 
historical data into a training dataset and testing data-
set and measure the error from the model on data not 
used in building the model. Unlike some industrial 
applications, daily counts of patient arrivals to theatre 
are not independent and it is not appropriate to select 
a validation period using random periods within the 
entire dataset (using for example tenfold cross valida-
tion). The data instead has some dependence based on 
time (chronologically ordered) and thus the validation 
period for time series modelling is chosen as the last 
complete year (to account for seasonal differences) in 
the dataset. It was desirable to also determine the effect 
of using different lengths of data for training the model: 
e.g., using the most recent year versus all available data. 
It is believed that predicting theatre demand can help 
improve the ability to optimise theatre templates and 
case selection beyond current ad-hoc approaches and 
ensure that more patients are cared for in a planned 
fashion within a more efficient utilisation of theatre 
time. A new set of features to encode historical sur-
gery demand patterns was developed that were used as 
input to several machine learning models for predict-
ing daily surgery caseloads in different urgency levels. 

In addition, a fast and practical approach based on sta-
tistical modelling for daily surgery caseload forecast-
ing in different urgency and specialty levels was also 
presented. A thorough comparison of all these mod-
els and their feasibility for surgery demand prediction 
was assessed. While the literature on surgery demand 
forecasting mostly focuses on short-term predictions 
for up to 6 months in advance, in our study we aimed 
for a wide forecasting horizon up to one year includ-
ing weekends and public holidays allowing accuracy to 
be measured across summer and winter months. Our 
approach was able to reliably predict the daily sur-
gery caseload with approximately 10% Mean Absolute 
Percentage Error (MAPE) across a one-year forecast 
horizon while a 16% error was evident in the literature 
across a shorter 6-month forecast horizon.

Related work
This section provides a more detailed review of prior 
art in forecasting healthcare demand in various set-
tings. Jilani et  al. [10] presented a Fuzzy Time Series 
(FTS) approach for forecasting daily emergency depart-
ment demand. They developed separate FTS models for 
each weekday to capture variations in ED attendances. 
They compared FTS with ARIMA and neural network 
(NN) models that were tested over a dataset compris-
ing admissions from four EDs. The FTS approach was 
able to predict ED demand with almost half the error of 
ARIMA and NN models. Compared to their approach, 
our model provides more fine-grained forecasts of daily 
emergency and elective surgery caseloads. In addition, 
our approach provides demand forecasts up to one year 
ahead compared to the 4-month period of that study 
which may be subject to biases associated with the time 
of year.

Jones et  al. [19] evaluated several models, including 
seasonal ARIMA, time series regression, exponential 
smoothing, and artificial neural networks for forecasting 
ED demand on data from three facilities. Their forecast 
horizon was from 1 day to a maximum of 30 days, which 
is a considerably shorter evaluation period compared to 
our present study. The models exhibited mixed results 
with MAPE of 9 to 14%.

Calegari et  al. [8] employed a number of time series 
models to forecast demand of patients based on the level 
of their urgency (five triage categories). The forecasting 
horizon in their approach spanned from 1 to 30  days 
and the best performing model showed MAPE rang-
ing between 2 and 11% for total patients. They also tried 
to incorporate climate factors into their models, which 
they concluded did not improve the performance of the 
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models. Similarly, in our study we attempted to provide 
daily surgery caseload forecasting in different granulari-
ties, covering elective and emergency streams and the 
top-10 most frequent specialties, while considering a 
longer forecast horizon for evaluation.

Luo et  al. [20] applied seasonal ARIMA and single 
exponential smoothing models and a combination of 
them to forecast daily outpatient visits for one week 
ahead. Using 43 weeks of observation data, their combi-
natorial model performed relatively better than the indi-
vidual models and showed MAPE values of between 11 
and 13% for forecasting demand for endocrinology and 
respiratory departments.

While the majority of the approaches for demand 
forecasting in the literature are based on time series 
models, there have been attempts to employ machine 
learning algorithms for this purpose. Wang et  al. 
developed a hybrid approach by using Support Vector 
Regression and the firefly algorithm, an optimization 
algorithm, for forecasting diarrhoeal outpatient visits 
[21]. The input to their model included daily tempera-
ture, relative humidity and rainfall, as well as histori-
cal daily outpatient visits in Shanghai for six years, the 
last year reserved for testing the model. They divided 
the patients into two groups of children and adults, 
for which their model performed in the best setting 
with 7% and 11% MAPE, respectively. In our study, we 
also developed and validated several machine learning 
models for daily surgery caseload forecasting for a long 
forecast horizon of one year. There remains a gap in the 
literature for such an experiment on the application of 
these models for surgery demand prediction that can 
inform operating theatre management team as well as 
hospital executives to better plan for maximising oper-
ating theatre utilisation.

There is scant published literature that specifically 
focuses on forecasting surgery demand. Tiwari et  al. 
presented an approach for predicting daily elective 

surgery volume for up to 14 days in advance [4]. They 
collected daily operating theatre schedules for a period 
of 8  months, and for any given day in the forecasting 
horizon, data from the prior 30 days was used to pre-
dict the case volume of the day based on linear regres-
sion modelling. In 80% of cases their model predicted 
with ± 7 cases deviation for a week ahead. Eggman 
et al. validated the generalizability of the days-out lin-
ear regression modelling in Tiwari et al. while explor-
ing the significance of further independent factors in 
predicting daily surgical volume [22]. They tested the 
model over data from two hospital-based operating 
room campuses at an academic medical center and 
showed that the predicted volumes were within 7 cases 
(error) for 81% of days and 69% of days at the two sites. 
Finally, Zinouri et  al. [5] applied seasonal ARIMA to 
provide short-term forecasts of daily surgical demand. 
Their model showed MAPE of 7% for forecasting 
demand for one week ahead and 16% for 6  months 
ahead.

Overall, the literature shows that providing accurate 
forecasts of surgery caseload in the weeks and months 
ahead can help daily operational planning of staff 
and resources as well as providing insights for longer 
strategic planning of critical care services in operat-
ing theatres. The identified gaps in the literature are 
around the absence of a model for daily surgery case-
load forecasting that is capable of forecasting for a 
longer horizon and for several levels of granularity in 
terms of urgency of cases (elective or emergency) or 
medical specialty, as well as a lack of consideration of 
all working and non-working days (public holidays) in 
the modelling. As a result, our study presents models 
that can reliably and comprehensively forecast daily 
surgery demand across both short- and long-term 
horizons for a variety of surgery cases throughout a 
year.

Fig. 1  Flow diagram of daily surgery caseload prediction
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Methods
Figure  1 shows an overview of the process from a data 
acquisition step to validating the models for the daily 
surgery caseload prediction task. The rest of this section 
provide more details on each step in this process.

Data
The data for this study was sourced from an adminis-
trative database containing information about elective 
and emergency surgeries. A data extract that included 
de-identified records of patients who had undergone 
surgery in one of Australia’s major metropolitan hos-
pitals was collated.1 All surgery episode records at the 
session level, operation level and procedure level for a 
period of 4 years were collected, from 1 January 2016 to 
31 December 2019. The data consists of 99,732 surger-
ies on 63,697 unique patients. The pre-processing step 
involved fixing inconsistencies in date/time formats, 
fixing missing values in essential timestamps (filled 
with adjacent timestamps), and fixing overlapping 
operations.

Figure  2 shows the number of surgeries performed 
per day during the study period. Large differences in 
the number of surgeries per day typically relate to more 
operations performed during weekdays as opposed to 
weekends and public holidays.

Figure 3 shows the number of surgeries per month dur-
ing the study period.2 It can be observed that there were 
generally less surgeries performed in January, April, and 
December months with 61, 62, and 63 mean daily counts, 
respectively, indicating fewer scheduled elective opera-
tions due to major public holidays. November had the 
highest mean daily count of 71, followed by May, August, 
and October with 70, 68, and 68 mean daily counts, 
respectively.

Figure  4 shows the volume of surgeries per day of 
week during the study period. The average number 
of operations on Fridays (93) was relatively higher 
than the rest of the days. The remaining working days 
had mean counts between 79 to 84 operations. There 
were only 21 operations on average on Saturdays and 
Sundays.
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Fig. 2  Count of daily surgery (emergency and elective) during the study period
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Fig. 3  Daily all surgery count (emergency and elective) per month during the study period

1  The study was approved by the FSH QI Medical Anaesthesia & Pain Medi-
cine Committee (Quality activity 29,238) and CSIRO Health and Medical 
Human Research Ethics Committee (2019_024_LR).

2  The solid lines inside the box plots refer to median and the dotted lines refer 
to mean.
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In order to develop and evaluate the predictive models, 
the data was divided into training and testing periods:

•	 Training period: 1 January 2016 to 31 December 
2018 (3 years)

•	 Testing period: 1 January 2019 to 31 December 2019 
(1 year).

Data was divided based on type of surgery (i.e., emer-
gency or elective) and medical specialty. Daily arrivals to 
operating theatre according to each of these specifica-
tions were calculated and formed the input to predictive 
models.

Predictive models
Two different predictive models were developed to pre-
dict operating theatre demand on a daily basis: a statis-
tical modelling approach and a machine learning based 
approach. These approaches are described in the follow-
ing subsections.

Rolling window on historic observations
This approach employs information that is carried in 
historic observations in relation to time-related char-
acteristics [23]. More specifically, to predict daily 
patient admissions in a point of time in the future, 
different temporal aspects such as seasonality, day of 
week, and public holidays were considered and his-
toric observations were queried according to these 

aspects. Different rolling windows (time-frames) are 
considered in this approach when collecting historic 
observations. This approach has the following two 
modules:

•	 Observation Collection Module: Collects historic 
observations related to a target date.

•	 Prediction Module: Forecasts the demand for the tar-
get date based on the collected observations.

The observation collection module is described 
in detail in Algorithm  1. Note that, Algorithm  1 
describes the module in a “validation” setting and the 
days of interest (DOIs) were selected from the test-
ing period (as described in section “Data”) to evalu-
ate the model. A DOI can be any date in future in an 
“application” setting. DOIyear in Algorithm 1 refers to 
the “year” component of the given date (e.g., “2020” 
in DOI = 2020/03/12). For any DOI, the algorithm 
collects matching historic observations in a weekly 
window preceding the DOI in the current year and 
surrounding weekly windows in preceding years. 
Retrieving historic observations in a yearly manner 
can be customised by the parameter τ (e.g., if τ = 2 
then the related observations from the preceding two 
years of the given target date would be collected), and 
the weekly rolling windows can be customised with 
parameter θ (e.g., if θ = 2 then observations from two 
weeks before and two weeks after the corresponding 
date in a preceding year would be collected).
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Fig. 4  Count of all surgery (emergency and elective) per day of week during the study period
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Fig. 5  The Rolling Window approach logic
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observation collection module) and predicts the 
demand for a DOI based on a mathematical function. 
A range of functions can be applied on the set of col-
lected observations, such as, weighted mean, maximum, 
minimum, etc. In this study, a uniform weighted mean 
was imposed on the collected observations (i.e., similar 

Table 1  Daily surgery demand prediction results (MAPE)

The underlined values indicate the best performance in each column

Boldfaced values refer to the overall best performance

Emergency surgery Elective surgery Overall surgery

1-year % 2-year % 3-year % 1-year % 2-year % 3-year % 1-year % 2-year % 3-year %

Rolling window 11.79 12.05 13.66 13.26 12.61 12.97 9.52 9.83 11.31

Regression (Linear) N/A 13.71 13.79 N/A 17.79 15.84 N/A 13.49 12.85

Regression (Poisson) N/A 14.17 14.71 N/A 18.90 16.68 N/A 13.99 13.77

Regression (Negative binomial) N/A 14.13 14.88 N/A 19.12 16.67 N/A 14.08 13.86

Decision tree 15.69 17.97 18.30 14.55 13.91 14.72 15.99 13.97 12.14

Random forest 11.73 11.50 11.63 16.41 11.51 12.99 10.44 9.86 9.88

SVR (Linear) 19.13 16.50 17.50 15.61 15.62 15.19 35.81 37.93 36.96

SVR (RBF) 22.35 19.37 17.86 13.60 13.65 13.78 74.68 57.40 48.15

SVR (Sigmoid) 20.49 51.91 50.95 15.19 18.94 21.02 60.37 50.05 51.49

SVR (Poly) 44.12 26.67 23.63 19.23 21.31 15.55 90.15 48.84 36.43

Bagging regressor 12.86 11.97 12.50 13.62 11.90 14.25 10.62 10.42 10.26

Gradient boosting regressor 13.25 11.69 11.27 11.63 16.52 14.00 10.74 11.21 10.61

XGBoost regressor 13.60 13.65 14.89 37.18 15.74 40.92 15.06 11.64 11.22

Ensemble regressor 12.36 11.46 11.61 12.99 12.69 13.30 10.33 9.97 9.82

In Algorithm 1, a corresponding day refers to the same 
day of week and week of year as the DOI, but in a preced-
ing year. So, the date of the corresponding day may not be 
exactly the same (in terms of month and day) as the DOI.

The prediction module of this model takes the 
set of retrieved observations (i.e., the output of the 
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weights were assigned to the observations from all pre-
ceding years). Figure 5 shows the logic behind the Roll-
ing Window approach using values of τ = 2 and θ = 2 to 
illustrate the method.

Regression models
As described earlier, the prediction task in this study is 
to forecast elective, emergency, and overall daily surgery 
demand for a given calendar day. For training the regres-
sion models and in order to represent characteristics 
of each calendar year, a set of temporal features were 
extracted from the data. To encode the sequential order 
of the observations, a relative daily index was assigned 
to each day that started from the first day in the speci-
fied training period and continued until the end of testing 
period. Day of week was another feature encoded in the 
feature vector. In addition to that, the effect of public hol-
idays was also represented as an additional type of day.

To model the repeated patterns due to seasonality, we 
adopted the first order Fourier series [24]:

where, t refers to a day in our study period, and m is the 
seasonal period, which is 365 days in our model.

A number of regression models were employed in this 
study to investigate their effectiveness in predicting daily 
surgery demand: Linear Regression (normal, Poisson, 
and Negative Binomial families) [25], Decision Tree [26], 
Random Forest [27], Support Vector Regressor (SVR) 
[28], Bagging Regressor [29], Gradient Boosting Regres-
sor [30], XGBoost [31], and an Ensemble Regressor. Our 
Ensemble Regressor was composed of a uniform weight 
voting algorithm with Random Forest, Bagging, and 
Gradient Boosting regression models as base predictive 
models.

(1)Sin

(

2π t

m

)

, Cos

(

2π t

m

)

Experimental setup and evaluation measure
Data manipulations and the predictive models were 
implemented in the Python programming language ver-
sion 3.9. The regression models were implemented using 
Python’s Scikit-learn and Statsmodels toolkits and the 
details of their hyper-parameters and the tuning strategy 
can be found in the Additional file 1: Appendix A: Regres-
sion Model Hyperparameters Tuning [32, 33]. The “seed” 
value for the stochastic algorithms was set to “1”.3

In validating predictive accuracy, we measured the 
error every day across our testing period between actual 
observations and predicted values generated from a 
model using training data only (i.e. maintaining a sepa-
rate held out evaluation period), and followed established 
principles regarding the assessment of forecast accuracy 
[34].

If Yt is the actual observation for time period t and Ft 
is the prediction for the same period, then the error is 
defined as et = Yt − Ft. If there are n observations then the 
Mean Absolute Error (MAE–or Mean Absolute Devia-
tion MAD), Mean Squared Error (MSE), and Root Mean 
Squared Error (RMSE) of predictions can be defined as:

In order to provide a scale-independent measure, Mean 
Absolute Percentage Error (MAPE) is reported in the 
manuscript. MAPE is based on the Percentage Error of 
forecasts (PEt), which is defined as:

(2)MAE = MAD =
1

n

n
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Fig. 6  Daily prediction errors for emergency surgeries over the testing period using the Rolling Window approach (shaded areas indicate working 
days)

3  Any inquiry regarding the technical details of the specific models can be 
made by relevant parties to the corresponding author.
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Using this relative error, MAPE can be calculated as:

Results
Predicting daily surgery demand
Table  1 summarises the results (in terms of MAPE, the 
average of absolute percentage errors across the entire 
test period) of all forecast approaches using different 
lengths of training data applied to the prediction of emer-
gency and overall surgery (overall surgery comprises 
emergency and elective surgery). The underlined values 
in Table  1 indicate the best performance in each col-
umn which assesses the effect of using different lengths 
of training data (i.e., 1-Year, 2-Year, or 3-Year). Boldfaced 
values refer to the overall best performance for the speci-
fied type of surgery (i.e., emergency, elective or overall 
surgeries). The weekly window size ( θ ) for the Rolling 
Window approach in Table 1 was set to 2: 2 weeks before 
and 2 weeks after a given day of interest (for the full set of 
results with different weekly window sizes see Additional 
file 1: Table B.1 in Appendix B: Extended Results). Note 
that the reported predictive performance for elective 
surgery demand excludes weekends and public holidays 
caseload due to instances of no elective surgery under-
taken on these day types which affects the calculation of 
MAPE.

In general, the performance of the Rolling Window 
approach decreased when longer data histories were 
employed for predicting emergency and overall surger-
ies. For elective surgeries, using only one year of historic 
observations led to more error (i.e., 13.26%) while using 

(5)PEt =

(

Yt − Ft

Yt

)

× 100

(6)MAPE =
1

n

n
∑

t=1

|PEt |

two years of observations resulted in the least error (i.e., 
12.61%).

The regression models demonstrated mixed benefits 
from adopting different lengths of training data. For 
example, the Linear, Poisson, and Negative Binomial 
Regression models were not able to achieve reasonable 
results using 1 year of historical data (MAPE values for 
these models were higher than 100%). As more historic 
observations were used in these models, improvements 
in predictive accuracy were observed for all three groups 
of emergency, elective, and overall surgeries. Apart from 
predicting the elective surgery demand relatively well, 
the SVR models generally showed poor performance 
using different length of historical data. The remaining 
approaches do not exhibit a consistent pattern in regards 
to the effect of different lengths of training data. The Gra-
dient Boosting Regressor achieved the best performance 
for emergency surgeries with 11.27% MAPE and the 
Rolling Window achieved the best performance for pre-
dicting overall surgeries with 9.52% MAPE. For elective 
surgeries, the Random Forest model reached the low-
est MAPE (i.e., 11.51%) using two years of training data 
(for the full set of results with different weekly window 
sizes see Additional file 1: Table B.2–Table B.4 in Appen-
dix B:  Extended Results). Significance testing based on 
pairwise two-tailed t-test comparisons with corrections 
for multiple testing using the Bonferroni correction [35] 
revealed that the differences in error between the Roll-
ing Window and the best performing regression models 
were not statistically significant except for emergency 
surgery with 3-years of training data (where random for-
ests, boosting and ensemble approaches were best) and 
for elective surgery with 1-year of training data (where 
the Rolling Window approach was best). Given that on 
balance the Rolling Window approach has either the least 
error or is statistically similar to the best approach, and 
that the model is more deterministic (i.e., there is no ran-
dom number generator component) and its forecasts are 
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more interpretable, the rest of the results presented in 
this section are based on the results of the Rolling Win-
dow model.

Figure 6 shows the daily percentage errors and MAPE 
of the Rolling Window approach for emergency surger-
ies (using the final year of historical observations and 
weekly windows of size 2) during the testing period. 
Shaded areas in Fig. 6 indicate Monday to Friday work-
ing days and the white spaces are Saturdays and Sun-
days. Following Eq.  5, negative Percentage Errors 
indicate that the predictions were higher than actual 
observations (over-estimations) while positive Percent-
age Errors refer to when the predictions were lower 
than the actual observations (under-estimations). The 
majority of the under-estimated days were weekends 
(i.e., days with high positive percentage errors) while 
the over-estimations mostly happened during working 
days (i.e., days with high negative percentage errors). 
The largest under-estimation by the system was on 

Saturday 16 February 2019 with + 35% error. There 
were 27 emergency surgeries on this day while histori-
cally there were only 12 to 24 surgeries, and the model’s 
prediction for this day was 18. The most considerable 
over-estimation happened on Saturday 28 September 
2019 with more than −  50% error. The actual number 
of surgeries on this day was 13 while the model pre-
diction was 21. The historical observations for this 
day suggested a range of 15 to 28 surgeries while on 
that particular Saturday in 2019 there were relatively 
fewer operations. Another interesting aspect that can 
be observed from Fig.  6 is that the Rolling Window 
approach showed consistent performance in predict-
ing emergency surgery demand for a year ahead and 
its errors for the days in the beginning and end of the 
testing period did not vary considerably. This can be a 
critical aspect for hospitals when conducting long-term 

Fig. 8  Error per day of week for the Rolling Window approach: a emergency surgeries, b elective surgeries, and c all surgeries
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Fig. 9  Error per month of year for the Rolling Window approach: a emergency surgeries, b elective surgeries, and c for all surgeries
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resource management based on the outputs of a predic-
tive model.

One of the days with the least surgery during the test-
ing period was Friday 26 April 2019, with 33 emergency 
cases. The model over-estimated the caseload for this 
day with −  35% error. This day immediately followed 
a public holiday (Thursday 25 April 2019) in addition 
to being after a long weekend from Friday 19 April to 
Monday 22 April. A lower demand on such a day was 
anticipated (due to potential higher recreational travel). 

However, the model’s poor prediction was due to the 
fact that such a series of public holidays was not evi-
dent historically (e.g., there was only one public holiday 
on 25 October 2018 without any preceding or succeed-
ing holidays in a two-week window size). One of the 
days with highest emergency surgery demand (51 cases) 
during the testing period was Friday 14 June 2019. For 
such a unique day in terms of demand, but a normal 
weekday, the model under-estimated the caseload with 
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Table 2  Daily specialty-level surgery demands prediction results (MAPE)

Specialty Emergency surgery Elective surgery Overall surgery

1-year % 2-year % 3-year % 1-year % 2-year % 3-year % 1-year % 2-year % 3-year 
%

ORT 21.25 20.36 19.93 75.05 71.33 70.16 22.65 21.04 20.44

GES 41.38 36.53 34.08 47.37 45.31 47.06 29.88 27.28 27.03

GAS 40.78 37.56 36.32 36.72 33.29 32.59 17.16 16.03 16.74

PLA 40.07 38.59 37.58 47.90 42.73 43.67 29.59 28.29 29.01

OBS 62.21 55.24 52.54 42.56 42.06 39.74 45.33 42.01 39.70

VAS 51.41 45.48 44.17 51.01 48.88 47.43 45.62 42.67 41.52

BUR 45.42 39.97 38.24 51.52 44.51 41.14 44.52 43.87 43.94

URO 43.29 37.69 34.81 54.73 48.24 43.90 53.68 46.95 44.17

CTS 48.15 44.90 41.21 48.35 44.26 42.94 36.15 37.31 35.46

GYN 48.29 43.19 39.31 53.12 45.85 41.20 52.97 48.64 50.43
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14% error (approximately 7 less surgeries than the real 
number).

Figure 7 shows the daily emergency surgery demand 
prediction and their 95% confidence intervals dur-
ing the final three months of the testing period. It can 
be observed that the confidence intervals have a con-
sistent range throughout the last three months of the 
predictions.

Figure 8 shows the absolute percentage errors of the 
rolling window approach by day of week for emergency 
surgeries (Fig.  8a), for elective surgeries (Fig.  8b), and 
for all surgeries (Fig.  8c). For both emergency and all 
surgeries, the Rolling Window approach showed higher 
predictive error over the weekend with 12% and 14% 
MAPE on Saturdays and Sundays respectively (note 
that weekends are excluded for elective cases following 
the planning processes for elective cases at the hospi-
tal). This approach predicted emergency surgeries on 
Monday and Fridays more accurately than other work-
ing days with 10% MAPE (Fig. 8a). The MAPE for pre-
dicting all surgeries across working days were relatively 
lower in the range of 6% to 9% (Fig. 8c). Elective surgery 
error was highest on Tuesdays with 17% average error 
(MAPE), followed by Wednesdays and Fridays with 15% 
average error (Fig. 8b). The average errors of the model 
for Thursdays were relatively lower with 9% MAPE. 
When compared to predicting daily emergency demand 
(as illustrated in Fig. 8a), generally the model produced 
slightly higher errors when predicting elective demand 
during working days than emergency demand.

Figure  9 shows the variation in error by month of 
year for the Rolling Window approach during the test-
ing period for emergency surgeries (Fig.  9a), for elec-
tive surgeries (Fig.  9b), and for all surgeries (Fig.  9c). 
For the months of April and August, the mean absolute 
errors of this approach for the prediction of emergency 
surgeries were 17 and 15% respectively, which were 
higher than other months (Fig. 9a). This model was able 
to predict October and December emergency surgery 
with least error at around 9% mean absolute percent-
age errors. Fig.  9b shows that the model had highest 
mean error and widest spread of error when predicting 
elective surgery demands for the months of January and 
December with 21 and 24% average error. The average 
error in April was 23%, however, this was mainly due 
to a single day (3rd of April 2019) that had a consid-
erably lower number of elective surgeries compared to 
other working days in the same month (i.e., 24 surgeries 
on 3rd of April vs. an average of 54 surgeries on other 
days). Comparing errors of the model in predicting 
elective versus emergency demands per month of year, 
it is clear that elective demand was least predictable 
during summer and holiday seasons (i.e., December 

and January) while emergency demand was least pre-
dictable during autumn and winter.4 For overall sur-
gery demand, the model had highest error in April with 
almost 14% average absolute percentage error and then 
in September with 12% average error. The most predict-
able months were October and November with only 7% 
average absolute error.

Predicting daily surgery by medical specialty
Operating theatres can be more efficiently utilised and 
patients better served if hospitals are informed of the 
demands of particular surgeries in advance. This section 
further investigates if historical observations can be used 
to predict specific surgery demands in terms of clinical 
specialties. Figure  10 shows emergency surgery demand 
for the top-10 most frequently performed specialties by 
month during the study period. Orthopaedic (ORT), Gen-
eral Surgery (GES), and Gastro (GAS) surgeries were the 
three most prevalent specialties for emergency patients.

Figure 11 shows the average specialty demands per day 
of week for the top-10 most frequently performed spe-
cialties. It can be observed that the prevalence of some 
specialties is higher on certain days of the week: GAS sur-
geries were more frequent on Mondays and Fridays, ORT 
on Tuesdays and Fridays, and PLA on Mondays, Wednes-
days, and Fridays. On average, there were almost similar 
numbers of GES surgeries throughout the working days 
in a week. During the weekends, ORT and GES were the 
two most common specialties while some specialties were 
only sporadically performed (e.g., BUR, CTS, and GYN).

In order to report MAPE by medical specialty for daily 
demand prediction, weekends and public holidays were 
removed from the testing period in addition to days 
with no surgery for a given specialty. Table 2 shows the 
results of the Rolling Window approach using different 
lengths of training data to predict daily demand for spe-
cialty-level surgeries. It can be observed that predicting 
specialty demands on a daily basis was relatively harder 
for the model than predicting emergency or overall daily 
demand. The model was able to predict ORT daily emer-
gency demand with almost 80% accuracy using all avail-
able training data (i.e., 19.93% MAPE in Table 2). Other 
emergency specialties were predicted with more than 
30% MAPE. Predicting elective specialty demands was 
generally more difficult than the emergency special-
ties (over 35% MAPE for the majority of specialties in 
Table  2). Given that scheduling elective cases is highly 
dependent on the timetable of surgeons, it is more chal-
lenging to identify historical patterns. For example, 

4  Note that, the definition of seasons is based on a southern hemisphere study 
location.
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plastic surgeons at a given hospital may perform opera-
tions on a particular day of week in one period of time, 
which may then shuffle to another day of week. In addi-
tion, a number of specialties, such as ORT, are less com-
monly performed as elective surgeries (e.g., ORT has a 
daily average of 1 elective case versus 8 emergency cases). 
Predictive accuracy of overall daily demand for the three 
most frequently performed specialties, that is, ORT, GES, 
and GAS, was 20.44, 27.03, and 16.74% MAPE respec-
tively using all available training data. The overall daily 
caseloads for other medical specialties were predicted 
with more than 29% MAPE.

Although the daily demands of total emergency and 
overall surgery at a hospital-level could be predicted 
with approximately 90% accuracy, it is apparent that daily 
caseloads in smaller subgroups of medical specialties are 
less predictable. As a result, a practical consideration for 
generating predictions by medical speciality is providing 
predictions at a weekly level rather than daily estimates.

Discussion
Comparison with state‑of‑the‑art
As mentioned in the Background section, there are few 
studies that focus on predicting daily surgical caseloads 
[4, 5]. We found the experimental setting in Zinouri et al. 
[5] the closest to our study. They report predictive perfor-
mance of a seasonal ARIMA (SARIMA) of 7% MAPE for 
a one week ahead forecast horizon and 15.8% MAPE for a 
6-month forecast horizon when predicting daily surgical 
caseload (including elective and non-elective surgeries) 
during working days (i.e., excluding weekends and pub-
lic holidays). In contrast, our approach when using the 
Rolling Window model achieved a MAPE of 9.52% when 
predicting daily demand across a one year ahead fore-
cast horizon (including weekends and public holidays) 
using one year of historical observations. Many papers 
in the forecasting literature compare the fit of a model 
to the data and do not “hold out” a separate dataset to 
compare against. Such fitting does not necessarily imply 
good forecasting, as fitting a high-order polynomial can 
usually obtain a high level of fit. Overfitting a model is 
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not desirable as it is equivalent to including randomness. 
In order to overcome this problem, it is better to meas-
ure true out-of-sample forecast accuracy. All analyses 
performed on data in this study were based on training 
datasets which were compared against a separate held-
out evaluation dataset that spanned one year (365 days) 
which was important in order to assess forecasts over 
summer and winter months and avoid bias of evaluation 
at one particular time only.

Translational outcome
The theatre arrival models developed in this study ena-
bles the prediction of theatre demand on a daily basis 
which can support decision making for improved theatre 
access for patients. The average compute time of the Roll-
ing Window model was calculated as 6.25 seconds, from 
the time of training (collecting historical information of 1 
to 3 years and weekly window size of 2) to the end of pre-
dicting caseloads for one year ahead. The evaluation of 
the predictive performance of models in this study used 
a year-ahead forecast horizon to ensure the assessment 
was not biased for a particular time of year. However, 
forecasts can be generated for any timeframe: short term 
use over the weeks ahead is useful for day-to-day thea-
tre management, and long range forecasts can assist with 
staff recruitment, and inform strategic planning to cater 
to growth of specific surgery specialties. The models use 
the most recent data available, and thus any long-range 
forecasts will be updated with refreshed predictions as 
new observations become available. The next step is to 
embed theatre demand models into the hospital’s work-
flow, allowing operational managers to use the predictive 
outputs to make theatre workflow more efficient. This 
will enable hospitals to optimise this high cost resource 
to achieve consistency and deliver improvements in sur-
gery scheduling, increase theatre utilisation, and reduce 
cancellations and schedule changes. This can support 
hospitals in providing services as efficiently and effec-
tively as possible, to obtain the best health outcomes.

Limitations
The study is based on one hospital in a particular demo-
graphic area which may follow a distinct pattern of sur-
gical demand and elective case-booking techniques. A 
general limitation of predictive models that are based on 
the historical patterns from a static data extract (e.g., sta-
tistical model such as ARIMA or ML approaches) is that 
they do not consider real-time effects. For example, there 
was a lockdown period of almost one month in early 
2020 due to the COVID-19 pandemic, which started in 
late March and continued during April 2020. As shown 
in Fig.  12, surgery demand significantly reduced during 
the month of April in 2020 as a result of a metropolitan 

lockdown and restrictions for performing elective surger-
ies (note that the data in this study contains records until 
30 June 2020).

Figure  13 shows the result of our demand forecast-
ing model in the first 6  months of 2020. The errors of 
the model increased during March and April and then 
again reduced in May and June. MAPE values for these 
6  months are as follows (in order): 12%, 9%, 21%, 59%, 
17%, 10%. As a decision support tool, such a predictive 
model will be used by the hospital staff in the context of 
workflow planning conditions. While such a model may 
require considerable modification during a pandemic, 
this limitation does not detract from the usefulness of 
this model given such temporary unprecedented circum-
stances [35].

Conclusion
A model was developed and validated to predict daily 
arrivals to operating theatres. Unlike approaches such 
as ARIMA and its extensions that work well for short-
term forecasting, the developed model can anticipate 
long-term demand up to one year ahead with consistent 
predictive performance throughout this horizon. Further 
investigation revealed that forecast accuracy depends 
on the patient cohort to be predicted with variation 
observed across different medical specialties. When pre-
dicting all patient arrivals to theatre on a daily basis, fore-
cast accuracy is 90% (10% error).

This study aimed towards providing a tool for reli-
ably forecasting daily surgery caseload while at the 
same time addressing a gap in the literature for more 
detailed analysis of potential approaches for this task 
in various level of granularity and for short- and long-
term forecast horizons. While such a tool can provide 
insights for staff and resource planning, more transla-
tional study is warranted to implement and measure 
the impact of its outputs on the workflow of operat-
ing theatre management team and the magnitude of its 
benefits for optimising operating theatre efficiency.
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