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Abstract: Enzymatic degumming is a well established process in vegetable oil refinement, resulting
in higher oil yield and a more stable downstream processing compared to traditional degumming
methods using acid and water. During the reaction, phospholipids in the oil are hydrolyzed to
free fatty acids and lyso-phospholipids. The process is typically monitored by off-line laboratory
measurements of the free fatty acid content in the oil, and there is a demand for an automated
on-line monitoring strategy to increase both yield and understanding of the process dynamics. This
paper investigates the option of using Near-Infrared spectroscopy (NIRS) to monitor the enzymatic
degumming reaction. A new method for balancing spectral noise and keeping the chemical infor-
mation in the spectra obtained from a rapid changing chemical process is suggested. The effect of
a varying measurement averaging window width (0 to 300 s), preprocessing method and variable
selection algorithm is evaluated, aiming to obtain the most accurate and robust calibration model for
prediction of the free fatty acid content (% (w/w)). The optimal Partial Least Squares (PLS) model
includes eight wavelength variables, as found by rPLS (recursive PLS) calibration, and yields an
RMSECV (Root Mean Square Error of Cross Validation) of 0.05% (w/w) free fatty acid using five
latent variables.

Keywords: Near-infrared spectroscopy; process analytical technology (PAT); process control;
processing technology; chemometrics; vegetable oil; oil refinement; variable selection

1. Introduction

With an increasing demand for vegetable oils, both in the food industry and for the
production of biofuels, there is a call for an effective and environmentally friendly method
to remove naturally occurring phospholipids, known as “gums”, during oil refinement [1].
Degumming has traditionally been carried out using water followed by a chemical refining
step, such as acid degumming, but is today generally conducted using enzymatic methods,
which offer both higher oil yield and lower environmental impact [2]. Degumming is
an essential step in the refinement process of vegetable oils, as it serves to reduce the
content of phospholipids. Enzymatic degumming is well established, and different types
of phospholipases are commercially available. Figure 1 shows an overview of the action of
different types of phospholipases. The use of phospholipase type A (PLA) is an efficient
way to reduce the content of phospholipids by hydrolyzation into lyso-phospholipids and
free fatty acids (FFA). This enzymatic action results in higher oil yield, both due to higher
FFA content in the oil and due to less entrapment of glycerides in the gum phase [2–4].

In industry, enzymatic degumming is typically carried out in continuous stirred com-
partmentalized tank reactors with a holding time of 4–6 h depending on the oil origin
and initial phospholipid content. Typically, the process is run according to a recipe with
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a fixed holding time and monitored by taking out grab samples for laboratory analy-
sis [2]. The industry standard for analysis is determination of FFA content by titration [5],
which is time-consuming, labor intensive and requires use of chemicals. In addition, the
reproducibility of the method is questionable [5].
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Figure 1. Chemical overview of the action of different types of phospholipases (PL), including PLA1, 
PLA2, PLC and PLD. R1, R2: Fatty acid residues. PA = phosphatidic acid, PC = phosphatidylcholine, 
PE = phosphatidylethanolamine, PI = phosphatidylinositol. 
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samples can be measured in few seconds, it is non-destructive and no sample preparation 
or pre-treatment is required. NIRS is an interesting candidate method for real-time 
monitoring of enzymatic degumming, and has previously been used to monitor FFA in 
biodiesel production [10,11] and to monitor transesterification reactions [12–14]. NIRS is 
especially advantageous due to its high speed and adaptability to on-line monitoring [15]. 
In addition, the combination of NIRS and multivariate analysis enables monitoring and 
control of several quality attributes from only one spectroscopic sensor. 

Replacement of the current grab sample strategy with real-time NIRS monitoring 
during the enzymatic degumming process will greatly facilitate automatic optimization 
of the process. Acquisition of NIR spectra from a bioreactor can be either on-line or in-
line, and depending on the process equipment and the type of process, each mode of 
measurement has its own advantages [15]. Traditional in-line fiber optic immersion 
probes may have limited suitability for the viscous oil matrix involved in the enzymatic 
degumming process. Hence, the on-line solution proposed in this study consists of a 
closed bypass loop with a flow cell, where the process flow goes through and returns to 
the reactor, giving several benefits in comparison to a fiber optic probe mounted directly 
in the reactor. An on-line bypass loop is very beneficial in mitigating formation of air in 
the reactor due to high stirring rates and allows for moving the viscous matrix through a 
sampling window. On-line NIRS enables the control of enzyme dosage and holding time 
by feedback PAT (Process Analytical Technology) control [16], ensuring that the process 
is always in its optimal state, which is beneficial for economic, production time/capacity 
and environmental/resource expenditure reasons. The holding time and required amount 
of enzyme is highly dependent on the state of the raw material, i.e., the initial phosphorus 
content of the oil, the enzymatic performance in the given environment and the current 
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PE = phosphatidylethanolamine, PI = phosphatidylinositol.

Near-infrared spectroscopy (NIRS) is used in multiple production processes to monitor
different quality attributes in the vegetable oil processing industry. These include dry
matter and titratable acidity [6], yield [7] triglycerides [8] and free fatty acid composition [9].
NIRS has several advantages in comparison to the chemical method: samples can be
measured in few seconds, it is non-destructive and no sample preparation or pre-treatment
is required. NIRS is an interesting candidate method for real-time monitoring of enzymatic
degumming, and has previously been used to monitor FFA in biodiesel production [10,11]
and to monitor transesterification reactions [12–14]. NIRS is especially advantageous due to
its high speed and adaptability to on-line monitoring [15]. In addition, the combination of
NIRS and multivariate analysis enables monitoring and control of several quality attributes
from only one spectroscopic sensor.

Replacement of the current grab sample strategy with real-time NIRS monitoring
during the enzymatic degumming process will greatly facilitate automatic optimization
of the process. Acquisition of NIR spectra from a bioreactor can be either on-line or
in-line, and depending on the process equipment and the type of process, each mode
of measurement has its own advantages [15]. Traditional in-line fiber optic immersion
probes may have limited suitability for the viscous oil matrix involved in the enzymatic
degumming process. Hence, the on-line solution proposed in this study consists of a
closed bypass loop with a flow cell, where the process flow goes through and returns to
the reactor, giving several benefits in comparison to a fiber optic probe mounted directly
in the reactor. An on-line bypass loop is very beneficial in mitigating formation of air in
the reactor due to high stirring rates and allows for moving the viscous matrix through a
sampling window. On-line NIRS enables the control of enzyme dosage and holding time
by feedback PAT (Process Analytical Technology) control [16], ensuring that the process is
always in its optimal state, which is beneficial for economic, production time/capacity and
environmental/resource expenditure reasons. The holding time and required amount of
enzyme is highly dependent on the state of the raw material, i.e., the initial phosphorus
content of the oil, the enzymatic performance in the given environment and the current
state of the process [2]. NIRS can facilitate this real-time and on-line monitoring of the
current reaction state, leading to full control and optimization of the process.
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Modern NIR instrumentation enables very fast acquisition of spectral scans during
on-line monitoring. For interferometer-based instruments, where a spectrum is obtained
by Fourier Transformation (FT) of the measured interferogram, a scan can typically be
obtained in a few seconds. If several scans are averaged to reduce the measurement noise,
the spectral noise can be approximated as 1/

√
N, where N is the number of scans. Thus, to

reduce the noise by 50%, the number of scans must be increased fourfold. The signal to
noise ratio (SNR), or sensitivity, can be approximated by

√
N. However, SNR only improves

until the point where instrumental drift or other minor factors will start to dominate the
random noise [17,18]. In addition, the duration of measurement will at some point start to
influence the apparent process dynamics measured. In practice, measurement duration will
represent a compromise between process dynamics and measurement uncertainty [16]. To
achieve an acceptable level of noise (measurement uncertainty) during NIRS analysis, it is
common to collect and average a reasonable number of scans, causing a single measurement
campaign to last several minutes. In case of a fast-changing chemical process, i.e., a process
with a high reaction rate such as industrial enzymatic degumming, the average of these
scans may lead to misinterpretation of the current state of the process, since the process
may have changed considerably during acquisition from the first to last scan. The resulting
average spectra simply does not represent the process state as it was at the timepoint
of the last scan but rather the “chemical average” of the process kinetics as it happened
during the whole data acquisition period. This difference between the final produced
averaged spectra and the change in process presents an obvious problem when trying to
regulate the process to an optimal setpoint. This paper aims at investigating the effect of
the compromise between process dynamics and measurement uncertainty by varying the
spectral averaging strategy to be adapted to the process dynamics.

As an alternative to acquiring NIRS measurements by averaging a fixed number
of scans, a method where the instrument is set to generate scans in a free-run mode is
proposed. In such a setup, there is no traditional beginning or end of a measurement, but
just an endless stream of individual spectral scans. By applying a window function in the
time-domain on this stream, it is possible to control how spectra are collated (averaged)
prior to subsequent data analysis. By proper weighing of the prior scans in the window,
not only will spectral noise (measurement uncertainty) be reduced as described above, but
the changing reaction kinetics of the process can be considered as well. The way prior
samples are weighted in the window is controlled by the width of the window. In the
present study, we will examine the effect of varying the window width in the range of 0 to
300 s in intervals of 30 s.

In addition, the effect and performance of each window width based on PLS calibra-
tion models of FFA content is evaluated. This includes evaluation of different spectral
preprocessing techniques and application of two different variable selection algorithms
to obtain the most robust calibration model. The model performance is evaluated based
on RMSECV (Root Mean Square Error of Cross Validation) and number of latent variables
included and is illustrated using response surface plots.

2. Materials and Methods

Two batches of crude oil originating from the United States were used in the experi-
ment. The free fatty acid content was determined at arrival at the laboratory by a slightly
modified version of the AOCS Ca 5a-40 official method [5] working with a smaller sample
volume (1.0 g). Oil A was a soybean oil with a FFA content of 0.57%. Oil B was a rapeseed
oil with a FFA content of 1.23%. The oils were stored at 5 ◦C until onset of the experiment.
The phospholipase A1 type enzyme (Quara® LowP, Novozymes A/S, Denmark) was used
as the reaction enzyme. All other chemicals and reagents used in this study were purchased
from Sigma Aldrich (Düsselforf, Germany).
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2.1. Enzymatic Degumming

The two batches of crude oil were enzymatically degummed using a laboratory scale
batch system consisting of a 250 mL blue cap flask as the reactor and a temperature-
controlled water bath with magnetic stirring (Model T100, Grant Instruments Ltd., Cam-
bridge, UK).

A total of 200 g of crude oil was prepared in the blue cap flask and heated to 70 ◦C
at 500 rpm magnetic stirring in a water bath. The heated oil was treated with 650 ppm of
citric acid solution (50% w/w, citric acid reagent grade ≥ 99.5%) and mixed in an ultrasonic
bath for 5 min at 60 ◦C (Branson 3510 Ultrasonic Cleaner, Marshall Scientific, Hampton,
NH, USA). Upon 15 min of incubation at 70 ◦C, 3% of Milli-Q® water was added, followed
by the addition of 30 ppm of the phospholipase A1 enzyme Quara® LowP. The mixture
was ultrasonicated for another 5 min at 60 ◦C, and the reactor was placed in the water bath
at 70 ◦C for reaction. The reaction was monitored for three hours.

2.2. NIRS Measurements

A sample loop consisting of a flow cell and a peristaltic pump (Minipuls 3, Gilson Inc.,
Middleton, WI, USA) as shown in Figure 2A was used. During degumming, the oil was
pumped at 48 rpm in silicone tubing (I.D. 3.18 mm), through the flow cell, equal to a flow
rate of approximately 28 mL/min.
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Figure 2. (A) Layout of sample loop. The experimental setup includes a stirred reactor, a peristaltic
pump, a flow cell and a NIRS instrument. (B) Cross-sectional layout of flow cell. (C) Assembled flow
cell with collimators.

Spectroscopic data was collected with a Quant FT-NIR (ABB MB3600 FT-NIR) Fourier
Transform spectrometer with an InGaAs detector (Q-interline, Tølløse, Denmark) using the
HORIZON MB Pro software (ABB, Zurich, Switzerland). A 3D-printed flow cell equipped
with a Teflon (PTFE) 7 mm OD/6 mm ID tube was used as sample cell. Teflon was chosen
as it is transparent to near-infrared radiation and has excellent performance with the
viscous matrix. The light path length was fixed at 2 mm. The flow cell was equipped
with two collimators (model F240SMA-1550, Thorlabs, Newton, NJ, USA) connected to the
instrument by 3 m low-OH process grade fiber optical cables (Thorlabs, Newton, NJ, USA).
A graphical representation of the flow cell is shown in Figure 2B,C.
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The spectrometer was set to record scans in the range from 11,000 cm−1 to 3900 cm−1

(≈910–2775 nm), with a resolution of 8 cm−1 and a digitalization of 4 cm−1, resulting in
1584 data points per scan. A background spectrum of the empty Teflon tube was obtained
before the enzymatic degumming process was started.

The software was set to obtain one spectrum as frequent as possible, resulting in a
scan every 2–8 s due to software limitations, resulting in collection overhead. In total 3979
and 3913 spectra were obtained from batch A and B, respectively.

2.3. Reference Sampling

Reference samples were grab-sampled every fifth minute in the first hour and every
tenth minute thereafter throughout the experiment. Approximately 2 mL was transferred
directly from the sample loop silicone tube to a preheated Eppendorf tube. The enzyme was
inactivated by heating at 99 ◦C for a minimum of 30 min using an Eppendorf Thermomixer
(Eppendorf, Hamburg, Germany) immediately after sampling. The FFA content was
determined using a slightly modified version of the AOCS Ca 5a-40 official method [5]
working with a sample volume of 1.0 g. The volume of alkali used for titration to neutralize
the acidity in the samples was used to calculate FFA expressed as oleic acid using the
formula in the official method. The relative standard deviation (RSD) of the titration
method was 14.57% in the range of 0.1–1% FFA and 9.84% in the range of 1.0–2.0% FFA [5].
In total, 25 reference samples were obtained from each batch and were stored at 5 ◦C for
5–7 days until analysis.

2.4. 31P-NMR Analysis

The crude oils were analyzed using 31P-NMR to quantify the different phosphor-
containing species present. An oil sample of approx. 250 mg was transferred to a 2 mL
Eppendorf tube. An aliquot of 500 µL 2 mg/mL TPP (triphenyl phosphate) in MeOH was
added as internal standard, together with 500 µL of chloroform (CDCl3) and 500 µL 0.2 M
Cs-EDTA buffer. The tube was shaken for 30 s and centrifuged at 13,400 rpm for 1 min to
obtain phase separation. An aliquot of 700 µL of the organic phase was transferred to a
5 mm NMR tube for analysis. All 31P-NMR spectra were acquired at 298 K on a Bruker
Avance IIIHD 400 MHz spectrometer equipped with a BBFO room temperature probe. Each
spectrum was acquired using 128 scans with a relaxation delay of 5 s. The concentration of
each species was calculated as ppm P, i.e., mg elemental P per kg oil sample.

2.5. Data Analysis and Model Calibration

The data analysis was performed in MATLAB R2021a software (The Mathworks,
Inc., Natick, MA, USA) using the PLS_Toolbox version 8.9.1 (Eigenvector Research Inc.,
Wenatchee, WA, USA).

2.6. Data Screening and Removal of Spectral Outliers

Visual inspection of the spectra revealed that several of the acquired spectra were
noisy due to particles and bubbles passing through the experimental flow cell. These scans
were considered outliers and removed programmatically if (1) the absorbance was higher
than 2.99 for more than eight spectral wavelengths (indicating a blockage) and/or (2) a
scans’ standard deviation of absorbance evaluated over all wavelengths was found to have
a standard deviation lower than 0.15 (air bubble or no sample present).

Data was subsequently averaged in the process time domain by application of a
moving arithmetic average algorithm with a varying window width. The window width
varied from 0 to 300 s in 30 s interval, always operating on prior data. The moving average
algorithm applied the same weight to all spectra in the window.

2.7. Preprocessing of the Spectra

In order to reduce the amount of optical scatter in the acquired scans, three preprocess-
ing methods were examined to determine if any significant reduction in predictive error
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could be obtained [19]: MSC (Multiplicative Scatter Correction) [20], EMSC (Extended
Multiplicative Scatter Correction) [21] and Savitzky-Golay (SG) second order smoothing
and second derivative, with widths of 15, 31 and 59, respectively [22]. All data were mean
centered (MC) after preprocessing, and the three preprocessing methods were compared
to raw mean centered spectra. The spectral range of 1100–2200 nm was used for model
calibration.

2.8. Principal Component Analysis (PCA)

Data were explored by Principal Component Analysis (PCA) to evaluate the process
kinetics and changes over time and to retrieve information about systematic variation in
the dataset [23]. A total of 66 PCA models were calculated, representing each combination
of window width (0 to 300 s with 30 s intervals) and preprocessing (MC, SG15,2,2 + MC,
SG31,2,2 + MC, SG59,2,2 + MC, MSC + MC, EMSC + MC).

2.9. Partial Least Squares (PLS) Regression

Partial Least Squares (PLS) regression [24] was performed to evaluate the relationship
between the near-infrared spectra and the FFA reference values obtained from titration.
The preprocessed free run data were reduced to align with the response variables using
time stamps, and all non-aligned spectra were excluded. The two batches were combined
into one dataset of size 48 spectra × 1178 variables. One PCA model for each prepro-
cessing method was calculated, and outliers were identified programmatically based on
the confidence of scores in LV1 (latent variable) and LV2, explaining on average 93% of
the data across all window widths and preprocessing methods. Samples outside the 95%
(±2 standard deviations) confidence were removed, and finally the intersection of outliers
across the six different preprocessing methods was removed to obtain datasets of equal size
for comparison. The final dataset for PLS regression included 45 spectra of 1178 variables.

Calibration models were cross validated using a segmented venetian blinds cross
validation, with six segments of four samples each, equivalent to 15–30 min reaction time.
The calibration models were evaluated based on the number of components included, the
RMSECV (Root Mean Square Error of Cross Validation) and the correlation (as coefficient
of determination, r2). The number of latent variables to include was initially estimated
by evaluation of the data and then fixed for easier comparison between combinations of
preprocessing and average window width.

2.10. Variable Selection

Variable selection was carried out by both recursive PLS (rPLS) [25] and interval
PLS (iPLS) [26]. Recursive PLS uses the regression vector as a base for weighting the
individual variables, taking advantage of the fact that the regression vector reflects the
importance of the variables [25]. In this study, rPLS models including one to five latent
variables were calculated for each combination of window width and preprocessing, and
the included variables resulting in the lowest RMSECV were chosen for modelling. Interval
PLS performs selection of variable intervals based on the RMSECV value obtained for
each individual interval of variables and sequentially selects the intervals resulting in the
lowest RMSECV [26]. In this study, the wavelength region (1100–2200 nm) was divided
into segments of 100 variables using forward selection.

3. Results
3.1. Statistics of Reference FFA Measurements

Basic statistics of the reference values obtained by FFA analysis are shown in Table 1.
Two batches were monitored during degumming, using soybean and rapeseed oil as the
raw material. Rapeseed oil consists mainly of mono-unsaturated fatty acids, whereas
soybean oil has a higher content of saturated and poly-unsaturated fatty acids [27]. The
initial FFA content was significantly higher in the rapeseed oil than in the soybean oil,
and both levels were in accordance with average oil compositions [28]. For regression
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modelling, the data from the two batches were combined into one dataset, resulting in a
relative standard deviation of 30.3%, which is judged to be sufficient to establish feasible
calibration models.

Table 1. Statistical data on reference FFA measurements. SD = standard deviation, RSD = relative
standard deviation = (SD/mean)·100.

Batch A Batch B Batch A + B

Origin Soybean Rapeseed Soybean/Rapeseed
Number of samples 25 25 50

FFA: Mean ± SD (% w/w) 0.62 ± 0.12 1.08 ± 0.11 0.85 ± 0.26
FFA: Range (% w/w) 0.34–0.79 0.87–1.25 0.34–1.25

RSD (%) 19.4 10.2 30.3

Figure 3 shows the FFA content as a function of time. Both batches have a plateau
from around 60 to 140 min, after which only a slight increase in FFA is observed. The
marked increase in FFA after approximately 130–150 min is speculated to be a result of
a change in the physico-chemical and emulsifying properties when the phospholipids
are gradually hydrolyzed to lyso-phospholipids. Phospholipids mainly form water-in-oil
emulsions, whereas lyso-phospholipids form oil-in-water emulsions. The transition from a
water-in-oil emulsion to an oil-in-water emulsion may explain the increase in FFA, as the
phospholipids become more available for hydrolysis.
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3.2. Spectral Features of the Vegetable Oils

The near-infrared region is characteristic in containing the combination and overtones
of the fundamental molecular vibrations absorbing in the infrared region. As NIRS is
more sensitive to anharmonic vibrations, e.g., C-H, N-H and O-H vibrations, and contains
repeated redundant information [29], it can typically be used for more robust calibrations.
Figure 4 shows the single scan NIR spectra of all samples in batch A colored by time
(only every 50th spectrum is plotted for clarity). Different regions of absorption can
be observed in the spectrum, with different intensities corresponding to the oil and the
products formed in the hydrolysis reaction. The main peaks between 1700 and 1800 nm
correspond to the first overtone of C-H stretching vibrations and are characteristic for oils.
The shape of the peaks in this region differs slightly between different oil types due to
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differences in the fatty acid composition [9]. The complex overlapped peaks between 1800
and 2200 nm correspond primarily to O-H combination bonds, showing the presence of
O-H in glycerides and phospholipids, but also the moisture present (H2O). However, the
region also contains peaks for O-H vibrations from P-OH stretching vibrations (1910 nm,
1st overtone) and CH + C=C combination bands from unsaturated fats (2150–2200 nm). At
1350–1500 nm, the combination bands from C-H deformation and C-H stretching vibrations
are present together with the second overtone of O-H stretching vibrations around 1450 nm.
At 1150–1250 nm, bands corresponding to the second overtone of C-H stretching vibrations
are present. These are all typical for lipid/oil systems.
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Figure 4. Single scan NIR spectra of batch A colored by time. Every 50th spectrum is plotted for
clarity.

3.3. Exploration of the Degumming Process by PCA

The appearance of the PCA score plots is highly influenced by the choice of spectral
preprocessing. Averaging with a process window width of 30 s, i.e., the minimum average
measurement time investigated, shows a significant influence on both the appearance
and explained variance as compared to no averaging (window width = 0). However,
no significant difference in appearance and explained variance is observed when using
a window width above 30 s (data not shown). As no quantitative tool for determining
the optimal window width is available, a compromise between experimental noise and
process dynamics must be made. The data suggest that a window width of 30–90 s
provides an effective reduction of experimental noise without losing details of the process
dynamics. This time range corresponds approximately to averaging 16–48 scans with the
interferometer.

Figures 5 and 6 show the PCA score plot (LV1 vs. LV2) (left panel) and loading plot
(right panel) for batch A and B, respectively. Data were averaged with a window width
of 60 s and preprocessed by EMSC and mean centering. The scores are colored according
to time. LV1 and LV2 explain 98% and 94% of the variation of the spectra recorded from
batch A and B, respectively.
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Figure 5. Left: PCA score plot of batch A using EMSC preprocessing and a measurement time
window width of 60 s. Right: Loadings plot of LV1 and LV2.

Foods 2021, 10, x FOR PEER REVIEW 9 of 15 
 

 

to time. LV1 and LV2 explain 98% and 94% of the variation of the spectra recorded from 
batch A and B, respectively. 

 
Figure 5. Left: PCA score plot of batch A using EMSC preprocessing and a measurement time 
window width of 60 s. Right: Loadings plot of LV1 and LV2. 

 
Figure 6. Left: PCA score plot of batch B using EMSC preprocessing and a measurement time 
window width of 60 s. Right: Loadings plot of LV1 and LV2. 

In batch A, a major transition takes place along LV2 in the first two minutes, and then 
changes to go along LV1, which is the most important based on explained variance. The 
major transition in batch B is moving diagonally along LV1 and LV2 within the first 5 min. 
During degumming of batch B, air bubbles were trapped in the light path for short periods 
of time, and for a longer period from approximately 40–50 min. These spectra of air were 
automatically removed as described in the Section 2.6 and is the reason for missing points 
in some parts of the trajectory in the score plot. 

The loadings in Figures 5 and 6 (right) reflect the overall variation of the enzymatic 
hydrolysis process. LV1 is predominantly influenced by the first overtone of O-H 
stretching vibrations (1400–1425 nm), together with the O-H combination tone (1900–1920 
nm), which signifies that water is being consumed in the hydrolysis process, as the 
loadings are positive and the scores go from positive to negative. LV2 is mainly influenced 
by the first overtone of C-H stretching vibrations (1700–1800 nm) and the second overtone 
of C=O stretching vibrations (1900 nm) related to the carboxylic acid functional group 
present in free fatty acids. This corresponds to an increase in free fatty acid concentration 
by closure. 

-0.1 0 0.1 0.2 0.3 0.4 0.5
Scores on LV1 (94 %)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Sc
or

es
 o

n 
LV

2 
(4

 %
)

0  

20 

40 

60 

80 

100

120

140

160

180

M
in

ut
es

0 m in

180 m in

2.5 m in

5 m in

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

Wavelength [nm]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Lo
ad

in
gs

LV1 (94 %)
LV2 (4 %)

-0.2 0 0.2 0.4 0.6
Scores on LV1 (75 %)

-0.15

-0.1

-0.05

0

0.05

0.1

Sc
or

es
 o

n 
LV

2 
(1

9 
%

)

0  

20 

40 

60 

80 

100

120

140

160

180

M
in

ut
es

0 m in

180 m in

2.5 m in

5 m in

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

Wavelength [nm]

-0.1

-0.05

0

0.05

0.1

0.15

Lo
ad

in
gs

LV1 (75 %)
LV2 (19 %)

Figure 6. Left: PCA score plot of batch B using EMSC preprocessing and a measurement time
window width of 60 s. Right: Loadings plot of LV1 and LV2.

In batch A, a major transition takes place along LV2 in the first two minutes, and then
changes to go along LV1, which is the most important based on explained variance. The
major transition in batch B is moving diagonally along LV1 and LV2 within the first 5 min.
During degumming of batch B, air bubbles were trapped in the light path for short periods
of time, and for a longer period from approximately 40–50 min. These spectra of air were
automatically removed as described in the Section 2.6 and is the reason for missing points
in some parts of the trajectory in the score plot.

The loadings in Figures 5 and 6 (right) reflect the overall variation of the enzymatic
hydrolysis process. LV1 is predominantly influenced by the first overtone of O-H stretching
vibrations (1400–1425 nm), together with the O-H combination tone (1900–1920 nm), which
signifies that water is being consumed in the hydrolysis process, as the loadings are positive
and the scores go from positive to negative. LV2 is mainly influenced by the first overtone
of C-H stretching vibrations (1700–1800 nm) and the second overtone of C=O stretching
vibrations (1900 nm) related to the carboxylic acid functional group present in free fatty
acids. This corresponds to an increase in free fatty acid concentration by closure.

Pan et al. 2000 investigated the kinetics of degumming processes of sunflower oil
by following the concentration of different phospholipids with HPLC. The oil was first
degummed with 2.5% water at 40 ◦C for 55 min, resulting in a significant reduction of the
total phospholipid content after 35 min. However, it was found that different phospholipids
were hydrolyzed at different rates, due to different hydration rates [2,3]. For instance, the
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phosphatidylcholine (PC) content decreased by approximately 99% within 5 min, which
agrees with the biggest transition in the PCA score plots in Figures 5 and 6. In contrast,
phosphatidylethanolamine (PE) was much slower to hydrolyze and not completely hy-
drolyzed even after 55 min of reaction [30]. Subsequently, the water degummed oil was
degummed with 2.5% citric acid at 70 ◦C for 35 min, resulting in a significant reduction of
the total phospholipid content after 15 min. Phosphatidylcholine (PC) and phosphatidic
acid (PA) were present only in traces after 5 min, whereas phosphatidylethanolamine (PE)
content was decreased to trace levels after 25 min.

The relative distribution of phospholipids in soybean oil (batch A) estimated by 31P-
NMR is approximately 31.5% PC (phosphatidylcholine), 18.1% PI (phosphatidylinositol),
33.6% PE (phosphatidylethanolamine) and 16.8% PA (phosphatidic acid), and approxi-
mately 45.4% PC, 24.5% PI, 25.4% PE and 4.7% PA in rapeseed oil (batch B). PC has the
highest relative rate of hydration (100%), followed by PI (44% of PC), PE (24% of PC) and
PA (8.5% of PC) [3]. The higher content of PC in batch B may explain the faster transition
visible in the PCA score plot, and additionally, the differences in hydration rates may
explain the recurrent transition points from 5 to 180 min in the score plots.

3.4. Prediction of Free Fatty Acid Content

Calibration models were established to investigate the effect of window width and
preprocessing method on the regression performance. Figure 7 shows the PLS, rPLS and
iPLS response surface plots for each combination of window width and preprocessing.
The number of latent variables included is fixed to five for easier comparison of model
performance. Table 2 shows an overview of the optimal calibration models with relevant
model performance parameters.Mater. Proc. 2021, 5, 3 3 of 7
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Figure 1. Map of Greece indicating the sample localities.Figure 7. Response surface plot for PLS, rPLS and iPLS models (left, middle and right column). The preprocessing method
is plotted against the averaging window width. The color scale corresponds to the RMSECV at the five latent variables (LVs)
included. The optimal models, i.e., lowest RMSECV-value, are marked with a X.

Table 2. Overview of the optimal NIRS calibration models for FFA. # LVs: number of latent variables, RMSEC: Root Mean
Square Error of Calibration, RMSECV: Root Mean Square Error of Cross Validation.

Model Window
Width Preprocessing # Samples # Variables # LVs RMSEC

(%)
r2

(CAL)
RMSECV

(%) r2 (CV)

PLS 270 SG15,2,2 44 1178 5 0.04 0.97 0.06 0.94
rPLS 30 SG15,2,2 44 8 5 0.03 0.98 0.05 0.96
iPLS 300 SG31,2,2 44 300 5 0.03 0.98 0.05 0.96

The optimal model, including all spectral variables (i.e., no variable selection), had
a RMSECV of 0.06% (w/w) FFA using five latent variables. Data were averaged using a
window width of 270 s and preprocessed by Savitzky-Golay (15,2,2). Subsequently, two
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different methods of variable selection were tested for potential performance gains, namely
recursive PLS (rPLS) and interval PLS (iPLS). The optimal model using rPLS was found
to include eight wavelengths and had a RMSECV of 0.05% (w/w) FFA using five latent
variables. The data were averaged using a window width of 30 s and preprocessed as
second derivative spectra (Savitzky-Golay (15,2,2)). The optimal iPLS model included
300 spectral variables and had an RMSECV of 0.05% (w/w) FFA using five latent variables.
Data were averaged using a window width of 300 s and preprocessed as second derivative
spectra (Savitzky-Golay (31,2,2)).

The measured vs. predicted plot and the variables selected by rPLS are shown in
Figure 8. The eight wavelengths selected by the rPLS algorithm are 1377, 1718, 1869, 1879,
1888, 1892, 1894 and 2159 nm.
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Figure 8. Left: Measured vs. predicted plot of optimal rPLS model (30 s averaging, SG15,2,2, 5 LVs; see Figure 7).
Right: Average spectrum with the eight wavelengths chosen by the rPLS algorithm as indicated in red (1377, 1718, 1869,
1879, 1888, 1892, 1894 and 2159 nm).

The optimal calibration model was used to predict the FFA content for every spectrum
obtained for each batch. In that way, it was possible to obtain a prediction trajectory to
compare with the reference values. The predictions are shown together with the reference
values in Figure 9. The spectral data used for prediction were averaged using a window
width of 180 s to reduce the influence of noise. In general, the predictions follow the
measured FFA content reasonably well. However, deviations between predicted and
measured FFA content are observed during the first 30 min of reaction in batch A. The
gap in predictions in batch B from approximately 35 to 55 min is due to removal of non-
informative spectra, as air bubbles were trapped in the sample cell.

Disagreement between predicted and measured FFA content is also observed at the
end of the process, i.e., from 130 to 180 min of reaction in batch B. The predictions indicate
that the change taking place is not detected by NIR in a timely fashion. This is likely due to
increased level of noise in the spectra.
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Figure 9. Predicted FFA content using the optimal calibration model (rPLS model with eight variables included and five LVs)
on data averaged with a window width of 150 s. The predictions of batch A and B are colored in red and green, respectively.
The reference values are plotted as black lines.

4. Discussion

The application of NIRS to monitor and predict constituents of vegetable oil has been
studied in the literature, especially as related to the production of biodiesel. Rapid in-line
and on-line NIRS methods have been evaluated as being successful for monitoring the
transesterification reaction in the production of biodiesel from vegetable oil [10,12,14]. Ben-
dini et al. [31] investigated the use of NIRS to predict fat content, moisture and free acidity
(FA) in industrial olive oils. A total of 322 spectra were acquired in transmission mode
and preprocessed as first derivative spectra (Savitzky-Golay 17,1,1) and baseline correction.
Free acidity was predicted by PLS regression with an RMSECV of 0.03% (w/w) and an r2 of
0.986 in the range of 0.04–1.96% using nine latent variables in an optimistic leave-one-out
cross-validation scenario. Rodrigues et al. [7] predicted the FFA content in refined soybean
oil by NIRS using a PLS calibration model that included seven latent variables with an
RMSECV of 0.88% (w/w) and an r2 of 0.99, using baseline correction and preprocessed as
first derivative spectra (Savitzky-Golay 9,1,1). However, the range of measurements in the
investigation covered 0–90% (w/w) FFA content, which differs significantly from the much
smaller and narrower range investigated in this study (0.34–1.25% (w/w) FFA).

For the industrial degumming process, the FFA represent the most obvious and direct
chemical components for the establishment of calibration models. In industrial production
plants, FFA calibration models will also be straightforward to maintain and update, since
the FFA determination by titration is normally available. The present study shows that
calibration of NIR spectra to predict FFA content was indeed successful, although partially
indirect in nature, since the consumption of water also play a significant role in the cali-
bration models. It is not abnormal nor performance-deteriorating to build PLS regression
models on indirect correlations, assuming that the indirect correlations rely on inherent
biological or chemical relationships; this may be called the chemical cage of covariance [32].

During these experiments, spectral acquisition was carried out as fast as the instrument
allowed (i.e., every 2–8 s) and subsequently averaged using different window widths to
obtain a compromise between experimental noise and process dynamics, with temporal
averaging necessary to reduce the experimental noise. In the present study, each spectrum
in the window was weighed equally as a simple moving average (boxcar filter). Initially,
two other weighted moving average functions were evaluated to investigate the effect of
assigning higher weights to the most recent spectra. However, neither linear nor gaussian
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weighing functions provided better results (data not shown). The results obtained by PCA
indicate that a window width of 30 s is sufficient and that a larger window width does not
have a significant impact on the explained variance. This indicates that a normal procedure
of averaging 16, 32 or 64 scans is suitable in most process monitoring situations. However,
in processes with high dynamics, such as enzymatic processes, free-run spectroscopy can
aid in the understanding and interpretation of these changes and potentially allow for
monitoring rapid changes in the chemical system that would otherwise be hidden.

The calibration routine used in this study was fully automated, i.e., both outlier
detection, determination of the number of latent variables and variable selection were
done programmatically, with a minimum of or no user input. However, the detection
of outliers is based on a 95% confidence interval to exclude extreme samples from the
calibration model. As no reliable automatic method exists for the automatic selection of
the optimal number of components, we did not automate this process but rather based it
on manual selection. An alternative method for outlier detection based on the influence
plot (Hotelling’s T2 vs. Q residuals) was investigated, but this procedure did not result in
improved prediction models; however, it may have the potential for more robust model
generation.

The main challenge in this calibration problem is that the reaction changes fast at
the beginning of the process (the first 0–5 min) as is visualized in the PCA score plot in
Figures 5 and 6. Since reference samples were only collected every fifth minute during the
reaction, it is difficult to establish PLS regression models including all samples, as the first
reference samples in each batch show outlying behavior due to extreme reference values.
This is also evident from Figure 9, which shows the predictions. A solution to this challenge
would be to take out reference samples more frequently during the first 30 min of each
batch, e.g., every second minute.

The relative standard deviation (RSD) of the FFA titration method is estimated to be
in the range of 10–15%. As the RMSE summarizes both the error arising from the reference
and the calibration model, the established prediction models may perform better than the
reference method. To confirm this, the FFA content should be quantified using a more
accurate method, e.g., GC-MS [33] or SFC [34].

Via optical fibers, NIR instrumentation can be installed at one or several places in
the process line to enable real-time process monitoring and control. Application of PAT
principles such as feed-forward and feed-back systems will enable the possibility of fully
automatic process control, e.g., automatic enzyme dosage [16]. In addition, on-line mon-
itoring of the process gives real-time insight into the process kinetics, as demonstrated
in this study. NIRS facilitates rapid and constant monitoring of the process and enables
establishment of control charts. Thus, immediate action can be taken, and the production
can be halted/changed if the quality is not acceptable, i.e., if the degumming is insufficient.
Moreover, if it is possible to monitor the concentration of the different phospholipids, it
can be made clear which part of the hydrolysis reaction is not proceeding optimally. This
information can be used to optimize the conditions during degumming to obtain a more
effective process.

5. Conclusions

This study demonstrated that it is possible to monitor the rapid dynamics of enzymatic
degumming reaction with free-run NIR spectroscopy. The effect of window width in
process time-domain averaging and spectral preprocessing was investigated by PCA
and PLS modelling. Models established on process-averaged data showed significantly
better performance in comparison to traditional models based on unsmoothed (raw) data.
Independently of the averaging window width, strong transition points were observed
in the PCA score plots within the first 5 min of reaction. This signifies a very high rate of
conversion at the onset of the enzymatic reaction, underlining the benefit of free-run NIR
spectroscopy. A robust PLS calibration model was established, enabling determination of
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free fatty acid content during production, with an RMSECV of 0.05% (w/w) FFA using five
latent variables and eight spectral variables.
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