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Abstract

Objective: Esophageal varix (EV) bleeding is a particularly serious complications of cirrhosis.

Prediction of EV bleeding requires extensive endoscopy experience; it remains unreliable and

inefficient. This retrospective cohort study evaluated the feasibility of using deep learning (DL) to

predict the 12-month risk of EV bleeding based on endoscopic images.

Methods: Six DL models were trained to perform binary classification of endoscopic images of

EV bleeding. The models were subsequently validated using an external test dataset, then com-

pared with classifications performed by two endoscopists.

Results: In the validation dataset, EfficientNet had the highest accuracy (0.910), followed by

ConvMixer (0.898) and Xception (0.875). In the test dataset, EfficientNet maintained the highest

accuracy (0.893), which was better than the endoscopists (0.800 and 0.763). Notably, one endo-

scopist displayed higher recall (0.905), compared with EfficientNet (0.870). When their predic-

tions were assisted by artificial intelligence, the accuracies of the two endoscopists increased by

17.3% and 19.0%. Moreover, statistical agreement among the models was dependent on model

architecture.

Conclusions: This study demonstrated the feasibility of using DL to predict the 12-month risk of

EV bleeding based on endoscopic images. The findings suggest that artificial intelligence-aided

diagnosis will be a useful addition to cirrhosis management.
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Introduction

Variceal bleeding is a particularly serious
complication of cirrhosis.1 Variceal
bleeding-related mortality remains high,
with a prevalence approaching 20%.2–4

Esophageal varices (EVs) are the most
common gastrointestinal varices.5

According to the Baveno consensus, high-
risk varices in patients without prior EV
bleeding are defined as: medium or large
varices, small varices with red wale marks,
or any size varices in patients with Child–
Pugh class C disease.6 The consensus recom-
mends endoscopic surveillance for patients
with cirrhosis who have portal hypertension.
During upper endoscopy, endoscopists are
advised to perform a series of systematic
assessments to record the locations, sizes,
and appearances of EVs. Risk stratification
based on these endoscopic assessments is
essential for the clinical management of
EVs; it can optimize medical resources and
improve patient outcomes.7

In the past 15 years, substantial advances
in deep learning (DL) algorithms have rev-
olutionized image analysis patterns in vari-
ous datasets.8 In clinical settings, computer
vision (CV) tasks include helping radiolog-
ists and endoscopists to make decisions
regarding large numbers of medical
images.9–11 Convolutional neural networks
(CNNs), a class of artificial neural net-
works, are characterized by the shared-
weight architecture of sliding convolution
kernels.12 Recently, transformer-based
neural networks have emerged as a compet-
itive alternative with potential applications

in diverse CV tasks.13 Various DL models

have been increasingly used in analyses of

endoscopy datasets,14,15 including polyp

detection (colonoscopy), early gastric

cancer diagnosis (upper endoscopy), and

automatic lesion detection (capsule endos-

copy).16–21

Although high-risk varices have been

well-characterized since the late 1980 s,22,23

the prediction of EV bleeding risk requires

extensive endoscopy experience; it remains

unreliable and inefficient.2,5 Early identifi-

cation of patients with cirrhosis who have

high-risk EVs is important for improving

patient outcomes and optimizing medical

resources.1 In this multicenter study, we

evaluated the feasibility of using DL to pre-

dict the 12-month risk of EV bleeding based

on model training via classification of endo-

scopic images.

Methods

Study design

This multicenter retrospective cohort study

included randomly selected patients with

cirrhosis who attended two hospitals—The

First Affiliated Hospital of Soochow

University, Suzhou, China (Suzhou hospi-

tal, training and validation datasets) and

Jintan Affiliated Hospital of Jiangsu

University, Changzhou, China (Jintan hos-

pital, test dataset)—between 1 January 2015

and 1 January 2021 (Supplementary Table 1).

All variceal images were acquired during

maximal insufflation and distention of the
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esophageal lumen, in the absence of peristal-
tic waves. The images were fully anonymized
before analysis by the authors; the investiga-
tors also de-identified all patient information.
This study protocol was approved by the
Ethics Committee of The First Affiliated
Hospital of Soochow University (approval
number 2022098); the study was conducted
in accordance with the Helsinki Declaration
of 1975, as revised in 2013. All participants
provided written informed consent for inclu-
sion in the study. This article adheres to the
STROBE guidelines.24

At both centers, EVs were diagnosed
based on the 2014 guidelines of the
American Society for Gastrointestinal
Endoscopy (ASGE 2014).25 Patients were
excluded if they had a history of EV bleed-
ing, were receiving treatment for EVs, or
had a non-cirrhotic etiology of portal
hypertension. Treatments for EVs included
nonselective beta blockers, sclerotherapy,
endoscopic ligation, transjugular intrahe-
patic portosystemic shunt, and laparoscopic
splenectomy.26 Patients were followed up
for at least 12 months to record EV out-
comes (i.e., first occurrence of EV bleed-
ing). Variceal bleeding was defined as
follows: 1) active variceal bleeding on

endoscopy or 2) melena/hematemesis after

exclusion of other causes of upper gastroin-

testinal bleeding (e.g., digestive ulcers or

Dieulafoy disease).
The study protocol is shown in Figure 1.

First, six CNN- or transformer-based DL

models were selected for transfer learning

in the CV task. After models had been pre-

trained on ImageNet (detailed in next sec-

tion), they were trained to perform binary

classification of endoscopic images of EVs

from Suzhou hospital (training and valida-

tion datasets). Moreover, the DL models

were externally validated using images

from Jintan hospital (test dataset), then

compared with classifications performed

by two endoscopists. Additionally, DL

model inferences were visualized by

gradient-weighted class activation map-

ping (Grad-CAM). Finally, artificial

intelligence-aided performance was

evaluated.

Models and pretraining

Six CNN- or transformer-based models were

chosen: MobileNet (MobileNet V1), ResNet

(ResNet-50 V2), Xception, EfficientNet

(EfficientNet V2 s), ViT (ViT-B16), and

Figure 1. Study flowchart. (a) Datasets and (b) processes used in this study.
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ConvMixer (ConvMixer-768/32). These
models were pretrained on the ImageNet
database (www.image-net.org), prior to
transfer learning. Architectures and pre-
trained parameters were downloaded from
Keras (keras.io) or TensorFlow Hub (tfh
ub.dev). A flowchart for the model training
process is provided in Supplementary
Figure 1.

Target training and internal validation

As shown in Figure 1, 675 images of EVs
were collected from Suzhou hospital and
saved in JPEG format. All images were
obtained from endoscopic systems estab-
lished by Olympus Corporation (Tokyo,
Japan) or Fujifilm Corporation (Tokyo,
Japan). Images were divided into two clas-
ses according to whether bleeding occurred
within 12 months after initial diagnosis:
control (no bleeding, n¼ 439) vs. bleeding
(n¼ 236). After image augmentation, the
numbers of images were increased to 2000
in the training dataset (1000 vs. 1000) and
400 in the validation dataset (200 vs. 200).
All images were rescaled and normalized to
pixel dimensions of 331� 331� 3.
Considering the unique nature of endosco-
py data, we used non-rigid transformation
for endoscopic images. Rotational transfor-
mation and flip transformation were per-
formed to augment the data. The
augmentation procedure is shown in
Supplementary Figure 2.

The parameter transfer learning proce-
dure was implemented in Keras software
(Google), using the TensorFlow framework
as the backbone. Transfer learning was
applied to the aforementioned CNN- or
transformer-based architectures by combin-
ing the existing feature extraction layers
(fixed layers) with additional activation
layers (training layers) for binary classifica-
tion. Fitted models were compiled using an
Adam optimizer and the binary cross-
entropy cost function, with a fixed learning

rate of 0.0001 and batch size of 32. Training

was discontinued when accuracy in the val-

idation dataset did not improve for three

epochs. The maximum number of training

epochs was limited to 100. This experiment

was performed on a Mac mini (Apple M1,

8 cores, 16G RAM, macOS Ventura

13.0.1). The training code is available at

https://osf.io/ycxwr.

External validation

Test dataset images were collected from

Jintan hospital (control [no bleeding,

n¼ 200] vs. bleeding [n¼ 200]). The criteria

and procedure were consistent with the

methodology regarding Suzhou hospital.

Furthermore, the performances of two

endoscopists (one from Jintan hospital

[#1] and one from Suzhou hospital [#2])

were compared with the performances of

the models. First, endoscopists with more

than 10 years of experience independently

classified the images based on the ASGE

2014 guidelines.25 In accordance with the

guidelines, large EVs (>5mm) or EVs dis-

playing red wales or spots were predicted to

have a high risk of bleeding. Second, after

independent judgement, the two endoscop-

ists were given access to the best model’s

predictions; they subsequently re-classified

the images, and this approached was

regarded as artificial intelligence-aided

prediction.

Model visualization

Grad-CAM has been proposed to visualize

models by highlighting regions that are

important for predictions from these

models.27 In this study, Grad-CAM heat-

maps were created for inferential explana-

tion of multiple output layers from the best

model.
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Evaluation criteria

DL models were fitted using Python soft-

ware (version: 3.9; Python Software

Foundation) and TensorFlow (2.8.0;

Google). Model performances were evaluat-

ed in terms of accuracy, recall, precision, and

F1-score. The algorithms are shown below

(TP, true positive [correct assumption that

an event has occurred]; TN, true negative

[correct assumption that an event has not

occurred]; FP, false positive [incorrect

assumption that an event has not occurred];

FN, false negative [incorrect assumption

that an event has not occurred]):

Accuracy ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ

Precision ¼ TP= TPþ FPð Þ

Recall ¼ TP= TPþ FNð Þ

F1

� score

¼ 2 � precision � recallð Þ= precision þ recallð Þ:

Accuracy, precision, and recall are the

main indicators of machine learning perfor-

mance. The F1-score combines precision

and recall into a single indicator.

Statistical agreement among the DL

models and the endoscopists was measured

using Cohen’s j, which evaluates the level

of agreement between two raters or judges

when classifying items into mutually exclu-

sive categories. Two-sided p-values <0.05

were considered statistically significant.

Results

Development and internal validation of

DL models

The six CNN- or transformer-based models

were trained by transfer learning, then used

for binary classification of the 12-month
risk of EV bleeding based on endoscopic
images. The performances of the six
models in the validation dataset are shown
in Figure 2a and Table 1. EfficientNet
showed the highest accuracy (0.910), fol-
lowed by ConvMixer (0.898) and Xception
(0.875). The recall, precision, and F1-score
of the EfficientNet model were 0.900, 0.918,
and 0.905; these values were superior to the
values of the other models. The confusion
matrices of the models are shown in
Figure 3a.

External validation of DL models

The performances of the six models in the
test dataset are shown in Figure 2b and
Table 1. EfficientNet maintained the high-
est accuracy (0.893), followed by
ConvMixer (0.860) and Xception (0.850).
The recall, precision, and F1-score of
EfficientNet were 0.870, 0.911, and 0.890;
these values were superior to the values of
the other models. The confusion matrices of
the models are shown in Figure 3b.

Comparison with endoscopists

The performances and confusion matrices
of the two endoscopists in the test dataset
are shown in Figure 2c, Figure 3c, and
Table 1. The accuracies of the endoscop-
ists were 0.800 and 0.763. Although their
accuracies were lower than the DL model
accuracies, endoscopist #1 achieved a
recall of 0.905, which was superior to
EfficientNet.

Artificial intelligence-aided performance

The performances of the two endoscopists
with assistance from the best DL model
(EfficientNet) are presented in Figure 2c,
Figure 3d, and Table 1. For endoscopist
#1, the accuracy increased by 17.3% to
0.938; recall was 0.920, precision was
0.953, and F1-score was 0.936.

Hong et al. 5



For endoscopist #2, accuracy increased by

19.0% to 0.908, which was superior to

EfficientNet.

Agreement between models and

endoscopists

As shown in Figure 4, statistical agreement

among the DL models and endoscopists

was measured using Cohen’s j.
According to model architecture, the four

CNN-based models displayed high levels

of agreement (ranging from 0.745 to

0.945), whereas the j value between the

two Transformer-based models was 0.800.

Finally, the two endoscopists demonstrat-

ed a j value of 0.860.

Inferential explanation of the EfficientNet
model

Based on the outputs of the EfficientNet
model, Grad-CAM was used to highlight
the artificial intelligence-inferred EVs on
original images, as shown in Figure 5.
Based on the best Grad-CAM model out-
puts, inferential explanations were estab-
lished via heatmaps.

The left column shows the original
endoscopic images. The middle column
shows heatmaps established using the
output of the last feature-extractor layer
in the EfficientNet model. The right
column shows the Grad-CAM heatmap
overlaid on the original images, where
highlighted regions reflect EVs identified
by the model.

Figure 2. Performances of deep learning models and endoscopists in the validation and test datasets. a)
Artificial intelligence models in validation dataset. b) Artificial intelligence models in test dataset. c)
Endoscopistsþ best artificial intelligence model in test dataset.
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Discussion

In this study, we evaluated the feasibility of

using DL models to classify images of EVs

according to the 12-month risk of bleeding.

We found that DL models demonstrated

better classification accuracy and inference

time, compared with endoscopists.

Furthermore, artificial intelligence-aided

prediction displayed considerable

improvement.
In the late 1980s, the Japan Society for

Portal Hypertension initially proposed a

system to record the endoscopic appearance

of EVs.23 In 1995, the society revised the

rules into the “General Rules for

Recording Endoscopic Findings of

Esophagogastric Varices.”28 In 2010, infor-

mation regarding portal hypertensive gas-

tropathy and endoscopic ultrasonography

was included in the second edition of the

rules.29 These rules are widely used in

Japan and other countries. Among
Western countries, in 1988, the North
Italian Endoscopic Club released a predic-
tion index to determine 12-month risk of
bleeding, based on Beppu’s Variceal Score
and the Japanese rules.22

Guidelines from the American
Association for the Study of Liver Disease
and the Baveno V consensus suggest the use
of screening endoscopy for patients with
cirrhosis to diagnose EVs and stratify
bleeding risk.6,30 The optimal surveillance
schedule for EVs is largely dependent on
endoscopic appearance and the stage of
portal hypertension. For patients with com-
pensated cirrhosis and no varices on screen-
ing, endoscopy is recommended every 2 to 3
years; patients with small varices should
undergo endoscopy every 2 years.25 EVs
may progress faster in patients with
alcohol-induced or decompensated cirrho-
sis, or with high-risk signs on endoscopic

Table 1. Performances of deep learning models and endoscopists in each dataset.

Datasets Models Accuracy Recall Precision F1-score

Training MobileNet 0.969 0.966 0.972 0.969

ResNet 0.979 0.977 0.981 0.979

Xception 0.985 0.981 0.989 0.985

EfficientNet 0.992 0.990 0.993 0.991

ViT 0.981 0.982 0.979 0.981

ConvMixer 0.986 0.983 0.988 0.985

Validation MobileNet 0.848 0.825 0.864 0.844

ResNet 0.863 0.840 0.880 0.859

Xception 0.875 0.845 0.899 0.871

EfficientNet 0.910 0.900 0.918 0.909

ViT 0.863 0.825 0.892 0.857

ConvMixer 0.898 0.885 0.908 0.896

Test MobileNet 0.815 0.795 0.828 0.811

ResNet 0.833 0.805 0.852 0.828

Xception 0.850 0.815 0.876 0.845

EfficientNet 0.893 0.870 0.911 0.890

ViT 0.835 0.815 0.849 0.832

ConvMixer 0.860 0.845 0.871 0.858

Endoscopist #1 0.800 0.905 0.748 0.819

Endoscopist #2 0.763 0.850 0.723 0.782

EfficientNet1Endoscopist #1 0.938 0.920 0.953 0.936

EfficientNet1Endoscopist #2 0.908 0.875 0.936 0.904

Hong et al. 7



Figure 3. Confusion matrices of deep learning models and endoscopists in the validation and test datasets.
a) Artificial intelligence models in validation dataset. b) Artificial intelligence models in test dataset.
c) Endoscopists in test dataset. d) Endoscopistsþ artificial intelligence model in test dataset.
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examination; these patients should undergo
endoscopy annually.25 Current evidence
indicates that the annual risk of EV bleed-
ing increases by �15% in patients with cir-
rhosis decompensation, large variceal size,
or red signs in varices (e.g., red wale mark-
ings, cherry red spots, hematocystis, and
telangiectasia).6,29 Early identification of
high-risk EVs is needed to optimize medical
resources and improve outcomes among
patients with cirrhosis.1

DL has been applied to various clinical
datasets.31 In the past 5 years, DL-based
computer-aided detection and diagnosis
systems have demonstrated robust perfor-
mance in digestive endoscopy.14,16,18,32 In
the present study, six DL models were
trained by transfer learning, then used for
binary classification of the 12-month risk of
EV bleeding based on endoscopic images.

EfficientNet showed the highest accuracy
in the internal validation and external test
datasets. EfficientNet is a CNN-based
architecture that uses a compound scaling
method, which uniformly scales all dimen-
sions using a set of fixed scaling coeffi-
cients.33 In various image classification
competitions, EfficientNet has demonstrat-
ed superior transfer performance and
state-of-the-art accuracy, while using con-
siderably fewer parameters.34

We also evaluated the performances of
the DL models, compared with the per-
formances of two endoscopists. Generally,
the models showed superior accuracy and
precision. However, the endoscopists dis-
played slightly better recall. In this study,
two endoscopists classified images of EVs
using the ASGE 2014 guidelines,25 in
which large EVs or varices with red wales

Figure 4. Statistical measures of agreement among the models and endoscopists.
CNN, convolutional neural network.
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or spots are presumed to have a high risk of
bleeding. This approach might increase the
number of EVs with a predicted risk of
bleeding, resulting in higher numbers of
true positives and false positives, along
with higher recall and lower precision. The
F1-score is a combination indicator of the
model’s precision and recall. In terms of F1-
score, EfficientNet and other DL models
remained superior to the endoscopists.
Furthermore, assessments of statistical
agreement among the models and endo-
scopists revealed that the agreement was

dependent on model architecture.
Variability between the two endoscopists
(i.e., observer bias) is an important source
of disagreement. Interpretability is an
essential step of DL model development.
Data scientists and medical practitioners
often focus on the rationale for inferences
by artificial intelligence, especially in
CV tasks. Thus, Grad-CAM was used to
provide an inferential explanation via heat-
maps. Finally, the endoscopists re-classified
the images based on the results of
EfficientNet. The artificial intelligence-aided

Figure 5. Visualization of EfficientNet model inferences by gradient-weighted class activation mapping
(Grad-CAM). Left column) Original endoscopic images. Middle column) Heatmaps established using the
output of the last feature-extractor layer in the EfficientNet model. Right column) Grad-CAM heatmap
overlaid on the original images, where highlighted regions reflect esophageal varices identified by the model.
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predictions displayed substantial improve-

ment compared with the predictions by endo-

scopists alone, which may be useful in clinical

applications.
This study had some limitations. First, it

only focused on endoscopic images, rather

than other clinical data (e.g., liver function

or radiological findings). Second, bleeding

risk was predicted based on a single image,

rather than multiple images from multiple

EV sites. Further studies based on struc-

tured clinical data, radiological data, and

multiple images are needed to establish

more complex models for prediction of

EV bleeding risk. Moreover, the rationale

underlying agreements between various

model architectures should be explored.

Finally, this study did not include extensive

independent datasets; such datasets should

be included in future validation studies.

Conclusions

This study demonstrated the feasibility of

using DL to predict the 12-month risk of

EV bleeding based on endoscopic images.

Artificial intelligence models demonstrated

better classification accuracy and inference

time, compared with endoscopists.

Moreover, we found that agreement between

models was architecture-dependent. The

findings suggest that artificial intelligence-

aided diagnosis will be useful in future cir-

rhosis management efforts.
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