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Abstract

Objective: Esophageal varix (EV) bleeding is a particularly serious complications of cirrhosis.
Prediction of EV bleeding requires extensive endoscopy experience; it remains unreliable and
inefficient. This retrospective cohort study evaluated the feasibility of using deep learning (DL) to
predict the 12-month risk of EV bleeding based on endoscopic images.

Methods: Six DL models were trained to perform binary classification of endoscopic images of
EV bleeding. The models were subsequently validated using an external test dataset, then com-
pared with classifications performed by two endoscopists.

Results: In the validation dataset, EfficientNet had the highest accuracy (0.910), followed by
ConvMixer (0.898) and Xception (0.875). In the test dataset, EfficientNet maintained the highest
accuracy (0.893), which was better than the endoscopists (0.800 and 0.763). Notably, one endo-
scopist displayed higher recall (0.905), compared with EfficientNet (0.870). When their predic-
tions were assisted by artificial intelligence, the accuracies of the two endoscopists increased by
17.3% and 19.0%. Moreover, statistical agreement among the models was dependent on model
architecture.

Conclusions: This study demonstrated the feasibility of using DL to predict the |2-month risk of
EV bleeding based on endoscopic images. The findings suggest that artificial intelligence-aided
diagnosis will be a useful addition to cirrhosis management.
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Introduction

Variceal bleeding is a particularly serious
complication ~ of  cirrhosis."  Variceal
bleeding-related mortality remains high,
with a prevalence approaching 20%.%*
Esophageal varices (EVs) are the most
common gastrointestinal varices.’
According to the Baveno consensus, high-
risk varices in patients without prior EV
bleeding are defined as: medium or large
varices, small varices with red wale marks,
or any size varices in patients with Child—
Pugh class C disease.® The consensus recom-
mends endoscopic surveillance for patients
with cirrhosis who have portal hypertension.
During upper endoscopy, endoscopists are
advised to perform a series of systematic
assessments to record the locations, sizes,
and appearances of EVs. Risk stratification
based on these endoscopic assessments is
essential for the clinical management of
EVs; it can optimize medical resources and
improve patient outcomes.’

In the past 15 years, substantial advances
in deep learning (DL) algorithms have rev-
olutionized image analysis patterns in vari-
ous datasets.® In clinical settings, computer
vision (CV) tasks include helping radiolog-
ists and endoscopists to make decisions
regarding large numbers of medical
images.” '' Convolutional neural networks
(CNNs), a class of artificial neural net-
works, are characterized by the shared-
weight architecture of sliding convolution
kernels.'>  Recently, transformer-based
neural networks have emerged as a compet-
itive alternative with potential applications

in diverse CV tasks.'® Various DL models
have been increasingly used in analyses of
endoscopy datasets,'*"> including polyp
detection (colonoscopy), early gastric
cancer diagnosis (upper endoscopy), and
automatic lesion detection (capsule endos-
copy).!6 2!

Although high-risk varices have been
well-characterized since the late 1980s,2%%
the prediction of EV bleeding risk requires
extensive endoscopy experience; it remains
unreliable and inefficient.>> Early identifi-
cation of patients with cirrhosis who have
high-risk EVs is important for improving
patient outcomes and optimizing medical
resources.! In this multicenter study, we
evaluated the feasibility of using DL to pre-
dict the 12-month risk of EV bleeding based
on model training via classification of endo-
scopic images.

Methods

Study design

This multicenter retrospective cohort study
included randomly selected patients with
cirrhosis who attended two hospitals—The
First Affiliated Hospital of Soochow
University, Suzhou, China (Suzhou hospi-
tal, training and validation datasets) and
Jintan Affiliated Hospital of Jiangsu
University, Changzhou, China (Jintan hos-
pital, test dataset)—between 1 January 2015
and 1 January 2021 (Supplementary Table 1).
All variceal images were acquired during
maximal insufflation and distention of the
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esophageal lumen, in the absence of peristal-
tic waves. The images were fully anonymized
before analysis by the authors; the investiga-
tors also de-identified all patient information.
This study protocol was approved by the
Ethics Committee of The First Affiliated
Hospital of Soochow University (approval
number 2022098); the study was conducted
in accordance with the Helsinki Declaration
of 1975, as revised in 2013. All participants
provided written informed consent for inclu-
sion in the study. This article adheres to the
STROBE guidelines.”

At both centers, EVs were diagnosed
based on the 2014 guidelines of the
American Society for Gastrointestinal
Endoscopy (ASGE 2014).%° Patients were
excluded if they had a history of EV bleed-
ing, were receiving treatment for EVs, or
had a non-cirrhotic etiology of portal
hypertension. Treatments for EVs included
nonselective beta blockers, sclerotherapy,
endoscopic ligation, transjugular intrahe-
patic portosystemic shunt, and laparoscopic
splenectomy.?® Patients were followed up
for at least 12 months to record EV out-
comes (i.e., first occurrence of EV bleed-
ing). Variceal bleeding was defined as
follows: 1) active variceal bleeding on

(a) Suzhou hospital (b)

No bleeding = 439

Bleading = 236

Image augmentation

No bleeding = 1,200
Bloeding = 1,200

Training dataset Validation dataset
No bleeding = 1,000  No bleeding = 200
Bleeding = 1,000 Bleeding = 200

Model development ‘

Jintan hospital
(1 Pretrained models:
CNN + Transformer

Test dataset
No bleeding = 200
Bleeding = 200

endoscopy or 2) melena/hematemesis after
exclusion of other causes of upper gastroin-
testinal bleeding (e.g., digestive ulcers or
Diculafoy disease).

The study protocol is shown in Figure 1.
First, six CNN- or transformer-based DL
models were selected for transfer learning
in the CV task. After models had been pre-
trained on ImageNet (detailed in next sec-
tion), they were trained to perform binary
classification of endoscopic images of EVs
from Suzhou hospital (training and valida-
tion datasets). Moreover, the DL models
were externally validated using images
from Jintan hospital (test dataset), then
compared with classifications performed
by two endoscopists. Additionally, DL
model inferences were visualized by
gradient-weighted class activation map-
ping (Grad-CAM). Finally, artificial
intelligence-aided performance was
evaluated.

Models and pretraining

Six CNN- or transformer-based models were
chosen: MobileNet (MobileNet V1), ResNet
(ResNet-50 V2), Xception, EfficientNet
(EfficientNet V2 s), ViT (ViT-B16), and

Transformer-based architecture:
VAT, ConvMixer

Figure |. Study flowchart. (a) Datasets and (b) processes used in this study.
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ConvMixer (ConvMixer-768/32). These
models were pretrained on the ImageNet
database (www.image-net.org), prior to
transfer learning. Architectures and pre-
trained parameters were downloaded from
Keras (keras.io) or TensorFlow Hub (tth
ub.dev). A flowchart for the model training
process is provided in Supplementary
Figure 1.

Target training and internal validation

As shown in Figure 1, 675 images of EVs
were collected from Suzhou hospital and
saved in JPEG format. All images were
obtained from endoscopic systems estab-
lished by Olympus Corporation (Tokyo,
Japan) or Fujifilm Corporation (Tokyo,
Japan). Images were divided into two clas-
ses according to whether bleeding occurred
within 12 months after initial diagnosis:
control (no bleeding, n=439) vs. bleeding
(n=236). After image augmentation, the
numbers of images were increased to 2000
in the training dataset (1000 vs. 1000) and
400 in the validation dataset (200 vs. 200).
All images were rescaled and normalized to
pixel  dimensions  of = 331 x 331 x 3.
Considering the unique nature of endosco-
py data, we used non-rigid transformation
for endoscopic images. Rotational transfor-
mation and flip transformation were per-
formed to augment the data. The
augmentation procedure is shown in
Supplementary Figure 2.

The parameter transfer learning proce-
dure was implemented in Keras software
(Google), using the TensorFlow framework
as the backbone. Transfer learning was
applied to the aforementioned CNN- or
transformer-based architectures by combin-
ing the existing feature extraction layers
(fixed layers) with additional activation
layers (training layers) for binary classifica-
tion. Fitted models were compiled using an
Adam optimizer and the binary cross-
entropy cost function, with a fixed learning

rate of 0.0001 and batch size of 32. Training
was discontinued when accuracy in the val-
idation dataset did not improve for three
epochs. The maximum number of training
epochs was limited to 100. This experiment
was performed on a Mac mini (Apple M1,
8 cores, 16G RAM, macOS Ventura
13.0.1). The training code is available at
https://osf.io/ycxwr.

External validation

Test dataset images were collected from
Jintan hospital (control [no bleeding,
n=200] vs. bleeding [n = 200]). The criteria
and procedure were consistent with the
methodology regarding Suzhou hospital.
Furthermore, the performances of two
endoscopists (one from Jintan hospital
[#1] and one from Suzhou hospital [#2])
were compared with the performances of
the models. First, endoscopists with more
than 10 years of experience independently
classified the images based on the ASGE
2014 guidelines.>® In accordance with the
guidelines, large EVs (>5mm) or EVs dis-
playing red wales or spots were predicted to
have a high risk of bleeding. Second, after
independent judgement, the two endoscop-
ists were given access to the best model’s
predictions; they subsequently re-classified
the images, and this approached was
regarded as artificial intelligence-aided
prediction.

Model visualization

Grad-CAM has been proposed to visualize
models by highlighting regions that are
important for predictions from these
models.?” In this study, Grad-CAM heat-
maps were created for inferential explana-
tion of multiple output layers from the best
model.
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Evaluation criteria

DL models were fitted using Python soft-
ware (version: 3.9; Python Software
Foundation) and TensorFlow (2.8.0;
Google). Model performances were evaluat-
ed in terms of accuracy, recall, precision, and
Fl-score. The algorithms are shown below
(TP, true positive [correct assumption that
an event has occurred]; TN, true negative
[correct assumption that an event has not
occurred]; FP, false positive [incorrect
assumption that an event has not occurred];
FN, false negative [incorrect assumption
that an event has not occurred]):

Accuracy = (TP + TN)/(TP + TN + FP + FN)
Precision = TP/(TP + FP)
Recall = TP/(TP + FN)

F1

— Score

= (2 * precision * recall)/(precision + recall).

Accuracy, precision, and recall are the
main indicators of machine learning perfor-
mance. The Fl-score combines precision
and recall into a single indicator.
Statistical agreement among the DL
models and the endoscopists was measured
using Cohen’s x, which evaluates the level
of agreement between two raters or judges
when classifying items into mutually exclu-
sive categories. Two-sided p-values <0.05
were considered statistically significant.

Results

Development and internal validation of
DL models

The six CNN- or transformer-based models
were trained by transfer learning, then used

for binary classification of the 12-month
risk of EV bleeding based on endoscopic
images. The performances of the six
models in the validation dataset are shown
in Figure 2a and Table 1. EfficientNet
showed the highest accuracy (0.910), fol-
lowed by ConvMixer (0.898) and Xception
(0.875). The recall, precision, and Fl-score
of the EfficientNet model were 0.900, 0.918,
and 0.905; these values were superior to the
values of the other models. The confusion
matrices of the models are shown in
Figure 3a.

External validation of DL models

The performances of the six models in the
test dataset are shown in Figure 2b and
Table 1. EfficientNet maintained the high-
est accuracy (0.893), followed by
ConvMixer (0.860) and Xception (0.850).
The recall, precision, and Fl-score of
EfficientNet were 0.870, 0.911, and 0.890;
these values were superior to the values of
the other models. The confusion matrices of
the models are shown in Figure 3b.

Comparison with endoscopists

The performances and confusion matrices
of the two endoscopists in the test dataset
are shown in Figure 2¢, Figure 3c, and
Table 1. The accuracies of the endoscop-
ists were 0.800 and 0.763. Although their
accuracies were lower than the DL model
accuracies, endoscopist #1 achieved a
recall of 0.905, which was superior to
EfficientNet.

Artificial intelligence-aided performance

The performances of the two endoscopists
with assistance from the best DL model
(EfficientNet) are presented in Figure 2c,
Figure 3d, and Table 1. For endoscopist
#1, the accuracy increased by 17.3% to
0.938; recall was 0.920, precision was
0.953, and Fl-score was  0.936.
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Figure 2. Performances of deep learning models and endoscopists in the validation and test datasets. a)
Artificial intelligence models in validation dataset. b) Artificial intelligence models in test dataset. c)
Endoscopists + best artificial intelligence model in test dataset.

For endoscopist #2, accuracy increased by
19.0% to 0.908, which was superior to
EfficientNet.

Agreement between models and
endoscopists

As shown in Figure 4, statistical agreement
among the DL models and endoscopists
was measured using Cohen’s k.
According to model architecture, the four
CNN-based models displayed high levels
of agreement (ranging from 0.745 to
0.945), whereas the k value between the
two Transformer-based models was 0.800.
Finally, the two endoscopists demonstrat-
ed a x value of 0.860.

Inferential explanation of the EfficientNet
model

Based on the outputs of the EfficientNet
model, Grad-CAM was used to highlight
the artificial intelligence-inferred EVs on
original images, as shown in Figure 5.
Based on the best Grad-CAM model out-
puts, inferential explanations were estab-
lished via heatmaps.

The left column shows the original
endoscopic images. The middle column
shows heatmaps established using the
output of the last feature-extractor layer
in the EfficientNet model. The right
column shows the Grad-CAM heatmap
overlaid on the original images, where
highlighted regions reflect EVs identified
by the model.
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Table |. Performances of deep learning models and endoscopists in each dataset.
Datasets Models Accuracy Recall Precision Fl-score
Training MobileNet 0.969 0.966 0.972 0.969
ResNet 0.979 0.977 0.981 0.979
Xception 0.985 0.981 0.989 0.985
EfficientNet 0.992 0.990 0.993 0.991
ViT 0.981 0.982 0.979 0.981
ConvMixer 0.986 0.983 0.988 0.985
Validation MobileNet 0.848 0.825 0.864 0.844
ResNet 0.863 0.840 0.880 0.859
Xception 0.875 0.845 0.899 0.871
EfficientNet 0.910 0.900 0.918 0.909
ViT 0.863 0.825 0.892 0.857
ConvMixer 0.898 0.885 0.908 0.896
Test MobileNet 0.815 0.795 0.828 0811
ResNet 0.833 0.805 0.852 0.828
Xception 0.850 0.815 0.876 0.845
EfficientNet 0.893 0.870 0.911 0.890
ViT 0.835 0.815 0.849 0.832
ConvMixer 0.860 0.845 0.871 0.858
Endoscopist #1 0.800 0.905 0.748 0.819
Endoscopist #2 0.763 0.850 0.723 0.782
EfficientNet + Endoscopist #I 0.938 0.920 0.953 0.936
EfficientNet + Endoscopist #2 0.908 0.875 0.936 0.904
Discussion Japan and other countries. Among

In this study, we evaluated the feasibility of
using DL models to classify images of EVs
according to the 12-month risk of bleeding.
We found that DL models demonstrated
better classification accuracy and inference

time, compared with  endoscopists.
Furthermore, artificial intelligence-aided
prediction displayed considerable
improvement.

In the late 1980s, the Japan Society for
Portal Hypertension initially proposed a
system to record the endoscopic appearance
of EVs.? In 1995, the society revised the
rules into the “General Rules for
Recording  Endoscopic  Findings  of
Esophagogastric Varices.”?® In 2010, infor-
mation regarding portal hypertensive gas-
tropathy and endoscopic ultrasonography
was included in the second edition of the
rules.”” These rules are widely used in

Western countries, in 1988, the North
Italian Endoscopic Club released a predic-
tion index to determine 12-month risk of
bleeding, based on Beppu’s Variceal Score
and the Japanese rules.>

Guidelines  from  the  American
Association for the Study of Liver Disease
and the Baveno V consensus suggest the use
of screening endoscopy for patients with
cirrhosis to diagnose EVs and stratify
bleeding risk.®*° The optimal surveillance
schedule for EVs is largely dependent on
endoscopic appearance and the stage of
portal hypertension. For patients with com-
pensated cirrhosis and no varices on screen-
ing, endoscopy is recommended every 2 to 3
years; patients with small varices should
undergo endoscopy every 2 years.”> EVs
may progress faster in patients with
alcohol-induced or decompensated cirrho-
sis, or with high-risk signs on endoscopic



Journal of International Medical Research

8
a
@ Prediction
MobileNet ————————
Control Bleeding
Control 174 26
Actual
Bleeding = <: 165
Prediction
ResNet —_—
Control Bleeding
Control
Actual
Bleeding
2 Prediction
Xception _
Control Bleeding
Control
Actual
Bleeding
Prediction
EfficientNet -
Control Bleeding
Control
Actual
Bleeding
Prediction
Vit Control Bleeding
Actual
Prediction
ConvMixer = . =
Control Bleeding
Control 182 18
Actual

Bleeding 177

(b) -
Prediction
MobileNet ———
Control  Bleeding
Control 167 33
Actual
Bleeding & 158
Prediction
ResNet —
Control Bleeding
Control 172 28
Actual
Bleeding = <] 161
Xception m
Control Bleeding
Control 177 23
Actual
Bleeding| <1/ 163
Prediction
EfficientNet -
Control Bleeding
Control 183 i
Actual
Bleeding - 174
Prediction
ok Control Bleeding
Control 171 29
Actual
Bleeding -1/ 163
Prediction
ConvMixer = ——
Control Bleeding
Control 175 25
Actual

Bleeding <. 169

(c)
Endoscopist _
#1 Control Bleeding

Prediction

. Prediction
Endoscopist —_—
#2 Control Bleeding

Control
Actual
Bleeding
(d)
Prediction
EfficientNet +

Endoscopist #1 Control Bleeding

Control 191
Actual
Bleeding 5 184
Prediction
EfficientNet +

Endoscopist #2 Control Bleeding

Figure 3. Confusion matrices of deep learning models and endoscopists in the validation and test datasets.
a) Avrtificial intelligence models in validation dataset. b) Artificial intelligence models in test dataset.
c) Endoscopists in test dataset. d) Endoscopists + artificial intelligence model in test dataset.
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Figure 4. Statistical measures of agreement among the models and endoscopists.

CNN, convolutional neural network.

examination; these patients should undergo
endoscopy annually.®® Current evidence
indicates that the annual risk of EV bleed-
ing increases by ~15% in patients with cir-
rhosis decompensation, large variceal size,
or red signs in varices (e.g., red wale mark-
ings, cherry red spots, hematocystis, and
telangiectasia).®** Early identification of
high-risk EVs is needed to optimize medical
resources and improve outcomes among
patients with cirrhosis.'

DL has been applied to various clinical
datasets.®’ In the past 5 years, DL-based
computer-aided detection and diagnosis
systems have demonstrated robust perfor-
mance in digestive endoscopy.'®!1%18:32 In
the present study, six DL models were
trained by transfer learning, then used for
binary classification of the 12-month risk of
EV bleeding based on endoscopic images.

EfficientNet showed the highest accuracy
in the internal validation and external test
datasets. EfficientNet is a CNN-based
architecture that uses a compound scaling
method, which uniformly scales all dimen-
sions using a set of fixed scaling coeffi-
cients.* In various image classification
competitions, EfficientNet has demonstrat-
ed superior transfer performance and
state-of-the-art accuracy, while using con-
siderably fewer parameters.®*

We also evaluated the performances of
the DL models, compared with the per-
formances of two endoscopists. Generally,
the models showed superior accuracy and
precision. However, the endoscopists dis-
played slightly better recall. In this study,
two endoscopists classified images of EVs
using the ASGE 2014 guidelines,” in
which large EVs or varices with red wales
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Figure 5. Visualization of EfficientNet model inferences by gradient-weighted class activation mapping
(Grad-CAM). Left column) Original endoscopic images. Middle column) Heatmaps established using the
output of the last feature-extractor layer in the EfficientNet model. Right column) Grad-CAM heatmap
overlaid on the original images, where highlighted regions reflect esophageal varices identified by the model.

or spots are presumed to have a high risk of
bleeding. This approach might increase the
number of EVs with a predicted risk of
bleeding, resulting in higher numbers of
true positives and false positives, along
with higher recall and lower precision. The
Fl-score is a combination indicator of the
model’s precision and recall. In terms of F1-
score, EfficientNet and other DL models
remained superior to the endoscopists.
Furthermore, assessments of statistical
agreement among the models and endo-
scopists revealed that the agreement was

dependent on  model  architecture.
Variability between the two endoscopists
(i.e., observer bias) is an important source
of disagreement. Interpretability is an
essential step of DL model development.
Data scientists and medical practitioners
often focus on the rationale for inferences
by artificial intelligence, especially in
CV tasks. Thus, Grad-CAM was used to
provide an inferential explanation via heat-
maps. Finally, the endoscopists re-classified
the images based on the results of
EfficientNet. The artificial intelligence-aided
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predictions displayed substantial improve-
ment compared with the predictions by endo-
scopists alone, which may be useful in clinical
applications.

This study had some limitations. First, it
only focused on endoscopic images, rather
than other clinical data (e.g., liver function
or radiological findings). Second, bleeding
risk was predicted based on a single image,
rather than multiple images from multiple
EV sites. Further studies based on struc-
tured clinical data, radiological data, and
multiple images are needed to establish
more complex models for prediction of
EV bleeding risk. Moreover, the rationale
underlying agreements between various
model architectures should be explored.
Finally, this study did not include extensive
independent datasets; such datasets should
be included in future validation studies.

Conclusions

This study demonstrated the feasibility of
using DL to predict the 12-month risk of
EV bleeding based on endoscopic images.
Artificial intelligence models demonstrated
better classification accuracy and inference
time, compared  with  endoscopists.
Moreover, we found that agreement between
models was architecture-dependent. The
findings suggest that artificial intelligence-
aided diagnosis will be useful in future cir-
rhosis management efforts.
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