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ABSTRACT Serratia marcescens strains CAPREx SY13 and CAPREx SY21 were isolated
from Ghanaian yams from a London market. The draft genomes suggest that the strains
are similar, with genomes of 5,308,004 and 5,157,134 bp and 59.35 and 59.62 G�C%, re-
spectively. The genes necessary for prodigiosin biosynthesis were present in both strains.

Serratia marcescens is a Gram-negative rod-shaped enterobacterium and a frequent
cause of hospital acquired infections. However, S. marcescens is also known to reside

in the soil and has been reported to infect agricultural crops such as squash (1, 2).
Clinical isolates of S. marcescens often show resistance to antibiotics and are known to
produce �-lactamases (2, 3). S. marcescens strains often produce the red pigment,
2-methyl-3-pentyl-6-methoxyprodiginine (prodigiosin) (4). Here, we report the ge-
nomes of two S. marcescens strains CAPREx SY13 and CAPREx SY21, isolated from
Ghanaian yams from a London market. The two strains were able to grow at 30°C and
37°C and were selected for further analysis due to their red pigmentation.

Both strains were sequenced using Illumina HiSeq using 2 � 250 bp paired-end
reads. Reads were trimmed using Trimmomatic (5) and assembled using SPAdes (6).
Prokka (7) was used to generate an initial annotation of the genome and PGAP was
used to annotate the final versions in GenBank. The quality of the assembly and
sequencing was analyzed using BWA-mem (8). The draft genome of CAPREx SY13 was
5,308,004 bp with 59.35 G�C% and 90 tRNAs and a mean coverage of 79.32�. CAPREx
SY21 was 5,157,134 bp with 59.62 G�C%, 95 tRNAs and a mean coverage of 82.6�.

We were able to identify several potential secondary metabolite clusters in both
CAPREx SY13 and CAPREx SY21. Both strains encode a cluster similar to the biosynthetic
cluster of prodigiosin in S. marcescens ATCC 274 (9). The genomic context of the
prodigiosin biosynthetic cluster, flanked by copA and cueR, was conserved in all three
strains. The two strains were also predicted to encode machinery for the production of
a surfactant similar to serrawettin. Many clinical isolates of S. marcescens are resistant
to �-lactam antibiotics (2, 3, 10). Both CAPREx SY13 and CAPREx SY21 encode a single
�-lactamase of the AmpC family and another putative metallo-�-lactamase. Both strains
also encode chitinases, again characteristic of clinical S. marcescens isolates (2, 11, 12).

We were unable to identify an N-acyl-homoserine lactone quorum-sensing system in
either strain, though both strains did possess a luxS orthologue. CAPREx SY13 and
CAPREx SY21 each encode a lactonase-like protein similar to YtnP, a protein from
Bacillus subtilis that affects streptomycin production and aerial mycelium development
in Streptomyces griseus (13). Both strains carry the genes predicted to encode QseGEF,
a system that allows sensing and response to epinephrine, phosphate, and sulfate in
enterohemorrhagic Escherichia coli (14).

These draft genomes contain many genes characteristic of S. marcescens, including
the prodigiosin biosynthetic cluster. Both strains also encode antibiotic resistance
genes, common to some clinical S. marcescens isolates, despite being isolated from
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yams. We hope that these two genomes will help further our understanding of
S. marcescens physiology in soil and plant niches.

Accession number(s). The draft genomes of these strains have been deposited in
GenBank under accession numbers MVGA00000000 (SY13) and MVGB00000000 (SY21).
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