
Review Article

Genome size evolution in the Archaea
Siri Kellner1, Anja Spang2,3, Pierre Offre2, Gergely J. Szöllősi4,5, Celine Petitjean6 and Tom A. Williams6
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What determines variation in genome size, gene content and genetic diversity at the
broadest scales across the tree of life? Much of the existing work contrasts eukaryotes
with prokaryotes, the latter represented mainly by Bacteria. But any general theory of
genome evolution must also account for the Archaea, a diverse and ecologically import-
ant group of prokaryotes that represent one of the primary domains of cellular life. Here,
we survey the extant diversity of Bacteria and Archaea, and ask whether the general
principles of genome evolution deduced from the study of Bacteria and eukaryotes also
apply to the archaeal domain. Although Bacteria and Archaea share a common prokary-
otic genome architecture, the extant diversity of Bacteria appears to be much higher than
that of Archaea. Compared with Archaea, Bacteria also show much greater genome-level
specialisation to specific ecological niches, including parasitism and endosymbiosis. The
reasons for these differences in long-term diversification rates are unclear, but might be
related to fundamental differences in informational processing machineries and cell bio-
logical features that may favour archaeal diversification in harsher or more energy-limited
environments. Finally, phylogenomic analyses suggest that the first Archaea were
anaerobic autotrophs that evolved on the early Earth.

Introduction
One of the major challenges in evolutionary genetics is to explain the enormous variation in genome
size and gene content across the tree of life in terms of basic evolutionary processes such as mutation,
genetic drift and selection. Phylogenomics suggests that the deepest split in the universal tree lies
between the two prokaryotic domains, Bacteria and Archaea, with eukaryotes evolving more recently
through a symbiosis between the two [1–4]. But despite the evolutionary and ecological importance of
the Archaea, they have not been widely considered [5] in evolutionary genetic accounts for the origins
of biodiversity. Until recently, few archaeal genomes were available, and it has been difficult to deter-
mine whether Bacteria and Archaea share a common prokaryotic evolutionary regime, or if instead
there are conserved differences in the evolutionary processes and macroevolutionary trajectories of the
two prokaryotic groups. A better understanding of archaeal evolutionary genetics will be essential
for making sense of evolution at the broadest scales, and for testing hypotheses about the differing
evolutionary trajectories of prokaryotic and eukaryotic cells [6,7].
In recent years, tremendous progress in the use of cultivation-independent sequencing techniques

has greatly improved genomic sampling of both Bacteria and Archaea, and has led to the discovery of
major new lineages in the tree of life [8–10]. This wealth of new genomic data allows us to revisit pre-
vious work on archaeal comparative genomics and to better characterise the features and processes of
archaeal genome evolution. We compare the diversity of modern archaeal and bacterial genomes in
terms of genome size and organisation, and ask whether the general principles of genome evolution
deduced from the study of other lifeforms also apply to the archaeal domain. In Bacteria and eukar-
yotes, lifestyle has a profound impact on genome evolution, with the genomes of symbionts and para-
sites often experiencing extensive remodelling and reduction. We evaluate whether archaeal symbionts
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and parasites, including recently described ultrasmall lineages [9,11,12], evolve in the same way. Finally, we
review comparative genomic insights into long-term trends in archaeal genome evolution and the nature of the
earliest Archaea.

A common prokaryotic genome architecture in Bacteria and Archaea
Ten years ago, Koonin and Wolf [5] compared the genome structure and evolution of Bacteria and Archaea
using the genomes then available. They concluded that archaeal and bacterial genomes share a common struc-
ture, with a main circular chromosome, high gene density, absence of introns and relatively short intergenic
spaces [5]. The expanded sample of prokaryotic genomes now available confirms several of Koonin and Wolf’s
results, including the high gene density and low non-coding content of both archaeal and bacterial genomes
(Figures 1 and 2). This common gene-dense prokaryotic genome architecture is thought to arise convergently
from the generally high effective population sizes of prokaryotes, which permit efficient selection against the
accumulation of nonfunctional or parasitic DNA [13], as well as a bias towards deletions during DNA replica-
tion [14,15]. The relatively low absolute numbers of genes encoded by bacterial and archaeal genomes, in con-
trast, has been proposed to reflect the diminishing adaptive returns of new genes as the number of existing
genes in the genome increases [16]. It is interesting to note that genome architectural similarities between
Bacteria and Archaea are likely to ultimately reflect similar selective regimes rather than similar molecular
biology, because the DNA replication machineries of the two domains are largely non-homologous [17].
Despite the close overall similarity in bacterial and archaeal genome architectures, some differences are also

apparent. In Bacteria, the proportion of the genome consisting of intergenic regions is relatively constant across
a broad range of genome sizes, while in Archaea — as in eukaryotes [13] — larger genomes contain a greater
proportion of intergenic material (Figure 2c). In Archaea [18] and eukaryotes [6], but not Bacteria [16],
genome size appears to correlate negatively with the strength of selection. This relaxation of selection is often
invoked to explain the proliferation of ‘selfish’ DNA, such as introns and transposable elements, in the large
genomes of multicellular eukaryotes [19]. It is tempting to speculate that a similar process might be at work
among the larger archaeal genomes; unfortunately, we still know relatively little about the diversity of selfish
DNA in Archaea, and, while characterised families (such as insertion sequences [20]) do vary in abundance
among closely related Archaea [21], they do not appear to be more abundant in the larger genomes [18].

Figure 1. A common gene-dense genome architecture in Bacteria and Archaea.

Major archaeal clades are distinguished by shape and colour. The near-linear relationship between genome size and the

number of encoded proteins may reflect efficient selection against the accumulation of nonfunctional DNA in prokaryotes [13].
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A second key difference between bacterial and archaeal genomes [5] is the range of genome sizes observed
for the two groups. Koonin and Wolf reported that bacterial genome sizes were distributed bimodally, while
archaeal genomes were distributed around a single, lower mean. Although Koonin and Wolf argued that this
pattern might be explained by a bias towards sequencing parasitic and symbiotic Bacteria, it appears to hold
across the much larger range of both bacterial and archaeal diversity now available (Figure 3). The unimodal
distribution of genome sizes in Archaea suggests that characterised archaeal symbionts and parasites have not
experienced the same degree of reductive genome evolution as in Bacteria; the underlying evolutionary basis

Figure 2. Genome composition in Bacteria and Archaea.

Distributions for the lengths of (a) genes and (b) intergenic regions are broadly similar among prokaryotes, with somewhat longer intergenic regions

in sampled Archaea. (c) The relationship between genome size and proportion of intergenic material. In Archaea, as in eukaryotes, larger genomes

contain a higher proportion of intergenic material (P = 2.79 × 10−5, phylogenetic least-squares regression), although this does not appear to be the

case for Bacteria.

Figure 3. The distribution of genome sizes among sequenced Archaea (red) and Bacteria (blue).

Archaea has a unimodal peak at 1.6 Mb, whereas Bacteria show a bimodal peak at ∼1.2 and ∼3.2 Mb. The size distribution of

sampled bacterial genomes has a long tail, extending to at least 14.7 Mb[25], although these outliers do not change the overall

distribution. Distributions calculated from a representative sample of Bacteria and Archaea drawn evenly from across the

known diversity from recent phylogenomic surveys [8,26].
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for these differences remains unclear. Furthermore, the variation of genome size in Archaea appears to be an
order of magnitude less than in bacteria[5]; characterised bacterial genome sizes vary ∼100-fold, from
0.112 Mb (Nasuia deltocephalinicola) to 16.04 Mb (Minicystis rosea), while archaeal genomes vary ∼10-fold,
from 0.49 Mb (the ectosymbiont Nanoarchaeum equitans) up to 5.75 Mb (Methanosarcina acetivorans).
The smallest genomes from Archaea and Bacteria belong to parasites or symbionts, but free-living members

of both groups from nutrient-limited habitats such as open marine waters also possess small genomes. Some of
the most abundant ocean bacteria (Prochlorococcus, SAR11) are characterised by genomes below 2 Mb [22,23],
and the same trend is seen in Archaea: while marine Thaumarchaeota can have genome sizes as low as
1.23 Mb (Nitrosopelagicus brevis), characterised relatives from terrestrial environments have genomes ranging
up to 3.43 Mb (Nitrocosmicus oleophilus). Thus, in marine ecosystems, low nutrient availability may select for
minimal genomes and metabolisms [22].
The above patterns are based on a single representative genome for each archaeal ‘species’, but we know that

bacterial genome sizes and gene contents can vary substantially over short evolutionary distances; for example,
sequenced E. coli isolates vary in size by ∼20%, from 4.56 to 5.7 Mb [24]. There are few Archaea for which
multiple closely related genomes are available; the best-studied case is the crenarchaeon Sulfolobus islandicus,
which also shows some degree of size variation among the eight completely sequenced isolates (2.47–2.85 Mb).
More genomes from closely related Archaea will be needed to evaluate how within-species variation compares
between the two prokaryotic groups.

Genome evolution of host-associated Archaea
Symbioses — mutualistic, commensal and parasitic relationships between organisms [27,28] — are abundant in
nature and can have profound consequences for genome evolution. In Bacteria and eukaryotes, the trend is typ-
ically toward significant reductive evolution of symbiont genomes — including the loss of genes and pathways
needed for a free-living lifestyle [29]. In some cases, this can lead to the complete disintegration and subsequent
replacement of the symbiont [30]. However, this extensive reductive evolution is predominantly seen in obli-
gate, vertically transmitted intracellular symbionts: genome sizes of symbionts vary greatly and may even
increase when compared with close free-living relatives [31]. This testifies to many different evolutionary trajec-
tories for the size and content of symbiont genomes depending on factors such as the life history of the sym-
biont and its transmission mode, and may help to make sense of the patterns observed for the genomes of
archaeal symbionts.
Very little is known about genome evolution in archaeal symbionts, which is in part due to our limited

knowledge of archaeal symbiotic diversity. Many potentially symbiotic, host-associated Archaea have been
reported, most notably among members of the Euryarchaeota, Thaumarchaeota and DPANN superphylum
[32], suggesting that host-associated lifestyles have evolved repeatedly within the Archaea (Figure 4).
Symbiotic and host-associated Euryarchaeota include methanogens and anaerobic hydrocarbon-oxidising

Archaea (ANME and Syntrophoarchaea), as well as halophiles. For example, various methanogens engage in
syntrophic interactions with different bacteria and anaerobic fungi [34–36] or form part of the gut microbiome
of a large range of animals including humans [37]. Some methanogens and haloarchaea are also ecto- and
endosymbionts of diverse anaerobic protists [37–39] where mutualistic interactions were suggested. Several
clades within the ammonia-oxidising Thaumarchaeota have consistently been detected in marine sponge and
coral microbiomes [40–42] and comprise several putative symbionts — some of which may be transmitted ver-
tically via the larvae [43]. These symbioses appear to be mutualistic or commensal, in which the archaeal sym-
bionts contribute to the detoxification of nitrogen waste products of the host [44,45].
Perhaps the currently most striking and best-understood example of an archaeal host-symbiont system com-

prises the ectoparasite N. equitans and its crenarchaeal host Ignicoccus hospitalis [46]. N. equitans is dependent
on various metabolites from Ignicoccus and lowers host proliferation, but does not apparently cause sustained
damage [47]. Single cell and metagenomics approaches have recently led to the discovery of various additional
clades of ultrasmall genome-reduced Archaea [11,12]. Thus far, phylogenies have suggested that these Archaea
may form a monophyletic ‘DPANN’ superphylum which also includes Nanoarchaeota [11,12,48], although
phylogenetic artefacts may erroneously group some archaeal lineages within the DPANN [49]. Limited meta-
bolic gene repertoires suggest that DPANN Archaea may be dependent on symbiotic interactions with other
organisms [11]. In particular, electron microscopy and co-occurrence analyses have revealed that DPANN
members Parva- and Micrarchaeota are commonly found in association with Thermoplasmatales-related hosts,
while Huberarchaea may be ectoparasites of Altiarchaea [50–54], which themselves include symbionts [55].
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Altogether, this indicates that DPANN comprises a largely unexplored diversity of potential novel archaeal
ecto- or perhaps even endosymbionts.

Genomic features of archaeal symbionts?
While systematic and comparative studies of genomic features of archaeal symbionts are lacking, currently
available genomes of methanogens, ANME and Syntrophoarchaea cover a relatively broad range of sizes (0.49–
5.8 Mb) indicating that the ability of some Archaea to take part in syntrophic interactions is not characteristic-
ally associated with a reduced genome and proteome. Much remains to be learned about the molecular and cel-
lular traits involved in the various known syntrophic interactions [35], and although the general features
defining archaeal syntrophs remain poorly characterised, recent work has indicated that large multi-heme
c-type cytochromes mediate syntrophic interactions in Archaea [56].
The most genome-reduced Archaea belong to the DPANN superphylum among which the ectoparasitic

Nanoarchaeota and Huberarchaea have the smallest known genomes. For example, the genomes of N. equitans
[57] and its close relative Nanopusillus acidilobi [58] are only 490 and 606 kb in size, respectively, and lack
genes for various anabolic and catabolic pathways including a functional ATP synthase [58,59]. In general,
members of the DPANN have genomes ranging from ∼0.5 to 1.5 Mb in size and many representatives lack
genes for central carbon and energy metabolism. In contrast with bacterial endosymbionts, however, the
DPANN genomes have a surprisingly high coding density and very few pseudogenes [9] and — despite their
sparse metabolic gene repertoires — have retained genes for informational processing machinery ([57], con-
firmed by a new analysis in Supplementary Table S1). Both DPANN and Asgard archaea encode many unchar-
acterised proteins, but this enrichment of information processing over metabolism is restricted to DPANN, and
might therefore be a hallmark of parasitic or symbiotic lifestyles (Supplementary Table S1). Interestingly, diver-
sity generating retroelements, which contribute to rapid and targeted mutations in specific target genes through
reverse transcription, are overrepresented in DPANN genomes [60–62]. While the effects of these elements are

Figure 4. Distribution of host-associated lineages across the tree of Archaea.

Host-associated lifestyles have evolved repeatedly within the Archaea. Members of unlabelled groups are assumed to be

free-living, as it is currently unknown whether they engage in symbiotic associations. Black numbers denote clades where the

genome size ranges are based on complete genomes; grey numbers denote approximate ranges derived from metagenome

bins and/or single-celled genomes. The backbone tree is derived from a maximum likelihood analysis (82 concatenated

single-copy orthologues, LG +G+F in IQ-Tree [33], some uncertain relationships near the root (for Theionarchaea,

Methanofastidiosa, Persephonarchaea and Thermococcales) have been collapsed.
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target-specific, their activity may underlie the accelerated evolutionary rates seen for at least some proteins in
this group. Despite these initial insights, much has to be learned about DPANN genome evolution and the link
between reduced genome sizes and putatively symbiotic lifestyles.

Are there obligate archaeal endosymbionts?
While an archaeal partner played an important role in the evolution of the eukaryotic cell by the acquisition of
a bacterial endosymbiont [1,63,64], other examples of Archaea engaging in obligate relationships with a bacter-
ial or eukaryotic partner are unknown thus far. Although some methanogens form intracellular symbioses with
anaerobic protistan hosts, it is not known whether these Archaea are obligate symbionts. Erosion of some of
the proteinogenic amino acid biosynthetic pathways in these methanogens might indicate a step toward host
dependence [65], but extensive genome reduction has not been observed so far. This is in contrast with the
multitude of obligate intracellular bacteria reported from eukaryotic hosts, some of which display extreme
genome reduction [66].

Why are archaea less diverse than bacteria?
The consensus is that the root of the tree of life lies between the Bacteria and Archaea [67–71], but comprehen-
sive phylogenetic surveys suggest that the diversity of modern Bacteria is much greater than that of the Archaea
— as well as of eukaryotes [8,9]. One possibility is that current sampling or sequencing methods provide a
biased view of bacterial and archaeal diversity [72]. While this is certainly the case for 16S rRNA-based
surveys, it is less of a concern for single cell and in particular for metagenomic approaches, the latter of which
target environmental DNA directly [73] and thus circumvent the biases inherent to primer based approaches.
Setting aside the potential technical issues, we do not currently have a good explanation for why bacterial and
archaeal diversity should be so different, and — since Bacteria and Archaea collectively make up most of life’s
genetic diversity — this represents a major gap in our understanding of how biodiversity evolves.
One possibility is that the universal root is not between the Bacteria and Archaea. If the root was within the

Bacteria, this would provide more time for the accumulation of among-lineage bacterial diversity. Several root
positions within Bacteria have been suggested [74–76], but none have received wider support. What little evi-
dence is available from the fossil and geochemical record suggests that Archaea are likely to be quite old,
perhaps originating before 3.5 Gya [77,78]. While interpretation of such ancient biomarkers is fraught with dif-
ficulty, the antiquity of the Archaea is also supported by recent molecular dating studies combining evidence
from gene transfers and relaxed molecular clocks [79,80], with the last archaeal common ancestor (LACA)
likely having evolved prior to 3.51 Gya [79,80].
If Bacteria and Archaea are both ancient lineages, then differences in their extant genetic diversity must

reflect differences in long-term evolutionary rate, in terms of either mutation rates and selective pressures, or
different macroevolutionary histories. Little is known about mutation rates in Archaea, and to the best of our
knowledge mutation accumulation data are available for just a single archaeon, the thermophile Sulfolobus acid-
ocaldarius [81]. Similar to thermophilic bacteria, the estimated per-base mutation rate in Sulfolobus is among
the lowest reported for cellular life [82]. Drake [83] proposed that low mutation rates in thermophiles might be
selectively advantageous because the average effect of a new mutation is expected to be more deleterious in
harsh environments. Conceptually, this shift in the distribution of fitness effects might be thought of as a tran-
sition to a rugged fitness landscape in which it is unusually difficult to cross the valleys between the adaptive
peaks representing ecotypes or species. Thus, at least for thermophiles, a shift in the distribution of fitness
effects might explain both selection for a lower mutation rate and lower long-term rates of diversification [84].
Although most Archaea are not thermophiles, it is tempting to apply this line of reasoning more broadly,
because adaptation to harsh conditions of other kinds — particularly energy stress, low energy flux and
extremes of pH — have been suggested to be a common feature shared across the archaeal domain [85]. These
hypotheses will remain speculative until more data on mutation rates and the distribution of fitness effects in
Archaea inhabiting a broad variety of habitats become available.

Archaeal genome evolution in deep time
The antiquity of the Archaea has led to substantial interest in early archaeal evolution and the nature of LACA,
with the aim of providing insight into the metabolisms of the earliest lifeforms and the environments that sup-
ported life on the early Earth. As might be expected given the enormous timescales involved, inferences of
LACA’s genome size and gene content are uncertain, and published estimates vary depending on the
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reconstruction methods used. Csuros and Miklos [86] used a phylogenetic birth–death model to study the evo-
lution of gene family profiles via gene gain, duplication and loss along a candidate species tree. This method
did not use information from the gene phylogenies, but was instead based upon counts of homologous genes
on each genome. Analyses under this model suggested that gene loss outnumbered gene gain on most branches
of the archaeal tree, so that genomic streamlining from a relatively complex common ancestor was suggested to
represent the dominant mode of archaeal genome evolution [86,87].
One potential limitation of profile-based approaches is that, without information from the individual gene

trees, there is very limited power to detect horizontal gene transfer unless the gene family has an extremely
patchy phylogenetic distribution [88]. As illustrated in Figure 5a,b, this can lead to a systematic overestimation
of the number of genes in ancestral genomes [48,86]. This limitation has motivated the development of models
that extend the birth–death approach by explicitly considering information from the gene trees, leading to
probabilistic gene tree-species tree reconciliation [89]. The main advantage of using species-tree aware gene tree
reconstruction methods such as ALE, is that conditional on the species tree being correct, these methods
produce dramatically more accurate gene trees [89–92], and correspondingly fewer gene transfer events. This
reduction in the number of spurious transfer events caused by errors in the gene tree ameliorates the problem
of underestimating the number of genes in ancestral genomes (Figure 5c).
Williams et al. [48] used one such method, ALE [89], to model gene family evolution on the archaeal species

tree. In contrast with profile only analyses, the results supported a scenario in which archaeal gene content has
gradually increased through time, with de novo gene origination, duplication and transfer generally outweighing
gene loss. In this analysis, LACA was inferred to have encoded 1090 gene families, rising to ∼1500 families
among modern Archaea. In this regard, it is important to note that gene tree reconciliation methods (Figure 5)
outperform profile only methods, because they are able to distinguish the ancestral gain and subsequent recur-
rent loss of a gene family from more recent gain followed by gene transfer. As a result, they tend to infer larger
rates of transfer and more realistic ancestral genome sizes [48,88]. Thus, the inference of a large ancestral
genome in LACA followed by reductive evolution can be explained by the very poor power to detect gene trans-
fer in the absence of evidence from gene tree topologies, and the corresponding systematic inflation of ancestral
genome sizes. While some doubt over the ancestral genome size remains, these and other analyses suggest that
the Wood–Ljungdahl pathway may have been the earliest carbon fixation pathway in the Archaea [48,93,94],
supporting the view that LACA was an anaerobic autotroph.

A B C

Figure 5. Ancestral reconstruction using only phylogenetic profiles can lead to artefactually large ancestral

gene contents.

Grey circles denote observed genes in the genomes of present-day organisms; blue circles and crosses denote inferred

ancestral presence or absence in ancestral genomes. (a) The phylogenetic profile of this gene family is consistent with

presence at all ancestral nodes, with a single loss in the branch leading to one of the modern lineages. (b) The gene family tree

indicates that the gene was not present in the common ancestor; instead, it originated later in evolution, but was subsequently

transferred into the right-hand side of the species tree. (c) An important caveat of introducing phylogenetic information in the

form of gene family trees is that, while it mitigates the systematic bias of profile only methods in overestimating the number of

genes in ancestral genomes, it can also lead to an underestimation of the number of genes in ancestral gene contents if errors

are present in the gene phylogeny. Here, an incorrect inference of gene transfer places the origin of the gene too recently

in the species tree. As discussed in the main text errors in the gene phylogeny can be greatly reduced using species tree

aware methods.
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Conclusions
Archaeal genome sequencing has lagged behind that for Bacteria, and until the advent of environmental gen-
omics — and the resulting data deluge from abundant but uncultivated microorganisms — it was unclear
whether the observed differences between archaeal and bacterial genomes reflected sampling artefacts or bio-
logical differences between the domains. Here, we took advantage of the much broader sample of available pro-
karyotic genome diversity, which allowed us to include genomes representing a broad range of habitats and
lifestyles. Our analyses confirm early indications [5] suggesting that, while genome architecture is conserved
between Bacteria and Archaea, there appear to be important differences characterising the genomic diversity of
the two domains, whether measured in terms of sequence divergence or variation in genome size and coding
capacity. The greater genomic malleability of Bacteria is particularly evident for symbionts and parasites: symbi-
otic Archaea are varied and ecologically important, but — with the important exception of the archaeal host
for eukaryote origins — they do not generally experience genome reduction to the same extent as their bacterial
counterparts.
The general patterns now seem clear, but we still lack a mechanistic understanding of the evolutionary forces

that underlie them. Developing that understanding will require more data from at least two sources. First, we
still know very little about the biology and environmental interactions of the many new lineages of Archaea
(and indeed Bacteria) that have recently been sequenced using environmental genomics. A more detailed
understanding of their lifestyles, and of variation in lifestyle within groups such as the DPANN Archaea, will
be critically important in interpreting the broad-scale patterns we have reviewed here. Secondly, testing hypoth-
eses about mutation, selection and diversification will require estimates of the mutation rate and distribution of
fitness effects from representative lineages sampled across the archaeal tree, but particularly from mesophilic
Archaea. The increasing interest from a broad range of researchers in archaeal genomics and biology, and new
techniques for genome-informed cultivation and the study of microbial metabolisms, may now provide the
opportunity to begin to explore these questions.

Summary
• Archaea and Bacteria share common gene-dense prokaryotic genome architecture.

• The range of archaeal genome sizes is much narrower than that of Bacteria. There are many
ecologically important archaeal parasites and symbionts, but they are not as extremely
reduced as their bacterial counterparts.

• Archaea appear to be as old as Bacteria, but their extant diversity is much lower. We do not
know why this is the case.

• The first Archaea were likely anaerobic autotrophs that lived on the early Earth. Their genomes
were probably modestly smaller than those of extant Archaea.
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