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Abstract

Carpesium (Asteraceae) is a genus that contains many plant species with important medici-

nal values. However, the lack of chloroplast genome research of this genus has greatly hin-

dered the study of its molecular evolution and phylogenetic relationship. This study used the

Illumina sequencing platform to sequence three medicinal plants of the Carpesium genus:

Carpesium abrotanoides, Carpesium cernuum, and Carpesium faberi, obtaining three com-

plete chloroplast genome sequences after assembly and annotation. It was revealed that

the three chloroplast genomes were typical quadripartite structures with lengths of 151,389

bp (C. abrotanoides), 151,278 bp (C. cernuum), and 151,250 bp (C. faberi), respectively. A

total of 114 different genes were annotated, including 80 protein-coding genes, 30 tRNA

genes, and 4 rRNA genes. Abundant SSR loci were detected in all three chloroplast

genomes, with most composed of A/T. The expansion and contraction of the IR region

indicate that the boundary regions of IR/SC are relatively conserved for the three species.

Using C. abrotanoides as a reference, most of the non-coding regions of the chloroplast

genomes were significantly different among the three species. Five different mutation hot

spots (trnC-GCA-petN, psaI, petA-psbJ, ndhF, ycf1) with high nucleotide variability (Pi) can

serve as potential DNA barcodes of Carpesium species. Additionally, phylogenetic evolution

analysis of the three species suggests that C. cernuum has a closer genetic relationship to

C. faberi than C. abrotanoides. Simultaneously, Carpesium is a monophyletic group closely

related to the genus Inula. Complete chloroplast genomes of Carpesium species can help

study the evolutionary and phylogenetic relationships and are expected to provide genetic

marker assistance to identify Carpesium species.

Introduction

The family Asteraceae is the most differentiated dicotyledons with about 1,479 genera and

21,105 species distributed worldwide, except for the Antarctic region [1]. Carpesium is a genus
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of the Asteraceae family with beneficial medicinal value. About 21 species globally are majorly

distributed in the Eurasian continent [2]; 17 species and 3 variety species found in China,

mainly distributed in the Southwest of China [3]. The genus of the Carpesium plants, such as

C. abrotanoides, C. cernuum, and C. divaricatum has been widely used as a folk medicine in

treating mumps, folliculitis, toothache, colds, and fever [4]. Pharmacological and chemical

studies have confirmed that they contain sesquiterpenoids with antibacterial, anti-inflamma-

tory, antimalarial, antitumor, and antioxidant effects [5]. Among these species, C. abrotanoides
is the most widely used longest in history as an herbal medicine. In China, the fruit of C. abro-
tanoides is called “He Shi,” possessing antiparasitic properties and eliminating its accumula-

tion [5, 6]. Moreover, its aerial parts are often used to treat bruises and fever [7]. Additionally,

the C. cernuum and C. faberi are also used as medicinal plants by folks to treat lymph node

nuclei, mastitis, fever, sore throat, toothache, blood stranguria, and other diseases [2, 8].

Morphological similarity between plants in Carpesium has led to confusion in the base

source of folk medicine, affecting the safety and efficacy of medicines obtained from its species

to a certain extent. However, current research on this genus is focused on their active chemical

components and pharmacological activities. The taxonomic identification of its species is still

based on morphological studies, thus leading to inaccurate interspecific identification of the

species within the genus. Meanwhile, due to the lack of abundant genetic marker information,

research in understanding the phylogenetic position and genetic diversity of the Carpesium is

still lacking. Therefore, it is necessary to establish more discriminative genetic markers to ana-

lyze and discuss the interspecific relationship of this genus and its position in Asteraceae to

provide a reliable basis for the genetic identification of medicinal materials.

The chloroplast (cp) is an organelle with a bilayer membrane structure that originates from

symbiotic cyanobacteria cells [9, 10] capable of releasing oxygen to convert solar energy into

carbohydrates through photosynthesis, aimed at sustaining its life [11]. Cp also plays a vital

role in amino acid and lipid synthesis metabolism [12]. In 1986, the whole cp genome of

tobacco was sequenced and annotated, and currently, various cp genomes have been reported

[13]; therefore, many researchers have been attracted to devote themselves to studying cp

genomes of plants. In many angiosperms, the cp genome is usually a quadruplex, consisting of

two inverted repeat regions (IRs), a large single-copy region (LSC), and a small single-copy

region (SSC), with the IR regions separating the LSC and SSC regions [14]. Generally, cp varies

in size from 120 to 180 kb [15], 60 to 130 kb encoding genes mainly involved in photosynthesis

and other metabolic processes [10]. Compared to the nuclear genome, the cp genome has a

haploid inheritance, conserved structure, smaller genome, and slow mutation rate [16–18],

making it an ideal model for molecular identification of species, genetic diversity studies, and

revealing phylogenetic relationships [19–21]. Recently, Artemisia, Panax, Physalis, Paeonia,

Salvia, and other genera’s complete cp genome data have been used to identify highly differen-

tiated regions and make phylogenetic inferences, eventually providing a reference for identifi-

cation and phylogenetic studies of these species [22–26].

Given this, we sequenced and annotated the whole cp genome of C. abrotanoides, C. cer-
nuum, and C. faberi to explore the relationships among the Carpesium species. Then, simple

sequence repeats (SSRs), interspersed repeated, IR expansion and contraction were investi-

gated, and mutation hot spots were screened. Additionally, a phylogenetic tree was constructed

using the whole cp genomes of 38 species of Asteraceae. This study explored the genetic

differentiation and structural characteristics of the genus Carpesium and its developmental

relationships in Asteraceae at the molecular level. It also provides the basis for elucidating the

evolutionary process of the genus Carpesium, revealing its phylogenetic relationship, and iden-

tifying species of the genus.
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Materials and methods

Collection of plant materials, DNA extraction, and sequencing

The fresh leaves of C. abrotanoides and C. faberi were collected from Longli County, Guizhou

Province, China, whereas C. cernuum were collected from Pingba County, Guizhou Province,

China. Samples were immediately frozen in liquid nitrogen and stored at −80˚C. According to

the manufacturer’s instructions, the whole DNA samples were extracted from fresh leaves

using an EZNA Plant DNA extraction kit (OMEGA, USA). The quality and quantity of

extracted DNA were measured using NanoPhotometer spectrophotometer (IMPLEN, USA)

and Qubit 2.0 Fluorometer (Life Technologies, USA), respectively. The genome was sequenced

by the Illumina NovaSeq Sequencing System to generate paired-end 2×150 bp reads, and

about 7.06 Gb (C. abrotanoides), 5.48 Gb (C. cernuum), and 5.63 Gb (C. faberi) raw data were

obtained.

Cp genome assembly, annotation

Trimmomatic [27] was applied to filter the raw data. Next, NOVOPlasty [28] was adopted

to assemble the cp genome, then Gap Close [29] repaired the inner gaps. Finally, the refer-

ence genome of C. abrotanoides was used for correcting the positions and directions of the

four cp regions (LSC/IRa/SSC/IRb). The genomes were annotated with manual correction

by the CpGAVAS2 [30] and were determined to obtain the complete cp genome sequence.

Whole cp genome maps were drawn with the CHLOROPLOT [31]. The annotated genome

sequence was submitted to GenBank (with accession numbers: OM302256, OM302257, and

OM302258).

Analysis of codon usage and repeat sequence

MEGA7 [32] was applied to analyze the synonymous codon and relative synonymous codon

usage (RSCU) of the three Carpesium species. MISA determined the SSR according to Beier

et al. (2017) [33] with the following settings: ten repeat units for mononucleotide SSRs, five

repeat units for dinucleotide SSRs, four repeat units for trinucleotide SSRs, and three repeat

units for tetranucleotide, pentanucleotide, and hexanucleotide repeats. The interspersed

repeated analysis was performed using REPuter [34], including the forward repeat (F), reverse

repeat (R), complement repeat (C), and palindromic repeat (P), with parameters set at mini-

mal repeat size 30 bp, and 90% sequence identity (hamming distance 3).

Comparative genome analysis and sequence variation

The boundary information of the four regions (IR, LSC, and SSC areas) of cp genomes was

visualized using IRscope according to Amiryousefi et al. (2018) [35]. The three whole cp

genomes were compared using the online genome analysis program mVISTA [36], whereas C.

abrotanoides was used as a reference in the Shuffle-LAGAN mode. According to the method

of Katoh et al. (2005) [37], MAFFT was used to compare the complete cp genome sequences of

3 species of the genus Carpesium, then DNAsp v.6.10 [38] was used for sliding window analysis

with a step length of 200 bp and window length of 600 bp.

Phylogenetic analysis

The three sequenced cp genomes of Carpesium and the whole cp genomes of the 35 species

(using Taraxacum mongolicum, Taraxacum officinale, and Lactuca sativa as outgroups) were

retrieved from the NCBI database for constructing a phylogenetic tree (S1 Table). MAFFT was

then applied to align the complete cp genomes of all species with a manual correction [37].

PLOS ONE Analysis of chloroplast genomes of three Carpesium species

PLOS ONE | https://doi.org/10.1371/journal.pone.0272563 August 5, 2022 3 / 18

https://doi.org/10.1371/journal.pone.0272563


The best nucleotide substitution model was tested with the built-in ModelFinder in IQ-tree.

The IQ-tree was then used to construct the maximum likelihood (ML) tree with 1,000 boot-

strap replicates [39–41].

Results

Characteristics and structure of cp genome

The full length cp genomes were 151,389 bp, 151,278 bp, and 151,250 bp for C. abrotanoides,
C. cernuum, and C. faberi, respectively. Similar to most angiosperms, the Carpesium cp

genomes also appeared with a typical quadripartite structure, distributed in one LSC region

(82,915 bp–83,059 bp) and one SSC region (18,426 bp–18,447 bp) separated by a pair of

inverted repeats (IRa and IRb; 49,004 bp) (Fig 1; Table 1). The overall GC content of the three

plants was the closest, ranging from 36.6% to 36.7%. The GC content of the IR regions (43%)

was higher than that of the LSC and SSC regions (35.7%–35.9% and 31.2%–31.3%), respec-

tively (Table 1).

Complete cp genome of C. abrotanoides, C. cernuum, and C. faberi encoded 132 genes.

Among them, 114 genes were unique, including 80 protein-coding genes, 30 transfer RNA

(tRNA), and 4 rRNA genes. Additionally, one gene (ycf1) was annotated as pseudogenes

(Table 2). Furthermore, among the 114 genes, 18 genes contained introns (12 protein-coding

Fig 1. Cp genome mapping of three Carpesium species. The inner genes are transcribed clockwise, and the outer

genes are transcribed counterclockwise. Different colors indicate genes with different functions. The light black of the

inner circle indicates GC content, and dark gray indicates AT content.

https://doi.org/10.1371/journal.pone.0272563.g001
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genes and 6 tRNAs genes), among the 15 genes (atpF, ndhA, ndhB, petB, petD, rpl2, rpl16,

rps16, rpoC1, trnA-UGC, trnG-UCC, trnI-GAU, trnK-UUU, trnL-UAA, and trnV-UAC) con-

tained one intron, and the 3 genes (rps12, ycf3, and clpP) contained two introns. Four of these

genes (trnA-UGC, trnI-GAU, ndhB, and rpl2) appeared in both IR regions, whereas one gene

(ndhA) was in the SSC region (S2 Table).

Codon usage

Amino acid frequency analysis and RSCU showed high similarities among the species. The

protein-coding sequences of the C. abrotanoides, C. cernuum, and C. faberi cp genomes con-

sisted of 26,112, 26,205, and 26,203 codons, respectively (S3 Table). The percentage of the

coded amino acids are presented in increasing order as follows; Cysteine (1.11%), Isoleucine

(8.42%–8.46%), and Leucine (10.62–10.64%) (Fig 2). Tyagi et al. (2020) [42] reported that the

Leucine had the highest, whereas the Cysteines had the lowest abundance of amino acids in

other angiosperm cp genomes. In the cp genomes of the three genera, the codon AUG (Methi-

onine) and UGC (Tryptophan) were unbiased with RSCU = 1.00. These two amino acids had

no preference because they were encoded using one codon. Additionally, the codons of other

amino acids exhibited significant differences. In contrast, the different codons except the UUG

containing A or T were the most preferred codon in encoding amino acids with RSCU > 1.

Identification of SSRs and repeat sequences

MISA detected 41 SSRs in C. abrotanoides, 39 in C. cernuum, and 37 in C. faberi (mononucleo-

tide, dinucleotide, trinucleotide, and tetranucleotide as shown in S4 Table and Fig 3a). Among

the three species, we found that the content of mononucleotide A or T homopolymers in the 4

SSR types is the highest, which illustrated that SSRs usually comprises poly-A and poly-T, but

rarely tandem guanine (G) and cytosine (C), thereby contributing to the AT abundance in the

cp genome (Fig 3b–3d). Furthermore, mononucleotide repeats (53.85%–60.98%) were the

most frequent, whereas the trinucleotide repeats (4.88%–5.41%) were the least (Fig 3e),

Table 1. Basic characteristics of the cp genomes of three Carpesium species.

C. abrotanoides C. cernuum C. faberi
Genome size (bp) 151,389 151,278 151,250

LSC length (bp) 83,059 82,927 82,915

SSC length (bp) 18,426 18,447 18,431

IR length (bp) 49,904 49,904 49,904

Number of genes (total /unique) 132/114 132/114 132/114

protein-coding genes (CDS) (total/in IR) 87/7 87/7 87/7

rRNA (total/unique) 8/4 8/4 8/4

tRNA (total/unique) 37/30 37/30 37/30

genes duplicated in IR 18 18 18

GC content (%) Total (%) 37.6 37.7 37.7

LSC (%) 35.7 35.9 35.9

SSC (%) 31.2 31.3 31.3

IR (%) 43 43 43

protein-coding genes (CDS) (% bp) 51.74 51.97 51.97

rRNA genes (% bp) 5.98 5.98 5.98

tRNA genes (% bp) 1.84 1.84 1.84

GenBank accession number OM302256 OM302256 OM302256

https://doi.org/10.1371/journal.pone.0272563.t001
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showing that the mononucleotide repeats made more contribution to genetic variations than

other SSRs.

The repeated sequences of each cp genome were analyzed using REPuter. A total of 39–40

interspersed repeated sequences, not more than 30 bp were detected in three species of Carpe-
sium, including the forward and palindromic repeats (S5 Table). The different types of repeti-

tive sequences in the same species showed differences but not in the same type of repetitive

sequences, among different species. Palindrome repeats were the most common (55%), fol-

lowed by the forward repeats (45%) in C. abrotanoides and C. cernuum cp genome. Also, palin-

drome repeats accounted for 54%, and the forward repeats accounted for 46% in the genome

of C. faberi (Fig 4a). The repeat sequence length of the majority was 30–40 bp (Fig 4b).

IR expansion and contraction

Based on the comparison of the IR/SC boundary regions, the cp genomes of the three Carpe-
sium genera showed that their expansion and contraction were similar (Fig 5). The rpl22,

Table 2. Genetic composition of the cp genomes of three Carpesium species.

Category of genes Group of gene Gene name Number

Genes for

photosynthesis

Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ 5

Subunits of photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ 15

Subunits of ATP synthase atpA, atpB, atpE, atpF�, atpH, atpI 6

Subunits of NADH-

dehydrogenase

ndhA�, ndhB(×2)�, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 12

Subunits of cytochrome b/f

complex

petA, petB�, petD�, petG, petL, petN 6

Subunit of rubisco rbcL 1

Self-repilcation Large subunit of ribosome rpl2(×2)�, rpl14, rpl16�, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36 11

Small subunit of ribosome rps11, rps12(×2), rps14, rps15, rps16�, rps18, rps19, rps2, rps3, rps4, rps7(×2), rps8 14

DNA-dependent RNA

polymerase

rpoA, rpoB, rpoC1�, rpoC2 4

Ribosomal RNAs rrn4.5S(×2), rrn5S(×2), rrn16S(×2), rrn23S(×2) 8

tRNA genes trnA-UGC(×2)�, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC�,
trnH-GUG, trnI-CAU(×2), trnI-GAU(×2)�, trnK-UUU�, trnL-CAA(×2), trnL-UAA�, trnL-UAG,

trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-UCU, trnS-GCU, trnS-GGA,

trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2), trnV-UAC�, trnW-CCA, trnY-GUA

37

Other genes Translation initiation

factor

infA 1

Subunit of acetyl-CoA-

carboxylase

accD 1

c-type cytochrome

synthesis gene

ccsA 1

Envelop membrane

protein

cemA 1

Protease clpP�� 1

Maturase matK 1

Genes with unknown

function

Conserved open reading

frames

ycf1a, ycf2(×2), ycf4, ycf3��, ycf15(×2) 7

(×2): Two gene copies in IRs;

�: gene containing one intron;

��: gene containing two introns;
a: pseudogene.

https://doi.org/10.1371/journal.pone.0272563.t002
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rps19, rpl2, trnH, and psbA genes were almost distributed in the LSC/IR border, whereas ycf1
and ndhF genes were in the SSC/IR border. The gene ycf1 crossed the SSC/IRa region, and the

pseudogene fragment ψycf1 was located at the IRb region, close to the SSC/IRb border. ndhF
was 37 bp, 6 bp, 6 bp away from the SSC/IRb border in C. abrotanoides, C. cernuum, and C.

faberi, respectively. These results suggest that C. cernuum and C. faberi are more similar than

C. abrotanoides.

Comparative genome analysis and divergence hotspot regions

The complete cp genomes of the three Carpesium species were compared and plotted using

mVISTA by aligning the cp genomes with C. abrotanoides as the reference in elucidating the

levels of sequence divergence (Fig 6). The results showed higher sequence variation in con-

served non-coding sequences regions than in conserved protein-coding regions. Also, the con-

servation of the IR region was higher than the LSC and SSC regions, whereas the rRNA genes

were highly conserved almost without variation. Furthermore, the coding regions with a large

variation in the three cp genomes werematK, accD, rpoA, ccsA, psbI, ndhF, and ycf1, whereas

the other genes had a higher degree of conservation. Variant loci in intergenic regions were

significantly higher than those in the gene regions. The intergenic regions included trnH-psbA,

rps16-trnQ, trnC-petN, petA-psbJ, psbA-ycf3 etc. To clarify the variation in the higher regions,

we calculated the nucleotide diversity values (pi) using DNAsp v.6.10 software (Fig 7). Five

divergent loci (trnC-GCA-petN, psbI, petA-psbJ, ndhF, and ycf1) had a P-value� 0.01, with the

trnC-GCA-petN, psbI, petA-psbJ located in the LSC region, whereas the other loci were in the

SSC region, and none being detected in the IR region. These results confirm that the LSC and

SSC regions were more variable than the two IR regions.

Fig 2. Comparison of amino acid frequencies in the cp genomes of three Carpesium species.

https://doi.org/10.1371/journal.pone.0272563.g002
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Phylogenetic analysis

The phylogenetic tree was reconstructed for 38 species of Asteraceae using the best fit model

TVM+F+R3. Most branch points had high bootstrap values, shown in Fig 8. The figure

showed that all Asteraceae species were divided into ten subgroups (Anthemideae, Astereae,

Gnaphalieae, Inuleae, Heliantheae, Millerieae, Tageteae, Coreopsideae, and Carlininae) with

slight differences in the bootstrap support values of each tree topology. The genetic relation-

ship between Inuleae and Plucheinae was closed, whereas within the Inuleae family, the genera

Blumea, Inula, and Carpesium formed a cluster. The three species of Carpesium formed a

monophyletic clade, which consisted of C. abrotanoides cluster, C. cernuum, and C. faberi clus-

ter, with a bootstrap value of 100%. Additionally, the genus Carpesium was closely related to

the Inula genus clade.

Fig 3. Number and proportion of SSRs in the cp genomes of three Carpesium species. (a) The number of different SSR types. (b-d) The frequencies

of different SSR types of three Carpesium species. (e) The proportion of different SSR types.

https://doi.org/10.1371/journal.pone.0272563.g003
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Discussion

Cp genome analysis

The complete cp genomes of three species of Carpesium were obtained using the Illumina

NovaSeq sequencing technology, with comparative analysis showing highly conserved genes

and structures. Similar to other sequenced angiosperm cp genomes, the Carpesium had a

quadripartite structure typically composed of one LSC, one SSC, and two IR regions, highlight-

ing the cp genomes with highly conserved characteristics [10]. The sizes of the cp genomes of

C. abrotanoides, C. cernuum and C. faberi ranged from 151,250 bp to 151,389 bp, suggesting

Fig 4. Repeat sequences in the cp genomes of three Carpesium species. (a) Repeat sequence types and number of

repeats. (b) Number of repeat sequences of different lengths.

https://doi.org/10.1371/journal.pone.0272563.g004
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Fig 5. Comparative analysis of the LSC, IRs, and SSC boundary regions of the cp genomes of three Carpesium species.

https://doi.org/10.1371/journal.pone.0272563.g005

Fig 6. Global alignment of three cp genomes of Carpesium generated using Mvista with C. abrotanoides as a reference. The y-axis represents the

range of identity (50%–100%). The x-axis indicates the coordinate in the cp genome. The gray arrows above the comparison represent the gene

orientation and location, and different colors indicate the various regions of the genome.

https://doi.org/10.1371/journal.pone.0272563.g006
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that the cp genome length in Carpesium was highly conserved, within the size range of most

angiosperm cp genomes [15, 43]. The GC content distribution in the cp genomes of the three

species was the same as that for other angiosperms [44, 45]. The IR regions had the highest GC

content among the four other regions, followed by the LSC and SSC regions. The high GC con-

tent in the IR regions may be attributed to the presence of rRNAs (rrna4.5, rrna5, rrna23, and

rrna16) with low A/T content [46].

The use of codons determines whether genetic information can be expressed correctly. It

also helps to understand the molecular evolution and environmental adaptations of species

and learn about the evolutionary relationships between species and genome structure, espe-

cially crucial in studying gene expression [47, 48]. The same codons were used in the three

species of Carpesium, including 61 amino acid codons (start codon AUG) and 3 stop codons

(UAA, UAG, and UGA). However, differences existed in the number and type of codons

encoding the 20 amino acids that were preferentially used. Most amino acids with a preference

for codons encoding, the third nucleotide contained A/U. These findings were correlated with

that in other angiosperms [49, 50]. Our results also showed high similarity indices of codon

usage, revealing that three species suffered from a similar environmental pressure [22].

Studies on cp genomes have shown that repetitive sequences are important for duplication,

deletion, and rearrangement events [51]. Additionally, repetitive sequences are important in

studying phylogeny and genome recombination [52]. The repeated analysis was performed on

three cp genomes of the genus Carpesium, and a total of 39–40 repeat sequences were detected,

mostly 30–39 bp in length. SSR or microsatellite is a commonly used class of microsatellite

molecular markers [53]. The chloroplast SSRs (cp SSRs) are uniparental, simple, and possess a

relatively conserved structure [54]. It also has high polymorphism, multiple alleles, and co-

dominance of nuclear genomic SSR markers [55]. Therefore, it is widely used in studying pop-

ulation structure, genetic variation, and species identification phylogeny [56]. In this study,

37–41 SSR were detected, with single nucleotide repeat sequences (A/T), the most abundant

type consistent with other angiosperms [57]. The cpSSRs also had great diversity, which may

help study interspecies variety and development of molecular markers for population genetics

analysis.

IR expansion and contraction are common in cp genomes and are the leading cause of

cp genome size variation [58, 59]. This study found that ndhF was 37 bp from the SSC/IRb

boundary in C. abrotanoides. In comparison, ndhF was only 6 bp from the SSC/IRb boundary

Fig 7. Sliding window analysis of the cp genomes of three Carpesium species.

https://doi.org/10.1371/journal.pone.0272563.g007
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in the other two species, which might be a reason for the longer cp genome length in C. abrota-
noides than C. cernuum, and C. faberi.

The mVISTA is a common tool for comparative genomic analysis used to rapidly identify

conserved regions of DNA sequences [60]. In this study, mVISTA software was used to com-

pare and analyze the cp genomes of these three species. We found that the sequence differenti-

ation of the cp genomes was lower, the IR region was more conserved than the SC region, and

the coding region was more conserved than the non-coding region, consistent with the cp

genomes of most high angiosperms [59]. The subsequent calculation of Pi values further clari-

fied the changes in the coding region. Also, a high variation in these genes (matK, accD, rpoA,

ccsA, psbI, ndhF and ycf1) and intergenic regions (trnH-psbA, rps16-trnQ, trnC-petN, petA-
psbJ, and psbA-ycf3, etc) were recorded. It has also been shown thatmatK, ycf1, trnH-psbA,

Fig 8. Maximum likelihood (ML) method phylogenetic tree constructed based on cp genome sequences of 38

species. The data next to each column represent bootstrap test scores. Taraxacum mongolicum, Taraxacum officinale,
and Lactuca sativa were set as outgroups.

https://doi.org/10.1371/journal.pone.0272563.g008
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rps16-trnQ, atpH-atpI, and psaA-ycf3 can be used as DNA barcodes for other plant taxa [61–

64]. These highly variable regions can provide abundant and significant information for

resolving the interspecific relationships of Carpesium in the phylogeny of the Asteraceae.

Phylogenetic analysis

Carpesium is a genus attributed to the Asteraceae family, with its species similar in morphol-

ogy and widely distributed. Recently, researchers have successively applied DNA sequence of

cp regions (ndhF, trnL-F, trnH-psbA, rps16-trnQ, rpl32-trnL, ndhF-rpl32) and nuclear ribo-

somal region (ITS, ETS) for taxonomic studies, suggesting that Carpesium has a polyphyletic

nature [65–70]. These studies are the foundation for the classification and identification of the

Carpesium. However, the relatively short length of cp or nuclear gene sequence fragments lim-

its phylogenetics, resulting in phylogenetic trees with low support values. Therefore, further

phylogenetic classification of the genus Carpesium is required.

The complete cp genome is a powerful means for explaining phylogenetic relationships

among species due to its rich phylogenetic information. It has been successfully used in phylo-

genetic studies of angiosperms [71, 72]. In this study, complete cp genomes of 38 species were

used for phylogenetic analysis. The ML analysis results showed that the tested Carpesium
formed a monophyletic lineage in phylogenetic evolution with 100% support values, closely

related to genera such as Inula, Blumea, and Pluchea. The classical taxonomic approach places

C. abrotanoides and C. faberi in the Sect. Abrotanoides and C. cernuum in the Sect. Carpesium.

However, this study found that C. cernuum was more closely related to C. faberi, deviating

from the traditional morphological classification method. Further study is needed to ascertain

whether the traditional taxonomy is reasonable or truly shows the relationship between the

species of this genus. It is impossible to resolve questions about the relationship of species

under the genus Carpesium and the subclassification of the genus due to the availability of a

few cp genome sequences of Carpesium and Asteraceae. More studies are therefore needed on

the complete cp genome of this genus so that we can accurately analyze the affinities between

the species.

Conclusion

In this study, the cp genomes of three species of Carpesium (C. abrotanoides, C. cernuum,

and C. faberi) were sequenced and annotated using high-throughput sequencing technology.

Through bioinformatics analysis, we compared the cp genomes of these three species revealing

that the structure and gene content of the cp genomes among the three Carpesium species

were highly similar and conserved, indicating a close relationship with each other. Approxi-

mately, 40 SSR loci were identified with potentials to be used as molecular markers in studying

the diversity in the genus Carpesium. It was also discovered that five mutation hot spots could

be used to develop DNA markers suitable for the interspecies discrimination between Carpe-
sium. Maximum likelihood (ML) tree analysis showed that the three Carpesium plants were

entirely clustered into one branch and were closely related to the Inula plants. This study on

the cp genomes of the three Carpesium genera provides valuable information for the species,

enriches Carpesium cp genome data, and provides genetic resources for further species identi-

fication and phylogenetic studies of this genus.
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