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Abstract

The Mapputta group comprises antigenically related viruses indigenous to Australia and

Papua New Guinea that are included in the family Bunyaviridae but not currently assigned

to a specific genus. We determined and analyzed the genome sequences of five Australian

viruses isolated from mosquitoes collected during routine arbovirus surveillance in Western

Australia (K10441, SW27571, K13190, and K42904) and New South Wales (12005).

Based on matching sequences of all three genome segments to prototype MRM3630 of

Trubanaman virus (TRUV), NB6057 of Gan Gan virus (GGV), and MK7532 of Maprik virus

(MPKV), isolates K13190 and SW27571 were identified as TRUV, 12005 as GGV, and

K42904 as a Mapputta group virus from Western Australia linking GGV and MPKV. The

results confirmed serum neutralization data that had linked SW27571 to TRUV. The fifth

virus, K10441 from Willare, was most closely related to Batai orthobunyavirus, presumably

representing an Australian variant of the virus. Phylogenetic analysis also confirmed the

close relationship of our TRUV and GGV isolates to two other recently described Australian

viruses, Murrumbidgee virus and Salt Ash virus, respectively. Our findings indicate that

TRUV has a wide circulation throughout the Australian continent, demonstrating for the first

time its presence in Western Australia. Similarly, the presence of a virus related to GGV,

which had been linked to human disease and previously known only from the Australian

southeast, was demonstrated in Western Australia. Finally, a Batai virus isolate was
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identified in Western Australia. The expanding availability of genomic sequence for novel

Australian bunyavirus variants supports the identification of suitably conserved or diverse

primer-binding target regions to establish group-wide as well as virus-specific nucleic acid

tests in support of specific diagnostic and surveillance efforts throughout Australasia.

Introduction

In 1960, Mapputta virus (MAPV; isolate MRM186), the first of four Australasian bunyavirus-
like viruses of the Mapputta serogroup was discovered in Anopheles (Cellia) meraukensis mos-
quitoes collected at Mitchell River Mission (now Kowanyama) in northern Queensland [1, 2].
Subsequently, Trubanaman virus (TRUV; isolate MRM3630) obtained from Anopheles (Cellia)
annulipes mosquitoes collected in1965 at Kowanyama, and Maprik virus (MPKV; isolate
MK7532) obtained in 1966 from Verrallina (Verallina) funerea mosquitoes collected at
Maprik, New Guinea, were recognized ([3], https://wwwn.cdc.gov/Arbocat/Default.aspx). The
fourth virus was Gan Gan virus (GGV; isolate NB6057), isolated first from Aedes (Ochlerota-
tus) vigilax mosquitoes collected at Nelson Bay, Port Stephens Peninsula, New South Wales in
1970 [4, 5]. GGV was shown to be responsible for cases of human polyarthritis that tested neg-
ative for Ross River virus during the 1983/84 polyarthritis outbreak [6, 7]. All four viruses are
assigned to the family Bunyaviridae, combined in the “Mapputta group” that is not currently
assigned to a genus of the family [8, 9]. However, recent sequence analyses of MAPV MRM186
and MPKV MK7532 indicated a relationship of Mapputta group viruses to the genus Orthobu-
nyavirus of the Bunyaviridae [10]. Subsequently, TRUV MRM3630 was shown to fall into the
same clade, suggesting that two recently characterized viruses from Australia, Buffalo Creek
(BUCV; [10]) and Murrumbidge (MURBV; [11]), are also isolates of TRUV [12, 13]. Further-
more, genome sequence analysis of GGV NB6057 indicated that another previously reported
virus, Salt Ash (SAHV; [11]), also represents an isolate of GGV instead of a distinct virus [13,
14].

Bunyaviruses are enveloped viruses with a tripartite, negative sense, single-strandedRNA
genome. The large (L-)segment of the genome encodes the viral RNA-dependent RNA poly-
merase (RdRp), the medium (M-)segment encodes two surface glycoproteins (Gn and Gc),
and the small (S-)segment encodes the viral nucleoprotein (N). The M-segment of orthobunya-
viruses also encodes the non-structural protein NSm, which is thought to be involved in virus
assembly [15]. For some orthobunyaviruses, a second non-structural protein is encoded by the
S-segment (NSs), which has been shown to modulate the host innate immune response by act-
ing as an interferon induction antagonist [16, 17].

We characterizedAustralian virus isolates obtained during routine annual mosquito surveil-
lance in Western Australia and New South Wales through sequence analysis. Phylogenetic
analyses identified two viruses as TRUV, one as GGV, a fourth as related to GGV and MPKV,
and a fifth virus was shown to be closely related to Batai virus that had not previously been
demonstrated in Australia.

Results

Sequence analysis indicated a classical orthobunyaviral genome organization for the studied
isolates (SW27571, K13190, 12005, K42904 and K10441), coding the N protein by the S-seg-
ment, the Gn-NSm-Gc glycoprotein precursor polyprotein by the M-segment, and the viral
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RdRp by the L-segment. The S-segment of K10441 also coded for a NSs protein, whereas the
other four isolates did not possess an analogous open reading frame (ORF).

In comparison to other orthobunyaviruses as well as among them, the S-segment sequences
of SW27571, K13190, 12005 and K42904 showed significant variation in commonly conserved
N motifs around invariant amino acids (aa) T91/R94 and G150/P162 (aa numbering according to
MAPV GenBank no. KJ481921), and in a motif previously proposed to be involved in N multi-
merization (Y18DPNA in MAPV; [18]). Mutation of the widely conservedE128 to L (aa num-
bering according to Bunyamwera virus (BUNV) GenBank no. D00353) was analogous to the
E/A128 mutation observed in Wyeomyia group viruses [19], which in the orthobunyavirus type
species BUNV was found to be associated with a small plaque/high-titer phenotype [20].
Motifs specific to Mapputta group viruses were identified at aa Q118/119AE/A/DV/IWRG/E,
and K171/172QDPEQ.

The organization of the M-segment was equivalent to other orthobunyaviruses with signal
peptidase cleavage motifs located at the beginning of Gn, NSm, and Gc coding sequences
(Table 1). Only limited conservation of a site analogous to the protease cleavage site
K293SLRAAR determined in the California serogroup virus snowshoe hare [21] was observed
in all isolates except for K10441 (S285LRVAR]. N-glycosylation sites were variable. SW27571
and K13190 were predicted to have a glycosylated Gn, while the Gn of 12005 and K42904 did
not show a potential N-glycosylation site (Fig 1). The RdRp sequence encoded by the L-seg-
ment was characterized by conserved block III domains pre-A, A, B, C, D and E [22, 23], and
conservation of the N-terminal endonuclease domain [24].

Isolate SW27571 (Table 2), obtained from An. annulipes s.l. mosquitoes collected in 1993 at
Thomsons Lake in the City of Cockburn (greater Perth metropolitan area), Western Australia,
and isolate K13190 from An. annulipes s.l. mosquitoes collected in 1993 at Kununurra, West-
ern Australia, were 96%, 96% and 96% identical for their S-, M- and L-segment nt coding
sequences, respectively (99%, 98% and 99% aa sequence identity; S1 Table), which identifies
both as isolates of the same virus. Since SW27571 had been shown to cross-react with TRUV
polyclonal antibodies in neutralization assay [25], we also obtained sequences for the original
TRUV prototype MRM3630 for which at the time of analysis no sequence was available for
comparison. Nucleotide identity between these and recently published TRUV prototype
sequences [12, 14] was 100% for all genomic segments. The respective identity for S-, M- and
L-segment nt sequences was 98%, 98% and 98% with SW27571 (99%, 99% and 99% aa
sequence identity), and 97%, 96% and 96% with K13190 (98%, 99% and 99% aa sequence iden-
tity; S1 Table). Thus, SW27571 and K13190 represent isolates of TRUV from Western
Australia.

Isolate 12005 (Table 2), obtained from Ae. vigilax mosquitoes collected in 1992 at Salt Ash,
Port Stephens, New South Wales, and isolate K42904, obtained from Ae. vigilax mosquitoes
collected in 2000 at Derby, Western Australia, showed only limited sequence identity to other

Table 1. Predicted signalase cleavage sites.

Gn NSm Gc

SW27571 SYA/I16P ITA/E331C SFA/I464A

K13190 SYA/I16P ITA/E331C SFA/I464A

12005 SSQ/A16P INA/D333C VNA/E469V

K42904 TTQ/A16P INA/E333C VNA/E469V

K10441 n.a.* IEG/T331L IVA/A476T

* n.a., not available

doi:10.1371/journal.pone.0164868.t001
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sequences at the time of analysis. However, determining partial S-, M- and L-segment
sequences for GGV prototype NB6057 and comparison to a recently published NB6057 proto-
type sequence [14] indicated relevant relationships. While sequences of 12005 were 99.4%,
99.3% and 99.6% identical to GGV NB6057 (99.6%, 99.6% and 99.9% aa sequence identity),
those of K42904 showed a more distant relationship of 82%, 77% and 79% identity (95%, 88%
and 90% aa sequence identity; S1 Table). Despite the distance to other GGV isolates, K42904
M-segment sequence was more closely related to GGVs than to any other sequence. K42904 S-,
and L-segment nt sequences were equally close to GGVs and MPKV, while the aa sequences
showed a closer relationship to GGVs than to MPKV.

Isolate K10441 (Table 2), obtained from Cx. annulirostris mosquitoes trapped in 1993 at
Willare, Western Australia showed highest sequence identity (100% nt and 100% aa identity)
with a single Australian S-segment sequence entry submitted to GenBank in 2000 (Acc. No.
AF325122) and annotated as ‘Bunyamwera virus’. However, all three S-, M- and L-segment
coding sequences of K10441 also matched closely with those of characterized Batai virus
(BATV) isolates (89–91%, 72–73% and 81% nt sequence; and 97–98%, 79–80% and 93–94% aa

Fig 1. Glycosylation sites of Australian orthobunyavirus M-segment polyprotein sequences. Predicted N-

glycosylation sites are indicated along the M-segment sequence by their recognition sequence and aa position.

MAPV, Mapputta virus; TRUV, Trubanaman virus; BUCV, Buffalo Creek virus; MURBV, Murrumbidgee virus;

GGV, Gan Gan virus; SASHV, Salt Ash virus; MPKV, Maprik virus.

doi:10.1371/journal.pone.0164868.g001

Table 2. Characterized Australian orthobunyaviruses.

Virus Isolate Species of

origin

Year Location Sequence Reference

Mapputta

(MAPV)

MRM186 An.

meraukensis

1960 Kowanyama, Queensland

(QLD)

KJ481921, KJ481922, KJ481923,

KP792694, KP792695, KP792696

[10], [12]

Trubanaman

(TRUV)

MRM3630 An. annulipes

s.l.

1965 Kowanyama, QLD KP792682, KP792683, KP792684,

KR013237, KR013236, KR013235

[12], [14], this

paper

SW27571 An. annulipes

s.l.

1993 City of Cockburn, Western

Australia (WA)

* [25], this paper

K13190 An. annulipes

s.l.

1993 Kununurra, WA * this paper

Murrumbidgee

(MURBV) 934

An. annulipes

s.l.

1997 Griffith, New South Wales

(NSW)

KF234255, KF234254, KF234253 [11]

Buffalo Creek (BUCV)

DPP0186

An.

meraukensis

1982 Darwin, Northern Territory

(NT)

KJ481927, KJ481928, KJ481929 [10]

Maprik (MPKV) MK7532 Ve. funerea 1966 Maprik, Papua New Guinea KJ481924, KJ481925, KJ481926 [10]

Gan Gan (GGV) NB6057 Ae. vigilax 1970 Nelson Bay, Port Stephens

Peninsula, NSW

KR013234, KR013233, KR013232 [14], this paper

Salt Ash (SASHV) 931 Ae. vigilax 1992 Salt Ash, Port Stephens

Peninsula, NSW

KF234258, KF234257, KF234256 [11]

12005 Ae. vigilax 1992 Salt Ash, Port Stephens

Peninsula, NSW

* this paper

K42904 Ae. vigilax 2000 Derby, WA * this paper

Batai (BATV) K10441 Cx.

annulirostris

1993 Willare, WA * this paper

* Sequence data generated in this study are available through the following GenBank accession numbers: TRUV MRM3630 KU661976, KU661988, and

KU661983; TRUV SW27571 KU661981, KU661993, and KU661982; TRUV K13190 KU661977, KU661990, and KU661986; GGV NB6057 KU661978,

KU661992, and KU661987; GGV 12005 KU661979, KU661989, and KU661985; GGV K42904 KU640378, KX698605, and KX698606; BATV K10441

KU661980, KU661991, and KU661984.

doi:10.1371/journal.pone.0164868.t002
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sequence identity, respectively;S1 Table). Our data suggest that K10441 (and possibly
AF325122) represents an Australian variant of Batai virus.

Phylogenetic analyses supported the relationships indicated by pairwise sequence identity
analysis. K10441 clustered most closely with BATVs, and SW27671 and K13190 with TRUVs
(Fig 2 and S1 Fig). While MAPV clearly separates from the other viruses of the group, a sepa-
ration of MPKV from GGVs was less clear due to the intermediate branching of K42904, at
least in the case of S- and L-segment sequence.

Discussion

Except for K10441, our virusesmapped consistently for all genome segments in a monophy-
letic clade together with recently sequencedMapputta group viruses. The sequences of TRUV
SW27571 and K13190 were similarly close to TRUV MRM3630 as those of MURBV [12], sup-
porting a classification of all four viruses as isolates of TRUV. Likewise, based on similarity to

Fig 2. Phylogenetic relationship of Australian Mapputta group and K10441 isolates to other selected orthobunyaviruses. Deduced amino acid

sequences of the S- (N ORF; panel A), M- (Gn, NSm,Gc polyprotein ORF; panel B), and L-segment (RdRp-ORF; panel C) were aligned and trees

reconstructed with the Neighbor-Joining method applying a Poisson substitution model as implemented in MEGA 6. Bootstrap values resulting from 1000

pseudoreplicates are indicated at the respective nodes; scale bars indicate the number of substitutions per site, and GenBank accession number and

isolate name (where known) are given next to the virus name. MAPV, Mapputta virus; MPKV, Maprik virus; TRUV, Trubanaman virus; GGV, Gan Gan

virus.

doi:10.1371/journal.pone.0164868.g002
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GGV NB6057 and SASHV [14], 12005 was identified as another isolate of GGV. K42904 was
different; though clearly related to GGVs, primarily through M-segment sequence, its S-, and
L-segment sequences were also close to those of MPKV. Segment termini or characteristic pro-
tein motifs of N or L were not distinctive. Potential M-segment glycosylation sites matched
more closely those of GGV except for the lack of the second N-terminal Gc-site and the pres-
ence of the first of the two additional sites found more centrally in Gc of MPKV (Fig 1). In
addition, signalase sites were more conservedwith regard to GGV than MPKV (MPKV: Gn,
VFS/A17P; NSm, INA/A334C; Gc, VKA/E470V). Overall, this characterizes K42904 as a diver-
gent isolate of GGV, linking GGV to MPKV.

The increasing availability of sequence information for orthobunyaviruses indicates pro-
gressively more inconsistencies between the topologies of S, M and L phylogenetic trees. In the
Mapputta clade, GGV was consistently closest to MPKV for all three segments, consistent with
early serological data [5]; K13190 clustered with BUCV, and SW27571 was consistently closest
to MURBV. In contrast, MAPV was for its L-segment closer to MPKV/GGV than to TRUV,
but for its M-segment closer to TRUV than to MPKV/GGV. The S-segment phylogenetic anal-
ysis was less consistent with different histories inferred by different models, indicating that cur-
rently available sequences do not provide enough information to allow a statistically robust
prediction (compare Fig 2 and S1 Fig). In addition, whereas L-segment sequences of the Map-
putta group formed a sister clade to all other orthobunyaviruses, their M-segment sequences
branched within the orthobunyavirus clade, rooting Bunyamwera, Wyeomyia, California
encephalitis, Bwamba and Wuhan louse fly clades. Again, analyses of the S-segment sequences
were divergent, including low bootstrap support between 10 and 40% for deep nodes. Never-
theless, our findings for L-, and M-segments indicated differences in branching patterns com-
patible with early reassortment events and may indicate a divergent evolutionary history for
these segments.

Our genetic analyses confirmed the absence of NSs coding sequence among all Mapputta
group viruses as recently described for MAPV, MPKV, TRUV and GGV [10, 12, 14]. The NSs
of bunyaviruses inhibits the induction of the cellular interferon response and deletion mutants
show a reduced virulence [17, 26]. Similar to other NSs-lacking bunyaviruses of the Anopheles,
Tete or Wyeomyia groups [19, 27], Mapputta group virusesmay therefore be considered to
have limited pathogenicity. However, bunyaviruses are also capable of using NSs-independent
mechanisms to overcome the innate interferon response as indicated by Tacaiuma virus that
suppresses interferon production despite the lack of an NSs [27], and known human pathogens
such as Tataguine virus and Guama group viruses that do not encodeNSs [12]. Shchentinin
et al. showed that only 8 of the 15 sequenced serogroups encode this protein, suggesting that its
presence or absence may not be a reliable predictor of pathogenicity [12].

Serosurveys indicate that both GGV and TRUV may infect humans. Seroprevalence rates
were usually higher for GGV, reaching an average of 5–6% [7, 28]; however, TRUV was also
linked to human infection although evidence for pathogenicity was less convincing [7].
Whereas cases of polyarthritic-like illness with a significant rise in GGV-specific IgM were
recorded, cases with specific TRUV antibodies lacked in one instance detectable IgM and in
another a concurrent infectionwith Ross River virus was suggested. To our knowledge, there is
limited evidence for potential vertebrate hosts of GGV; with only one survey on the south coast
of New South Wales reported, which found neutralizing antibodies most frequently in kanga-
roos and wallabies (33%), cattle (13%) or horses (13%)[29]. Serologic evidence of infection
with TRUV has been reported in several species.Highest proportions of neutralizing antibodies
were found in kangaroos (35–100%), wallabies (36–80%), and horses (46%) in sera collected in
the 1950s and 1960s in Queensland [30]. The seroprevalence of TRUV neutralizing antibodies
was also highest in kangaroos (71%) in a serosurvey conducted with samples collected at the
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south coast of New South Wales [29]. Similarly, in sera collected at several localities in south-
west Western Australia neutralizing antibodies were highest in kangaroos (21%); antibodies
were also detected in several other species, including feral pigs (4%), quokkas (5%), rabbits (up
to 4%), horses (up to 3%) and foxes (10%) in individual localities [31]. In humans, seropreva-
lence rates of 0 to 14.0%, 1.4% and 0.3% have been reported in Queensland [30], New South
Wales [7], and Western Australia [31], respectively. The predominant vector of TRUV, Anoph-
eles annulipes s.l., displays opportunistic host-feeding behavior (reviewed in [32]), and this
may be the reason that TRUV antibodies are found in a wide variety of vertebrates [31].

Geographically, TRUV appears to be circulating in Anopheles mosquitoes, primarily An.
annulipes, throughout the Australian continent, including northern Queensland (Kowa-
nyama), the Northern Territory (Darwin; BUCV), Western Australia (Kununurra in the
Northwest, bordering the Northern Territory and Perth in the Southwest), as well as New
South Wales (Griffith)(Fig 3). Prior to this study, GGV appeared to be focused in eastern Aus-
tralia, mainly New South Wales (Port Stephens), involving various Aedes species, including the
salt-marsh mosquito Ae. vigilax. The distribution of the sequence-confirmedisolates is largely
in agreement with earlier reports of serologically characterized isolates (reviewed in [33]).
However, K42904 obtained from a pool of Ae. vigilax collected in 2000 at Derby, Western Aus-
tralia, extends the distribution of GGV-clade viruses into Western Australia.

Isolate K10441, obtained from Cx. annulirostris mosquitoes collected in 1993 at Willare,
Western Australia, was identified as closely related to BATV, a virus classified in the species
Bunyamwera virus of the genus Orthobunyavirus by the International Committee on the Tax-
onomy of Viruses (ICTV). This is the first detailed description on the occurrence of a BATV-
clade virus from the Australian continent. The discovery of BATV dates back to 1955 when the
prototype isolate MM2222 was obtained from Cx. gelidus mosquitoes collected in Kuala Lum-
pur, Malaysia (https://wwwn.cdc.gov/Arbocat/Default.aspx). With additional isolates from a
variety of Anopheles, Aedes and Culex mosquitoes, as well as mammalian species in India
(Chittoor virus), China (NM/12), Ukraine (Olkya virus), Europe (Calovo virus) and Uganda
(UgMP6830)[34–40], BATV has to be regarded as one of the most widespread of the orthobu-
nyaviruses [41, 42]. BATV is considered to persist in a mosquito-mammal cycle, including
bovids, suids, cervids and leporids [34, 43–45]. While neutralizing antibodies have been found
in human sera, mainly in Malaysia and Thailand, association with disease is ill-defined and
infectionmay be limited to transient febrile illness with respiratory and/or gastrointestinal
symptoms [46]. Given that the invasive mosquito species Cx. gelidus from which BATV was
initially isolated in Malaysia was recently also reported in northern regions of Australia [47,
48], as well as other potential mosquito vectors of BATV, it is not surprising to encounter this
virus in northernAustralia. The occurrence in northern Australia may in fact represent
another example of a virus potentially introduced into northern Australia from neighboring
countries in Australasia or southeast Asia. Other such examples of suspected introductions
into northern Australia include Japanese encephalitis virus [49, 50], or Bluetongue viruses and
its vectors [51, 52].

In summary, we show the presence of Mapputta serogroup viruses throughout Australia,
including Western Australia. The identification of K42904 from northern Western Australia
adds a novel virus to the group that is genetically related to GGV and MPKV; thus linking east-
ern Australian GGV with Papua New Guinean MPKV. In addition, an orthobunyavirus from
north-west Australia, closely related to BATV, was identified and comprehensively character-
ized for the first time. Given the serological cross-reactivity among the Mapputta group viruses
(all belonging to the same serogroup), sero-diagnostic assignment of human and animal dis-
ease cases to distinct viruses should be considered tentative. Comprehensive sequence data will
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open the way to virus-specificnucleic acid tests for enhanced surveillance and clarifying the
pathologic potential of each of these viruses in humans and animals.

Materials and Methods

Virus isolates and culture

Isolates K10441, K13190, and SW27571 were obtained from pools of mosquitoes collected dur-
ing routine mosquito and arbovirus surveillance in Western Australia by The University of
Western Australia Arbovirus Surveillance and Research Laboratory (UWA ASRL) using

Fig 3. Geography of Australian Mapputta group viruses. MAPV, Mapputta virus; MPKV, Maprik virus; TRUV, Trubanaman virus; GGV, Gan

Gan virus; MURBV, Murrumbidgee virus; SASHV, Salt Ash virus; BUCV, Buffalo Creek virus.

doi:10.1371/journal.pone.0164868.g003
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methods describedpreviously [53–56]. Isolate 12005 was obtained from the UWA ASRL
repository, and TRUV prototype MRM3630 and GGV prototype NB6057 were sourced from
CSIRO Australian Animal Health Laboratory collection.Viruses were propagated in Vero cells
for sequencing.

Unbiased high-throughput sequencing (UHTS), reverse transcriptase—

polymerase chain reaction (RT-PCR), and rapid amplification of cDNA

ends (RACE)

Sequences were generated by applying a combination of consensus reverse transcriptase (RT)-
polymerase chain reaction (PCR) and unbiased high-throughput sequencing (UHTS). Total
RNA was extracted from culture supernatants using TRI Reagent (Molecular Research Center,
Inc. Cincinnati, OH, USA) or RNeasy Plus Mini Kit (Qiagen, Hilden, Germany). Aliquots of
total RNA extracts (0.5 μg) were treated with DNase I (Ambion, Austin, TX, USA or Promega,
Madison, WI, USA) for reverse transcription (RT) by Superscript II (Invitrogen, Carlsbad, CA,
USA) with random octamer primers linked to an arbitrary, defined 17-mer primer sequence.
The cDNA was RNase H-treated for 454 sequencing or Klenow-treated for Ilumina sequencing
and randomly amplified by PCR with AmpliTaq (Applied Biosystems, Foster City, CA, USA)
and a primer mix including the octamer-linked 17-mer sequence primer and the defined
17-mer sequence primer in a 1:9 ratio [57]. Amplification products>70 bp were purified
(MinElute, Qiagen) and ligated to linkers for sequencing on a GS-FLX Sequencer (454 Life Sci-
ences, Branford, CT, USA)[58] or a MiSeq Sequencing system (Ilumina, San Diego, CA, USA).
For the latter, Nextera XT DNA Sample Preparation Kit (Illumina) was used for library prepa-
ration and paired-end sequencing of 250bp fragments was performedwith MiSeq reagent kit
V2 (500 cycles; Ilumina). Sequencing data was analyzed using CLC Bio Genomics Workbench
6.5.0 (http://www.clcbio.com).

Direct PCR amplification was performedwith conserveddegenerate primer sets [19, 59,
60], or primer sets designed based on sequences obtained through UHTS. PCR reactions used
routinely 1 μl random hexamer-primed cDNA (Superscript II; Invitrogen), primers at 0.2 mM
concentration, and Platinum Taq DNA polymerase (Invitrogen). Amplification products were
size-fractionated in 1.3% agarose gels, purified (QIAquick PCR purification kit; Qiagen), and
either sequenced directly, yielding a majority sequence, or after cloning into pGEM-Teasy plas-
mid vector (Promega). Sequences were obtained for both strands by automated dideoxy-
sequencing (Genewiz, South Plainfield, NJ, USA, or Applied Biosystems). Genomic termini
were characterized by rapid amplification of cDNA ends using 5’-, or 3’-RACE (RACE kits;
Invitrogen).

Bioinformatics

Sequence reads were stripped of primer sequences and highly repetitive elements, quality fil-
tered and then clustered and assembled into contiguous fragments (contigs) for comparison by
the Basic Local Alignment Search Tool (blast [61]) to the Genbank database at nucleotide (nt;
blastn) and deduced amino acid (aa; blastx) levels. Pairwise sequence identity percentages were
calculatedwith the Needleman-Wunsch algorithm, applying an EBLOSUM62 substitution
matrix (gap open/extension penalties of 10/0.5 for nt and aa alignments; EMBOSS [62]) and a
Perl script to parse the results for all comparisons. Algorithms SignalP-NN/SignalP-HMM,
NetNGlyc, and TMHMM (http://www.cbs.dtu.dk/services)were used for functional predic-
tions. Phylogenetic analyses were performed by using the MEGA 6.0 software package [63].
Multiple sequence alignments were generated with the implemented Clustal algorithm. Phylo-
genetic histories were reconstructed based on translated amino acid sequence using the
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Neighbor-Joining method and applying the Poisson substitution model. Bootstrap values were
calculated based on 1000 pseudoreplicates. In addition, an analysis using the Maximum-Likeli-
hoodmethod was performed using 50 pseudoreplicates and the best predicted substitution
model for the alignment.

Supporting Information

S1 Fig. Phylogenetic relationship of AustralianMapputta group and K10441 isolates to
other selectedorthobunyaviruses.Deduced amino acid sequences of the S- (N ORF; panelA),
M- (Gn, NSm,Gc polyprotein ORF; panel B), and L-segment (RdRp-ORF; panel C) were
aligned and trees reconstructedwith the Maximum Likelihoodmethod applying the best pre-
dicted substitution model using MEGA 6 software. Bootstrap values are indicated at the respec-
tive nodes, scale bars indicate the number of substitutions per site, and GenBank accession
number and isolate name (where known) are given next to the virus name. MAPV, Mapputta
virus;MPKV, Maprik virus; TRUV, Trubanaman virus; GGV, Gan Gan virus.
(TIFF)

S1 Table. Nucleotide and amino acid sequence identities. Percent nucleotide (NT) and
amino acid (AA) sequence identity among Mapputta group viruses (a), and among isolate
K10441 and selected other orthobunyaviruses (b) were calculated.
(XLSX)
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