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Abstract

The size of an individual active social network is a key parameter of human social

behavior and is correlated with subjective well-being. However, it remains unknown

how the social network size of active interactions is represented in the brain. Here,

we examined whether resting-state functional magnetic resonance imaging (fMRI)

connectivity is associated with the social network size of active interactions using

behavioral data of a large sample (N = 222) on Twitter. Region of interest (ROI)-to-

ROI analysis, graph theory analysis, seed-based analysis, and decoding analysis

together provided compelling evidence that people who have a large social network

size of active interactions, as measured by “reply,” show higher fMRI connectivity of

the left inferior frontal gyrus with the dorsomedial prefrontal cortex and

temporoparietal junction, which represents the core of the theory of mind network.

These results demonstrated that people who have a large social network size of

active interactions maintain activity of the identified functional connectivity in daily

life, possibly providing a mechanism for efficient information transmission between

the brain networks related to language and theory-of-mind.
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1 | INTRODUCTION

Social networking services (SNS) such as Twitter, Facebook, and

Instagram have become ubiquitous tools for the daily lives of many

people and allow us to communicate socially on the web. Among SNS,

Twitter is a blogging service with which users can broadcast short

messages. The message is called a tweet, which appears on a user's

profile and is visible to other users who are connected to him/her,

that is, followers. These other users have the option of responding to

the tweet on their own profile, that is, reply. These functions enable

researchers to quantify several types of social communications,

including the number of followed and followers, and the frequency of

replies and tweets: the former and the latter represents the static

social network size of acquaintances and the social network size of

active interactions, respectively.

The size of an individual's active social network is a key parameter

of their social behavior and is correlated with subjective well-being

(Demir, 2015; Gable & Reis, 2010). Previous research reported that

brain volume size is linked with the number of Facebook friends

(Kanai, Bahrami, Roylance, & Rees, 2012; Von der Heide, Vyas, &
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Olson, 2014) as well as real-world social network size (Bickart, Wright,

Dautoff, Dickerson, & Barrett, 2011; Kwak, Joo, Youm, & Chey, 2018;

Lewis, Rezaie, Brown, Roberts, & Dunbar, 2011; Noonan, Mars, Sallet,

Dunbar, & Fellows, 2018; Powell, Lewis, Roberts, García-Fiñana, &

Dunbar, 2012), indicating that the size of social networks has a neural

basis. More specifically, consistent with the social-brain hypothesis

(Dunbar, 2014; Dunbar & Shultz, 2007), individual differences in social

network size were correlated with individual brain volumes in the

regions mediating social cognition, such as the amygdala, medial pre-

frontal cortex (mPFC), and anterior temporal lobe (see review, Lin

et al., 2020).

A separate body of research using resting-state functional mag-

netic resonance imaging (rs-fMRI) has shown that patterns of func-

tional brain connectivity capture individual differences in a wide range

of social, cognitive, and behavioral tendencies and capacities (Cui

et al., 2020; Finn et al., 2015; Mira-Dominguez et al., 2014; Rosenberg

et al., 2016; Tavor et al., 2016). Therefore, interindividual variability in

functional connectomes may also reflect the size of the social net-

work. Indeed, a recent study suggested that functional measures of

MRI rather than structure measures may be more suitable for studying

associations with social network size (Lin et al., 2020). Although previ-

ous studies using rs-fMRI indicated a correlation between amygdala-

based functional connectivity and social network size (Bickart,

Hollenbeck, Barrett, & Dickerson, 2012; Zou et al., 2016), the

connectome of whole social brain systems (Alcalá-L�opez et al., 2018)

(see, Figure 1) may provide a deeper understanding of human social

networks.

Several studies have investigated neural correlates of the static

social network size, that is, the association between the number of

SNS friends and brain activity (Kanai et al., 2012; Von der Heide

et al., 2014). However, users may be interacting actively with a mod-

erate number of SNS accounts while having a limited static SNS net-

work size. Thus, it remains unaddressed how the social network size

of active interactions is represented in the brain. Past studies

showed that close friends have similar neural responses and func-

tional connectivity (Hyon et al., 2020; Parkinson, Kleinbaum, &

Wheatley, 2017, 2018). When close friends often communicate, it is

possible that the social network of active interactions has specific

neural correlates other than the ones for the static social network

size. Elucidating neural correlates of the active social network size

may also help understand a biological background of human subjec-

tive well-being.

Researchers have also investigated social connections using self-

report measures (Kwak et al., 2018; Parkinson et al., 2018). However,

survey results based on participants' retrospective thoughts are

known to be noisy (Ernala, Burke, Leavitt, & Ellison, 2020;

Scharkow, 2016). An advantage of using SNS data is that it can mea-

sure the size of active interactions and static networks objectively,

since SNS behaviors are available as digital data. In Twitter networks,

the social network size of active interactions can be defined as the

total number of active contact members in a single (target) account,

which can be measured by the number of accounts that replied to the

target account (i.e., Reply network). On the other hand, the size of a

static social network can be defined as the total number of Twitter

members associated with the account, which is measurable by the

number of follower/following (i.e., Follow network). To our knowl-

edge, no previous study has examined the association between rs-

fMRI and the social network size of active interactions in a social

media network.

Therefore, in the present study, we investigated whether patterns

of resting functional connectomes of the social brain are associated

with the size of the social network using a large sample size (n = 222).

Using social network information from subjects' Twitter accounts, we

investigated the Reply network as a measure of the social network

size of active interactions and the Follow network as a measure of the

size of the static social network (see Section 2). We first conducted a

region of interest (ROI)-to-ROI analysis to capture the relationship

between the resting brain network of the whole social brain and social

media network size. We next applied graph theoretical analysis to find

the central (hub) brain region associated with the social media net-

work size. To examine the generalizability of the identified brain net-

work, we decoded the social media network size.

F IGURE 1 Social brain connectome. 6-mm ROIs from Alcalá-L�opez et al. (2018). The left brain is a lateral surface of the left hemisphere, and
the right brain is a medial surface of the left hemisphere. Colors are for readability. (left) IFG, inferior frontal gyrus; AI, anterior insula; TP,
temporal pole; MTG, middle temporal gyrus; pSTS, posterior superior temporal sulcus; MT/V5, middle temporal V5 area; SMA, supplementary
motor area; SMG, supramarginal gyrus; and TPJ, temporoparietal junction; (right) PCC, posterior cingulate cortex; Prec, precuneus; pMCC,
posterior mid-cingulate cortex; aMCC, anterior mid-cingulate cortex; dmPFC, dorsomedial prefrontal cortex; FP, frontal pole; rACC, rostral
anterior cingulate cortex; FG, fusiform gyrus; HC, hippocampus; AM, amygdala; NAC, nucleus accumbens; vmPFC, ventromedial prefrontal cortex
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Given evidence from network neuroscience (Finn et al., 2015;

Rosenberg et al., 2016; Tavor et al., 2016), we hypothesized that

greater strength in an individual's social functional connectome is

associated with a greater social network size. More specifically,

because social interactions performed in language with various people

should involve the theory of mind (ToM), which is the ability to under-

stand how other people think (Frith & Frith, 2006; Van Overwalle &

Baetens, 2009), we hypothesized that the Reply network is more

strongly associated with functional connectivity between the ToM

network, which includes the temporoparietal junction (TPJ), the supe-

rior temporal sulcus, and mPFC, and the inferior frontal gyrus (IFG),

which plays an important role in language processing, than the Follow

network (Molenberghs, Johnson, Henry, & Mattingley, 2016; Schurz,

Radua, Aichhorn, Richlan, & Perner, 2014; see also Figure 1). In addi-

tion, we tested whether the identified relationship persists after con-

trolling personality traits to capture some aspects of individual

differences in the social network size (Hyon et al., 2020; Kardos,

Leidner, Pléh, Soltész, & Unoka, 2017; Lin et al., 2020).

2 | METHODS

2.1 | Participants

Participants provided written consent to join the study and to the

anonymous use of their Twitter log and questionnaire data for

research purposes. The NICT ethics committee approved all study

procedures. All 222 participants (149 males and 73 females; mean

age 22.3 years old, SD = 3.34) completed the structural and resting-

state MRI scans and personality traits questionnaires in the experi-

mental room. We checked whether participants posted more than

100 tweets before participating to make the analysis reliable (Schulz

et al., 2019). From the posted content, we manually confirmed that

no Twitter accounts were bot accounts. Since most of the partici-

pants were undergraduate students, they rarely interacted with bot

accounts for advertisement purposes. We conducted the measure-

ments over 2 consecutive years (2016: N = 133, 2017: N = 89), and

the participants received a reward (JP¥3,000) for their participation.

We are taking an inclusive approach of all persons without limita-

tions by (a) sex or gender, (b) race or ethnicity, or (c) age other than

as scientifically justified and as specified in enrollment inclusion and

exclusion criteria.

2.2 | Social media network indexes

We used Twitter's application programming interface (API) to retrieve

demographic information of the accounts and past tweets posted by

the target accounts for all the participants. This method assesses the

observable social network properties instead of relying on subjective

reports by the participants. The API can return up to a maximum of

the 3,200 most recent tweets per account at the time of collection

(Tweet number extracted by API: M = 2,226, SD = 1,128).

We transformed the data into two social media network indices.

More specifically, we considered the Reply network (the total number

of active contact members of a Twitter account) as the social network

size of active interactions and the Follow network (the total number of

social network members on a Twitter account) as the network size of

the static social network (see Section 1). Briefly, in the Reply network, a

Reply was defined as exchanging messages with friends and others on

Twitter. We indexed the Reply network by how many other accounts

an account interacted with in the collected tweets. The Reply network

was normalized by dividing by the total tweet number, because this

number varied among participants. Regarding the Follow network, in

Twitter, following and followers represent the number of people who

the account follows and the number of people who are following the

account, respectively. The numbers of following and followers showed

a very strong positive correlation in the current samples (r = .92), which

is why we merged them into the Follow network. Both networks were

log-scaled to reduce outliers and increase the normality due to the posi-

tively skewed distribution. There was mild correlation between the

Reply and Follow networks (r = .37, p < .001).

Notably, we found that the Reply network is not significantly cor-

related with gender (r = �.10, p < .144), although several resting-fMRI

studies have found gender differences in functional connectivity

(Ingalhalikar et al., 2014; Ritchie et al., 2018; Satterthwaite

et al., 2015). A potential reason for this discrepancy is that the number

of male participants was more than twice as many as the number of

female participants in our study.

2.3 | Personality traits and demographic
information

Participants were asked to answer the questionnaire using a web

browser on a computer. The psychological questionnaire included Big

5, empathy (IRI; interpersonal reflective index), and happiness (SHS;

Subjective Happiness Scale). Big 5 represents the most prominent

human personality traits (McCrae, John, & Costa, 1992). On the other

hand, research has shown that empathy is related to real-life social

network size (Kardos et al., 2017) and that social networks are impor-

tant for happiness (Gable & Reis, 2010) and people who have higher

subjective happiness have a larger social network size (Y. K. Chan &

Lee, 2006). In addition, since smoking and alcohol use and education

level can be associated with resting patterns in the brain (M. Y. Chan

et al., 2018; Cheng et al., 2019), participants were also asked for their

smoking habit using Fagerstrom Test for Nicotine Dependence

(FTND) (Heatherton, Kozolowski, Frecker, & Fagerstrom, 1991), alco-

hol usage using Alcohol Use Disorders Identification Test (AUDIT)

(Martin & Glynn, 2015), and education history using Socio Economic

Status (SES) (Krieger, Williams, & Moss, 1997).

The experimenter instructed the participants that the study was

about human personality and everyday thinking. An in-house system

based on the Lime Survey program (LimeSurvey GmbH, Germany)

was used to present the questionnaires on the web browsers. The

presentation order of items within a questionnaire was randomized.
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Each questionnaire was scored in line with its guidelines after cor-

recting for inverse meaning items (see Table S1).

2.4 | MRI data acquisition

MRI measurements were performed on a 3 T Prisma scanner (Siemens

Medical Systems) with a 64-channel head coil installed at our institute.

T2-weighted functional images were obtained using an EPI sequence

(repetition time [TR] = 1 s, echo time [TE] = 30 ms, flip angle [α] = 60� ,

2.0 � 2.0 � 2.0 mm resolution, matrix size = 100 � 100 mm; 72

interleaved transverse slices with no gap; field of view

[FOV]= 200 � 200 mm, slice thickness= 1.6 mm, multiband factor= 6).

Each participant underwent a single rs-MRI session. For the 10-min rs-

MRI measurement, 600 volumes were acquired. During the rs-fMRI

scans, participants were instructed as follows: “Please relax. Don't sleep.

Fixate on the central crosshair mark and do not think about specific

things.” High-resolution T1-weighted structural images were also

acquired (TR = 1.9 s; TE = 3.37 ms; flip angle = 9�; voxel

size = 1.0 � 1.0 � 1.0 mm; matrix size = 256 � 256 mm; 208 inter-

leaved transverse slices with no gap; FOV = 256 � 256 mm).

2.5 | Rs-MRI preprocessing

Rs-fMRI data were preprocessed using the CONN toolbox (https://

www.nitrc.org/projects/conn) on Matlab 2018b (MathWorks, USA).

Spatial preprocessing of the CONN toolbox included fieldmap correc-

tion, realign and unwarp, slice-timing correction, denoising, normaliza-

tion (onto the standard MNI space), and smoothing (6-mm FWHM

Gaussian filter) using the default parameter settings of SPM12. Ana-

tomical volumes were segmented into gray matter, white matter, and

cerebrospinal fluid (CSF) areas, and the resulting masks were eroded to

minimize partial volume effects. The temporal time series characteriz-

ing the estimated subject motion (three-rotation, three-translation

parameters, plus another six parameters representing their first-order

temporal derivatives, and scrubbing parameters containing the

offending scans) as well as the BOLD time series within the subject-

specific white matter mask and the CSF mask (five PCA parameters,

CompCor; Behzadi, Restom, Liau, & Liu, 2007) were used as temporal

covariates and removed from the BOLD functional data by linear

regression.

Afterward, the linear trends of the time courses were removed,

and band-pass filtering (0.008–0.09 Hz) was applied to the time series

of each voxel to reduce the effect of low-frequency drifts and high-

frequency physiological noise (Biswal, Yetkin, Haughton, &

Hyde, 1995). Finally, functional connectivity (correlation matrix) was

computed for each pair of ROI. The ROI-to-ROI correlation was nor-

malized and transformed into z scores. To extract the brain regions

involved in social cognition, we used the social brain connectome atlas

including 36 cortical and subcortical areas (Alcalá-L�opez et al., 2018)

(Figure 1). This atlas is based on a meta-analysis of neural activity

related to social-cognitive processing. All 36 ROIs were used to

construct the social brain functional connectivity, resulting in 630 net-

work elements.

2.6 | ROI-to-ROI analysis

In order to determine how the social media network size is associated

with resting-state functional connectivity, each participant's two

social media network size indices extracted from their Twitter data

were regressed in a general linear model analysis using each of the

630 network elements. Demographic information (age, gender [male

or female], recorded year [2016 or 2017], AUDIT, FTND, and SES)

was also included in the regression model as control variables. The

cluster maps, displayed at p < .05, were corrected for familywise error

rate (FWE) multiple comparisons using a spatial pairwise clustering

estimator derived from cluster-permutation simulations (1,000 itera-

tions) with a combination of an uncorrected p < .05 height threshold

(Zalesky, Cocchi, Fornito, Murray, & Bullmore, 2012) as implemented

in the CONN toolbox.

2.7 | Graph theoretical analysis

The ROI-to-ROI connectivity analysis consistently associated several

brain regions with the social media network size. To understand the

relationship among these regions further, we computed several cen-

trality measures of the functional connectivity using graph theory

analysis (Bullmore & Sporns, 2009). We utilized the CONN toolbox

and brain connectivity toolbox (Rubinov & Sporns, 2010) for this pur-

pose. We examined three different centrality measures: degree, sub-

graph, and eigenvector. These measures were categorized into local,

mesoscale, and global centralities, respectively (Zuo et al., 2012).

First, the ROI-to-ROI connectivity obtained for all participants

was binarized with a thresholding cost of 0.04, because the

thresholding method was reported to reduce false positives

(Drakesmith et al., 2015). The resulting binarized graph of connectivity

matrices for each subject was used in the subsequent analyses.

Degree centrality is the sum of all edges for a given node. We

summed each node's edges for each of the 36 ROIs to estimate the

overall connectivity. Subgraph centrality was computed by the spectra

of the adjacency matrix of the network and reflected by the number

of closed edges originating at the node, where longer edges are expo-

nentially down weighted. Finally, the eigenvector centrality counts

both the number and the quality of connections, so that a node with

few connections to other high-ranking nodes can outrank one with a

larger number of mediocre contacts. A detailed account of the three

graph theory measures can be found in other literature (Estrada &

Rodríguez-Velázquez, 2005; Lohmann et al., 2010).

We conducted a general linear model analysis for the two social

media network size indices based on one of the centrality metrics

(degree, subgraph, and eigenvector) for each of the 36 ROIs and con-

trol variables (age, gender, year, AUDIT, FTND, and SES). This proce-

dure was repeated 36 times for each of the centrality metrics
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(Termenon, Jaillard, Delon-Martin, & Achard, 2016). The values of

p were corrected with FWE multiple comparisons for each of the cen-

trality metrics (p < .05).

2.8 | Seed-based analysis

From the ROI-to-ROI functional connectivity and graph theory analy-

sis, the left IFG was selected as the seed to further explore the associ-

ation between functional connectivity and social media network size.

Spherical seeds were defined with the left IFG ROI (see Figure 1) in

the social brain connectome (Alcalá-L�opez et al., 2018). A voxel-based

general linear model was applied to quantify the relationship between

the seeds and other brain regions. As a result, a whole-brain correla-

tion map was produced for the seed. Multiple regression analysis (age,

gender, year, AUDIT, FTND, and SES as control variables) was used to

investigate whether the social media network size is represented by

seed-based functional connectivity. We used a significance threshold

of p < .001 for second-level tests, uncorrected for multiple compari-

sons. To ensure a type 1 error at the individual voxel level, a threshold

of p = .05 was corrected for FWE multiple comparisons at the cluster

level based on Gaussian random field theory (Nieto-Castanon, 2020).

2.9 | Decoding analysis

Finally, we tested whether it was possible to predict the social media

network size based on the seed-based connectivity. If so, it should be

possible to build a predictive model of the social media network size

by training an algorithm to recognize patterns of seed-to-voxel func-

tional connectivity. Significant seed-based resting-state functional

connectivity was used as the input feature-space (685 features per

participant) to predict the social network size on Twitter. These fea-

tures satisfied the above cluster-level significance threshold.

We conducted a machine-learning analysis using scikit-learn

(Pedregosa et al., 2011). After feature scaling, linear ridge regression

analysis was performed. Ridge regression uses an L2 penalty during

the model fitting. This technique shrinks the regression coefficients,

resulting in better generalizability for predicting unseen samples. The

L2-based regression model is also effective for high-dimensional imag-

ing data (Cui et al., 2020). Hyperparameters were optimized with a

grid-search procedure. Values for λ (regularization parameter) ranged

from 0.001 to 1,000 with increments of log 10 and included [0.001,

0.01, 0.1, 1, 10, 100, 1,000].

We also conducted a twofold cross-validation procedure, in

which the data were randomly split into training (50%) and testing

(50%) sets. Specifically, all participants were randomly assigned to two

subsamples of 111 participants each. The optimal hyperparameter

was computed based on the multivariate pattern of the 111 partici-

pants (training set) with the twofold cross validation and evaluated by

the excluded 111 participants (test set). This procedure was repeated

two times, with each subsample being the testing set. To avoid a

potential bias of training-test splits, the cross-validation procedure

was repeated 100 times by producing different splits in each repeti-

tion, and the resultant prediction performance was averaged to evalu-

ate the generalization (Cui et al., 2020; Zhou et al., 2021).

Using the trained model, we conducted out-of-sample predictions

for the test (i.e., holdout data). We calculated the predictive accuracy

using Pearson's r value between the actual and predicted social media

network sizes. We also calculated the mean absolute error to evaluate

the model performance. The average r value across 100 predictions

was then tested against a null distribution of r values generated by

permutation testing. Functional connectivity data were randomly

shuffled across participants 10,000 times while holding the social

media network size in the dataset the same. In each permuted dataset,

the machine learning analysis procedure was repeated to generate a

null distribution of 10,000 r values. The values of p were determined

by calculating the frequency with which the true model's r value

exceeded the r values in the null distribution.

3 | RESULTS

3.1 | Basic statistics of social media network size

The descriptive statistics for each of the social media indices are

depicted in Table 1. The participants show large individual differences

in SNS profiles. Since the maximum value of the number of replies for

each account was not large and most of the total replies did not come

from a single or few accounts, the size of the Reply and Follow net-

works was regarded as a valid network index.

3.2 | ROI-to-ROI functional connectivity and social
media network size

We evaluated whether the functional connectivity between 36 social-

brain ROIs is associated with social media network size. The results

revealed that the connectivity between several cortical regions is pos-

itively associated with the Reply network (Mass = 173.93, p = .010,

FWE-corrected; the significant cluster in Figure 2a) but not with the

TABLE 1 Descriptive statistics of the social media network-
related indices

Variables Mean Median SD Max Min

Reply indexes

Reply network 85 79 60 317 0

Reply number 884 816 641 2,614 0

Reply per account 11 10 9 107 0

Follower indexes

Follow network 558 424 498 3,261 25

Following 284 229 254 1,869 14

Follower 273 197 259 1,916 10

Note: The scores in the table were calculated using raw scores, but the

analysis was performed using log-transformed scores.
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Follow network size. Even if we examined Following and Follower

separately, no ROI-to-ROI connectivity is associated with either of

the measures. In addition, neither control variable (age and gender)

nor the interaction between the Reply network and gender produced

a significant result.

In the significant cluster, three key brain regions were observed:

left IFG, frontal pole (FP), and rostral anterior cingulate cortex (rACC).

As shown in Figure 2a,b, positive connections were found between

the left IFG and the dmPFC, bilateral temporal pole, left TPJ, and left

middle temporal gyrus (MTG); the FP and the left TPJ, bilateral tempo-

ral pole, and dmPFC; and the rACC and posterior cingulate cortex

(PCC), left temporal pole, right TPJ, and right MTG.

To further examine whether the three regions constitute a hub

for the network, we performed a graph theory analysis. The results

showed that the subgraph centrality in the left IFG is positively associ-

ated with the Reply network (Figure 2c), but no other ROIs showed a

significant result. In addition, even when the regression models

included personality traits (Big 5, Empathic traits, and Subjective hap-

piness), consistent results for both the ROI-to-ROI connectivity analy-

sis and graph theory analysis were obtained (see Figure 1).

3.3 | Seed-to-voxel functional connectivity and
network size in social media

Based on the results of the ROI-to-ROI analysis and the graph theory

analysis, the left IFG was selected as the seed in our seed-to-voxel

analyses. As shown in Figure 3a, general linear modeling from the

functional connectivity to the Reply network size found significant

positive associations between the left IFG and dmPFC (k = 232, peak

coordinates: x = �2, y = 42, z = 28), the left IFG and left TPJ

(k = 257, peak coordinates: x = �52, y = �54, z = 20), and the left

IFG and right TPJ (k = 196, peak coordinates: x = 58, y = �50,

z = 20) (FWE-corrected at the cluster level, p < .05), indicating that

people who have a large Reply network show strong connectivity

between the left IFG and the dmPFC and bilateral TPJ at rest. No sig-

nificant results were found for the Follow network size.

To further validate the functional connectivity basis for the social

network size, we predicted the Reply network size from the signifi-

cant seed-to-voxel connectivities by ridge regression (see Section 2).

We found that the Reply network size predicted by the model was

significantly correlated with the actual Reply network size (r = .24,

mean absolute error = 0.78) (Figure 3b). We conducted a permutation

test to estimate the significance of the correlation between the actual

and predicted Reply network sizes. The estimated r value was found

to be significantly greater than almost all of the 10,000 permuted

r values (p = .002) (Figure 3c).

4 | DISCUSSION

This study investigated the relationship between the whole social

brain functional connectome and active interactions in a social media

network. From the ROI-to-ROI analysis, we found that the Reply

F IGURE 2 Neural correlates of the Reply network. (a) Significant associations between the ROI-to-ROI connectivity and Reply network.
(b) Diagram of the significant associations. (c) Results of the regression analysis based on the centrality measures of the left IFG. L, left; R right;
IFG, inferior frontal gyrus; FP, frontal pole; rACC, rostral anterior cingulate cortex; TP, temporal pole; dmPFC, dorsomedial prefrontal cortex;
MTG, middle temporal gyrus; TPJ, temporoparietal junction; PCC, posterior cingulate cortex
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network (social network size of active interactions) is correlated with

the resting-state functional connectivity of three frontal brain regions

(left IFG, FP, and rACC), but no association existed between the Fol-

low network (social network size of static network) and resting func-

tional connectivity. Analysis based on graph centrality indices

suggested that the left IFG is a key brain structure for the Reply net-

work. Importantly, these findings were validated even after controlling

for personality trait scores and demographic information. Further-

more, our seed-based analysis and machine learning analysis demon-

strated that connection of the left IFG with the dmPFC and TPJ can

predict the Reply network size. Since the ToM network includes these

three brain regions (Molenberghs et al., 2016; Schurz et al., 2014), the

results partly support our hypothesis: the Reply network shows stron-

ger functional connectivity between the language and ToM networks.

Overall, the current study provides compelling empirical evidence that

functional connectivity of the left IFG with the dmPFC and TPJ plays

a key role in people who have a larger interaction size in social media

networks.

We identified higher ROI-to-ROI functional connectivity patterns

in social brain regions for people who have a large interaction size in a

social network (i.e., Reply network), which included the three brain

regions: left IFG, FP, and rACC. Especially, the network centrality of

the left IFG was positively associated with the social media interaction

size. These findings indicate that the left IFG constitutes the most

important hub for the social network size. As shown in Figure 1, the

anterior part of the IFG (MNI coordinates: x = �45, y = 27, z = �3,

BA45) identified in the current study has long been postulated as the

region supporting language and semantic processes (Fedorenko &

Blank, 2020; Friederici & Gierhan, 2013). Since a recent meta-analysis

study also suggested that the anterior part of the left IFG plays a role

in social cognition (Adolfi et al., 2017), more active left IFG functional

connectivity for people with a larger Reply network may suggest that

language and social cognition systems are coactivated even at rest.

The larger social network size of active interactions is related to

higher functional connectivity of the left IFG with the dmPFC, TPJ,

temporal pole (TP), and MTG. Moreover, a seed-to-voxel analysis sup-

ports the association between the left IFG with the dmPFC and TPJ.

The dmPFC and TPJ are a core structure for ToM (Schurz et al., 2014;

Van Overwalle & Baetens, 2009), which represents the ability to track

the intentions, knowledge, and beliefs of others (Frith & Frith, 2006).

The dmPFC is also known to be involved in processing socially or

emotionally relevant information about others (Jamali et al., 2021;

F IGURE 3 Reply network correlates of the functional connectivity between the left IFG and whole-brain voxels. (a) The significant
association between the seed-to-voxel connectivity and Reply network. (b) Averaged machine learning (twofold cross validation with 100 times
repetition) prediction from significant seed-to-voxel connectivity to the Reply network. (c) Permutation test for the machine learning prediction
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Krol, Meyer, Lieberman, & Bartz, 2018; Saxe & Powell, 2006). A social

function of the TPJ is perspective taking (Schurz et al., 2014; Weisz &

Cikara, 2021). These functions seem to contribute to form ToM abil-

ity. Past studies reported co-activation of the left IFG and the ToM

system in a language-based ToM task (Enrici, Adenzato, Cappa, Bara, &

Tettamanti, 2011). Although we must be careful to avoid a reverse

inference, it is possible that information about others' intentions is

gradually processed from the left IFG gateways to the mPFC and TPJ

regions (Tettamanti et al., 2017; van Ackeren, Smaragdi, &

Rueschemeyer, 2016). In addition, the anterior temporal lobe, includ-

ing the TP and MTG, is important for social semantic cognition

(Binney & Ramsey, 2020; Ralph, Jefferies, Patterson, & Rogers, 2016)

and anatomically connected with the IFG (Catani & Bambini, 2014).

All these observations are consistent with the idea that people who

have a large social media interaction size may always keep the func-

tional brain network active for use in social interactions with language.

This view might be related to a recently proposed similarity between

the social brain and the default-mode brain networks (Meyer, 2019).

Unlike the ROI-to-ROI connectivity analysis, the centrality index

of the left IFG was related to the Reply network, whereas the central-

ity index of the FP and rACC did not associate with the Reply net-

work. These results indicated that the functional hub strength of the

left IFG in the social brain connectome is especially important for the

large social network size of active interactions. Specifically, only the

subgraph centrality showed a significant relationship with the Reply

network. The centrality index represents mesoscale centrality (Zuo

et al., 2012) and emphasizes the weight of the closed edges originat-

ing at the node. Therefore, direct connection more than indirect con-

nection between the left IFG and other social brain regions may

reflect the Reply network well. Further study is needed to clarify the

characteristics of the left IFG and social media interaction size.

Our functional connectivity results for social media interaction

size were strengthened by machine learning prediction of the interac-

tion size from the seed-to-voxel functional connectivity. We repeated

a twofold cross validation process (50% of data for training and the

other 50% for testing) 100 times. Previous studies reported that an

individual's brain resting-state functional connectome can predict the

social, affective, and behavioral characteristics of the individual (Cui

et al., 2020; Finn et al., 2015; Tavor et al., 2016). A recent study also

suggested that the similarity of resting-state connectivity between

personscan predict the structure of a real social network (Hyon

et al., 2020). We extended these previous studies by showing that

resting-state functional connectivity can also predict cyber-space

activity and physical-space activity. However, to confirm the general-

izability of the predictive model, a larger independent dataset, like that

used for connectome-based predictive models is preferred

(Rosenberg et al., 2020; Spisak et al., 2020). Future studies should

examine the generalizability of the current model by collecting new

resting-state fMRI and Twitter behavior datasets. The brain mask of

the seed-based functional connectivity available in the GitHub reposi-

tory will allow others to test our analysis method.

The FP and rACC also showed higher functional connectivity in

people who have a large social network size of active interactions.

The connection of the FP (which is part of the mPFC) with the

dmPFC, TPJ, TP, and MTG may suggest that the FP works within the

ToM network (Schurz et al., 2014). On the other hand, the rACC is an

important neural system for social behavior across species (Lockwood,

Apps, & Chang, 2020). Specifically, the rACC exhibits specialization

for learning and computation about the motivation of others (Apps,

Rushworth, & Chang, 2016; Behrens, Hunt, Woolrich, &

Rushworth, 2008). In the current study, for people who have a large

interaction size, the rACC was strongly connected with ToM (TPJ and

PCC; Schurz et al., 2014) and social cognition (TP and MTG) regions at

rest. These results are also consistent with our view that people who

have a large interaction size activate the functional connectivity for

social cognition and communication even at rest.

Considering accumulating evidences that the size of an individ-

ual's active social network is correlated with subjective well-being

(Demir, 2015; Gable & Reis, 2010), the result of the present study

may also poses a possibility that the interaction among the identified

social brain regions connects with subjective well-being.

Our study leaves several open questions. First, although our

results suggest that people with large social media interaction size

show higher functional connectivity even at rest, we cannot dissociate

the cause and effect of the networks size due to this study's correla-

tional nature. Thus, future studies should examine whether resting-

state functional connectivity predicts subsequent social media interac-

tion size or if the change in resting functional connectivity follows the

social media interaction size by conducting multiple time

measurements.

Second, the range of social connections included in the present

study was not the same as in social network indices of previous stud-

ies (Lin et al., 2020). Specifically, we measured the size of the social

network by the number of reply and follow/followers on Twitter,

which includes both real-world friends and non-friends (unlike

Facebook friends; see Kanai et al., 2012). Although the participants

(mainly university students) may use Twitter for friendship, people in

different social layers use Twitter differently. Further investigation of

the different social layers may provide a more conclusive understand-

ing of how social media network sizes are associated with functional

brain connectivity.

Third, although previous research suggested that the amygdala is

the key node for social network size (Bickart et al., 2011, 2012; Zou

et al., 2016), our study did not reveal amygdala-related connectivity.

This may be because different social network size definitions are asso-

ciated with different brain links (Kanai et al., 2012). Our definition of

network size was based on an active social network size, while previ-

ous studies relied on a static network size. Moreover, the different

scanning methods may have produced different results. That is, sev-

eral recent studies have indicated that multiband scanning, which we

used, does not detect well activity in the sub-cortical region (Seitzman

et al., 2020; Srirangarajan, Mortazavi, Bortolini, Moll, &

Knutson, 2021). In contrast, studies that reported an association

between functional connectivity of the amygdala and social network

size used conventional single band scanning methods (Bickart

et al., 2012; Zou et al., 2016).
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Last, when resting-state brain activity was measured in an MRI

scanner, the participants may have let their minds wander freely

although instructed to do otherwise. If so, their thoughts and imagina-

tions may have differed from subject to subject (Javier, Julia, Colin, &

Peter, 2021) in a way correlated with the social network size. Future

studies need to ask subjects to report a summary of their retrospec-

tive experience immediately after the scanning session (Alexander

Diaz et al., 2013). This information would make any identified rela-

tionship between resting-state functional connectivity and social net-

work size more reliable.

Taken together, the present study demonstrated that people who

actively interact with many others on social media have higher func-

tional connectivity of the left IFG with other ToM-related brain

regions even at rest. This finding suggests the possibility that people

with a large social network size of active interactions are always pre-

pared for communications between language and ToM brain net-

works. In addition, our results showed that left IFG-centered

functional connectivity in combination with a core structure for the

ToM network (dmPFC and TPJ) can predict the social media interac-

tion size. Overall, social brain connectomes could serve not only as a

neural signature to identify individuals who are likely to form large

social networks but also as a powerful tool for understanding brain

functions for both real- and digital-world communications.
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