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Whole-genome sequencing is increasingly used to identify Mendelian variants in clinical pipelines. These pipelines focus

on single-nucleotide variants (SNVs) and also structural variants, while ignoring more complex repeat sequence variants.

Here, we consider the problem of genotyping Variable Number Tandem Repeats (VNTRs), composed of inexact tandem dupli-

cations of short (6–100 bp) repeating units. VNTRs span 3% of the human genome, are frequently present in coding re-

gions, and have been implicated in multiple Mendelian disorders. Although existing tools recognize VNTR carrying

sequence, genotyping VNTRs (determining repeat unit count and sequence variation) from whole-genome sequencing

reads remains challenging. We describe a method, adVNTR, that uses hidden Markov models to model each VNTR, count

repeat units, and detect sequence variation. adVNTRmodels can be developed for short-read (Illumina) and single-molecule

(Pacific Biosciences [PacBio]) whole-genome and whole-exome sequencing, and show good results on multiple simulated and

real data sets.

[Supplemental material is available for this article.]

Next-generation sequencing (NGS) is increasingly used to identify
disease causing variants in clinical and diagnostic settings, but var-
iant detection pipelines focus primarily on single-nucleotide vari-
ants (SNVs) and small indels and, to a lesser extent, on structural
variants. The human genome contains repeated sequences such
as segmental duplications, short tandem repeats, and minisatel-
lites which pose challenges for alignment and variant calling tools.
Hence, these regions are typically ignored during analysis of NGS
data. In particular, tandem repeats correspond to locations where a
short DNA sequence or Repeat Unit (RU) is repeated in tandemmul-
tiple times. RUs of length less than 6 bp are classified as short tan-
dem repeats (STRs), whereas longer RUs spanning potentially
hundreds of nucleotides are denoted as Variable Number Tandem
Repeats (VNTRs) (Shriver et al. 1993; Wright 1994).

VNTRs span 3% of the human genome and are often found
in coding regions where the repeat unit length is amultiple of 3 re-
sulting in tandem repeats in the amino acid sequence. More than
1200 VNTRs with an RU length of 10 or greater exist in the coding
regions of the human genome (Tyner et al. 2016). Compared to
STRs, which have been extensively studied (Ummat and Bashir
2014; Gymrek et al. 2016; Dolzhenko et al. 2017; Liu et al. 2017;
Willems et al. 2017), VNTRs have not received as much attention.
Nevertheless, multiple studies have linked variation in VNTRs
withMendelian diseases, for example,Medullary cystic kidney dis-
ease (Kirby et al. 2013), Myoclonus epilepsy (Lalioti et al. 1997),
FSHD (Lemmers et al. 2002), and complex disorders such as bipolar
disorder (Table 1). In some cases, the disease-associated variants
correspond to point mutations in the VNTR sequence (Ræder
et al. 2006; Kirby et al. 2013), but in other cases, changes in the
number of tandem repeats (RU count) showa statistical association
(or causal relationship) with disease risk. For example, the insulin

gene (INS) VNTR has an RU length of 14 bp with RU count varying
from 26 to 200 (Pugliese et al. 1997). Variation in this VNTR has
been associated with expression of the INS gene and risk for type
1 diabetes (OR=2.2) (Durinovic-Belló et al. 2010). Notwithstand-
ing these examples, the advent of genome-wide SNP genotyping
arrays led to VNTRs being largely ignored. They have been called
“the forgotten polymorphisms” (Brookes 2013).

VNTRs were originally used as markers for linkage mapping
since they are highly polymorphic with respect to the number of
tandem repeats at a given VNTR locus (Gelfand et al. 2014).
Traditionally, VNTR genotyping required labor-intensive gel-
based screens which limited the size of large population-based
studies of VNTRs (Orita et al. 1989). Whole-genome sequencing
has the potential to detect and genotype all types of genetic varia-
tion, including VNTRs. However, computational identification of
variation in VNTRs from sequence remains challenging. Existing
variant callingmethods have been developed primarily to identify
short sequence variants in unique DNA sequences that fall into a
reference versus alternate allele framework, which is not well suit-
ed for detecting variation in VNTR sequences.

Genotyping VNTRs in a donor genome sequenced using
short (Illumina) or longer single-molecule reads, requires the fol-
lowing: (1) recruitment of reads containing the VNTR sequence;
(2) counting RUs for each of the two haplotypes; (3) identification
of indels within VNTRs; and (4) identification of mutations within
the VNTR. Mapping tools such as BWA (Li and Durbin 2009) and
Bowtie 2 (Langmead and Salzberg 2012) can work for read re-
cruitment for STRs, but are challenged by insertion/deletion of
larger repeat units. Mapping issues also confound existing variant
callers, including realignment tools such as GATK IndelRealigner
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(DePristo et al. 2011) if the total VNTR length is larger than the
read length. This is because reads contained within the VNTR se-
quence have multiple equally likely mappings and therefore will
be mapped randomly to different locations with low mapping
quality (Kirby et al. 2013). Detection of point mutations in long
VNTRs requires integrating information across the entire VNTR se-
quence. For VNTRs whose total sequence length (RU count times
the RU length) is much longer than the read length, detection of
SNVs and indels is not feasible using existing variant callers.We fo-
cus mainly on problems (1) and (2) relating to recruitment and
RU counting. For problem (3), we focus on the difficult case of
large (≥250 bp) VNTRs within coding regions where the indel
shifts the translation frame. We do not tackle problem (4) in this
manuscript.

Other tools have addressed the problem of RU count estima-
tion, focusing on the related problem of STR genotyping. Some
of these tools do not accept large repeating patterns as input (Liu
et al. 2017; Willems et al. 2017). Others require all repeat units to
be nearly identical (Dolzhenko et al. 2017; Ummat and Bashir
2014). In particular, ExpansionHunter (Dolzhenko et al. 2017)
looks for exact matches of short repeating sequence within flan-
king unique sequences, and works for STRs, but not as well with
the larger VNTRs with variations in RUs (see Results). VNTRseek
(Gelfand et al. 2014) detects aVNTR-like pattern in reads and aligns
it to tandem repeats but uses a complex alignment process,making
it difficult to run the tool. Alignment-based tools need to align
reads at both unique ends, which may not be possible for short
(Illumina) reads. Single-molecule reads, for example, Pacific
Biosciences (PacBio) (Eid et al. 2009) and Nanopore (Clarke et al.
2009), can span entire VNTR regions, but it is difficult to estimate
theRUcountdirectly because the distance between theflanking re-
gions varies dramatically from read to read due to an excess of indel
errors. For example, 14 reads spanning the SLC6A4 VNTR in the
PacBio sequencing data of the NA12878 individual from Genome

in a Bottle (Zook et al. 2016) included fifteen distinct lengths be-
tween 292 and 385 bp, leading to length-based RU count estimates
13, 14, 15, 16, and 18 for the diploid genome.

In contrast to methods like VNTRseek that seek to discover/
identify VNTRs, we describe a method, adVNTR, for genotyping
VNTRs at targeted loci in a donor genome. For any target VNTR
in a donor, adVNTR reports an estimate of RU counts and point
mutations within the RUs. It trains hidden Markov models
(HMMs) for each target VNTR locus, which provide the following
advantages: (1) It is sufficient to match any portions of the unique
flanking regions for read alignment; (2) it is easier to separate ho-
mopolymer runs from other indels helping with frameshift detec-
tion, and to estimate RU counts even in the presence of indels; and
(3) each VNTR can be modeled individually, and complex models
can be constructed for VNTRs with complex structure, along with
VNTR specific confidence scores. For longer VNTRs not spanned
by short reads, adVNTR can still be used to detect indels while pro-
viding lower bounds on RU counts. Also, exact estimates for RU
counts could be made for shorter VNTRs. Using simulated data
as well as whole-genome sequence data for several human individ-
uals, we demonstrate the power of adVNTR to genotype VNTR loci
in the human genome.

Results

Our method, adVNTR, requires training of separate HMM models
for each combination of target VNTR and sequencing technolo-
gies. The detailed training procedure is described in Methods.
Given trainedmodels, adVNTR genotypes the VNTRs in three stag-
es: (1) selection of reads that contain VNTR locus (read recruit-
ment); (2) RU count estimation; and (3) variant detection. We
report results on performance of adVNTR in each of these stages us-
ing simulated and read data sets based on short-read (Illumina) and
single-molecule (PacBio) technologies.

Table 1. Disease-linked VNTRs are generally distinguished from STRs by a longer length (≥6) of the repeating unit

Gene Chromosome
Unit

length

Number of units

Annotation Inheritance DiseaseNormal Pathogenic

PER3 1 54 4 5 Coding A Bipolar disorder (Benedetti et al. 2008)
MUC1 1 60 11–12 Single insertion Coding M MCKD1 (Kirby et al. 2013)
IL1RN 2 86 3–6 2 Intron A Stroke, CAD (Worrall et al. 2007)
DUX4 4 3.3 kb 11–100 1–10 M FSHD (Lemmers et al. 2002)
DAT1 5 44 7–11 10 (ADHD) UTR A ADHD, Parkinson’s (Franke et al. 2010; Kirchheiner

et al. 2007)
MUC21 6 45 26–27 4 bp deletion Coding A Diffuse panbronchiolitis (DPB) (Hijikata et al. 2011)
CEL 9 33 11–21 Single deletion Coding M Monogenic diabetes (Ræder et al. 2006)
INS 11 14–15 26–200 26–44 (T1D) Promoter A T1D; T2D; Obesity (Pugliese et al. 1997;

Durinovic-Belló et al. 2010)
DRD4 11 48 2–11 7 Coding A OCD, ADHD (LaHoste et al. 1996; Viswanath et al.

2013)
ACAN 15 57 27–33 13–25 Coding A Osteochondritis dissecans (Eser et al. 2011)
ZFHX3 16 12 4–5 Coding A Kawasaki
GP1BA 17 39 1–4 2/3 genotype Coding A ATF in stroke (Cervera et al. 2007)
SLC6A4 17 16–17 9/10/12 Intron A BPSD, Alzheimer’s (Haddley et al. 2011; Pritchard et al.

2007)
SLC6A4 17 22 14 16 (OCD) Promoter A OCD, anxiety, schizophrenia (Haddley et al. 2011)
HIC1 17 70 1–4 5+/5+ Promoter A Metastatic colorectal cancer (Okazaki et al. 2017)
MMP9 20 12 5–6 Coding A Kawasaki
CSTB 21 12 2–3 12+ 5′ UTR M Progressive myoclonic epilepsy 1A (Lalioti et al. 1997)
MAOA X 30 2–5 4 Promoter A Bipolar disorder (Byrd and Manuck 2014)

(M) Mendelian inheritance, (A) possibly complex inheritance captured via association. Because it is difficult to genotype VNTRs, most cases have been
determined via association, but the inheritance mode could be high penetrance.
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HMM training

Initial HMMs were trained using multiple alignments of RU se-
quences from the reference assembly hg19 (International Human
Genome Sequencing Consortium 2001), as described in Methods.
Similarly, HMMs were trained for the left flanking and right flan-
king regions for each VNTR. The HMM models were augmented
using data from Genome in a Bottle (GIAB) project (NA12878
WGS). VNTR models were trained for VNTRs in coding and pro-
moter regions of the genome, for both Illumina (1755 models)
and PacBio (2944 models) (Supplemental Material, “Selecting Tar-
get VNTRs”). Subsequently, we tested performance for (1) read re-
cruitment, (2) counting of repeat units, and (3) detection of indels.

Test data

To evaluate performance for PacBio, we simulated haplotypes for
each of the 2944 VNTRs, revising the RU count to be ±3 of the
RU count in hg19, and setting 1 as the minimum RU count. We
simulated haplotype reads (15× coverage) using SimLoRD (Stöcker
et al. 2016) and aligned those reads to hg19 using BLASR (Chaisson
and Tesler 2012). For Illumina sequencing, we used ART (Huang
et al. 2011) to simulate haplotype WGS (shotgun 150 bp) reads
at 15× coverage for each VNTR and simulated VNTR haplotype
with changes in RU counts similar to PacBio. Pairs of haplotypes
were merged to get (30× coverage) diploid samples. The resulting
data sets were called PacBioSim and IlluminaSim, respectively
(Supplemental Material, “Test Datasets”; Supplemental Table S1).
To evaluate performance of frameshift identification, we collected
a set of 115 VNTRs (Supplemental Material, “Selecting Target
VNTRs”). For each VNTR, we simulated haplotypes that contain
a deletion or an insertion in the VNTR (Supplemental Material,
“Test Datasets”). We simulated reads from each of these haplo-
types and merged pairs of haplotypes to obtain diploid samples.
We denote this data set as IlluminaFrameshift.

Read recruitment

adVNTR takes a collection of VNTR models as input, and as a first
step, recruits reads thatmap to any of the VNTRs in the list. In test-
ing recruitment for PacBio, we found that alignment tools such as

BLASR performwell in recruiting VNTR reads even in the presence
of deletions and insertions, and we used BLASR for all read recruit-
ment. For Illumina reads, we tested adVNTR read recruitment for all
1775 VNTRs using IlluminaSim and compared against mapping
tools BWA-MEM, Bowtie 2, and BLAST. adVNTR achieves much
greater recall while maintaining or exceeding the precision of oth-
er tools (Fig. 1; Supplemental Fig. S3). Specifically, adVNTR recall
was 100% for 99.9% of the VNTRs, whereas the next best tool
(BWA-MEM) achieved this only for 68.2% of the VNTRs. The other
mapping tools lose mapping sensitivity when RU counts are in-
creased or decreased (large indels) and perform best when the RU
counts are the same as reference (Supplemental Fig. S2A–C), par-
tially explaining their lower recall.

VNTR genotyping (RU count estimation) with PacBio reads

Recall that sequencing (particularly homopolymer) errors can
cause lengths to change, particularly for short RU lengths and larg-
er RU counts. To test adVNTR performance on PacBioSim, we com-
pared against a naïve method that estimates RU counts based on
read length between the flanking regions from the consensus of
reads that cover VNTR. Detailed performance on three exemplars
(genes INS, CSTB, and HIC1) showed high genotype accuracy for
adVNTR over a wide range of RU counts and coverage (Fig. 2A).
Similar results were obtained for all 2944 VNTRs (Fig. 2B). Overall,
98.45% of adVNTR estimates were correct, whereas 26.45% of
estimates made by the naïvemethod were correct. Because it is dif-
ficult for the naïvemethod to call heterozygotes, we also compared
the subset of test data with homozygous RU counts: 97.95% of
adVNTR estimates were correct, whereas the consensus method
was correct in 66.16% of samples (Supplemental Fig. S4). adVNTR
estimates were uniformly good except at low sequence coverage.
To test for accuracy with changing RU counts, we simulated differ-
ent RU counts for individuals at three VNTRs (Supplemental Table
S4). adVNTR RU counts showed 100% accuracy in each of the 52
different samples tested.

To test performance on real data for which the true VNTR ge-
notype was not known, we checked for Mendelian inheritance
consistency in the Ashkenazi Jew (AJ) trio from Genome in a
Bottle (GIAB) (Zook et al. 2016) and a Chinese Han trio from

A B

Figure 1. Read recruitment quality on Illumina reads. (A) Comparison of the recall (number of true recruited reads/number of true reads) of adVNTR read
recruitment against BWA-MEM and Bowtie 2, as a function of VNTR length for 1775 VNTRs with different counts (31,788 tests). Each dot corresponds to a
separate test. (B) Precision of read recruitment (number of true recruited reads/number of recruited reads).
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NCBI SRA (accession PRJEB12236). On four disease-related VNTRs,
adVNTR predictions were consistent in each case (Fig. 2C). On the
2944 genic VNTRs, the trio consistency of adVNTR calls was corre-
lated with coverage. At a posterior probability threshold of 0.99,
86.98% of the calls in the AJ trio and 97.08% of the calls in the

Chinese trio, were consistent with Mendelian inheritance (Fig.
2E). Many of the discrepancies could be attributed to low coverage
andmissing data. Increasing sequence coverage threshold from 5×
to 10× increased the average posterior probability from0.91 to 0.98
and resulted in improved RU count accuracy (Supplemental Fig.

A

E

D

F

C

B

Figure 2. VNTR genotyping using PacBio data. (A) RU count estimation on simulated PacBio reads as a function of RU count and coverage for threemed-
ically relevant VNTRs: INS (RU length 14 bp), CSTB (12 bp), and HIC1 (70 bp). adVNTR performance is compared to a naïve method. (B) The effect of RU
length on count accuracy over 2944 VNTRs (30418 tests). (C) Mendelian consistency of genotypes at four VNTR loci in the Chinese Han and Ashkenazi
trios. Note that MAOA results are consistent with its location on Chr X. (D) LR-PCR–based validation of genotypes at five disease-linked VNTRs in
NA12878. Red arrows correspond to VNTR lengths estimated bymultiplying predicted RU counts with RU lengths. (E) Fraction of consistent calls and num-
ber of calls across 2944 VNTRs in Ashkenazi Jew (AJ) andChinese trios fromGIAB andNCBI SRA. (F) Fraction of consistent calls allowing for off-by-one errors.

Bakhtiari et al.

1712 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.235119.118/-/DC1


S5). Also, many of these discrepancies in RU counts were off-by-
one errors (Supplemental Fig. S6). These off-by-one discrepancies
could be acceptable for Mendelian disease testing because the
pathogenic cases often have large changes in RU counts.
Treating the off-by-one counts as correct, we found that 98.66%
and 99.91% of the high confidence calls in AJ and Chinese trios,
respectively, were consistent (Fig. 2F). Finally, some of the off-
by-one counts could be natural genetic variation.

We also performed a long range (LR) PCR experiment on the
individual NA12878 to assess the accuracy of the adVNTR geno-
types using PacBio data (Supplemental Tables S2, S3). The observed
PCR product lengths (black bands in Fig. 2D) were consistent with
the adVNTR predictions (red arrows), while being different from
the hg19 reference RU count. adVNTR correctly predicted all
VNTRs to be heterozygous with the exception of SLC6A4, which
was predicted to be homozygous.

Although we could not get the VNTR discovery tool
VNTRseek (Gelfand et al. 2014) to run on our machine, we ob-
served that the authors had predicted 125VNTRs in theWatson se-
quenced genome (Wheeler et al. 2008) and 75 VNTRs in two trios
as being polymorphic. In contrast, analysis of the PacBio sequenc-
ing data identified >500 examples of polymorphic VNTRs that
overlap with coding regions. The results suggest that variation in
RU counts of VNTRs and their role in influencing phenotypes
might be greater than previously estimated.

RU counting with Illumina

The adVNTR estimate correctly matched both RU counts in 91.6%
of the cases in the IlluminaSim data set (1775 VNTRs with up to 21
diploid RU counts each) andmatched at least one RU count in 97%
of the cases (Fig. 3A,B). Most of the discrepancies occurred in
VNTRs with longer lengths not covered by Illumina reads (Fig.
3C,D). Although there was a drop in accuracy for increasing
lengths, 84%of the genic VNTRs are shorter than 150 bp and could
begenotypedwith94.6%accuracy.Tools suchasVNTRseek require
at least 20 bp flanking each side of the VNTR and do not return a
result for VNTRs with total length greater than 110 bp, whereas
adVNTRcould predict the genotype correctly in amajority of those
cases (Supplemental Material, “VNTRseek”). ExpansionHunter, a
tool designed primarily for STR genotyping (Dolzhenko et al.
2017) provided incorrect estimates in >90% cases from this data
set (Supplemental Fig. S7). ExpansionHunter makes the assump-
tion that the different RUs are mostly identical in sequence, which
is valid for STRs butnot formostVNTRs, andwe tested this through
52 samples on three VNTRs. adVNTR predicted the correct geno-
type in all but six cases, with erroneous calls only in the case of
high RU counts where the read length did not span the VNTR per-
fectly; ExpansionHunterdidnot return thecorrect estimate inmost
cases (Supplemental Table S4).

On the AJ trio from GIAB, 98.08% of the high-confidence
adVNTR calls were consistent with Mendelian inheritance (Fig.
3E). Note that 95.93% of all calls were high confidence (posterior
probability≥0.99). We validated adVNTR calls on 12 VNTRs using
gel electrophoresis (Supplemental Table S3). adVNTRpredicted the
correct RU counts in all cases, except in two cases for which the
PCR primers failed to produce a band (Fig. 3F; Supplemental Fig.
S8). We also compared adVNTR against ExpansionHunter on sev-
en disease-related short VNTRs in the AJ trio and obtained similar
results (Supplemental Table S5).

To test adVNTR for population-scale studies of VNTR geno-
types usingWGS data replacing labor-intensive gel electrophoresis

(Cervera et al. 2007; Byrd andManuck 2014), we scanned the PCR-
free WGS data for 150 individuals (50 in each population) ob-
tained from The 1000 Genomes Project Consortium (2015). We
observed population-specific RU counts (frequency difference
>10%) in 97 of 202 VNTRs tested (Supplemental Table S7). Figure
4 shows the RU count frequencies for a disease-linked VNTR in the
coding region of CSTB and a coding VNTR in CCDC66. The results
suggest an increase in VNTRs with higher RU counts with an in-
crease in divergence time fromAfrica. Thus, RU3 is more prevalent
in both VNTRs. We also observed RU4 in CSTB VNTR in the
Asian and European populations, where RU counts 4 and above
have been associated with progressive myoclonal epilepsy (Lalioti
et al. 1997).

VNTR mutation/indel detection

As a proof of concept for other applications, we tested indel detec-
tion, focusing in particular on frameshifts in coding VNTRs. The
CEL gene is known to contain a VNTR where a deletion changes
the coding frame. We simulated Illumina reads from 20 whole
genomes after introducing a single insertionor deletion in themid-
dle of the VNTR region in the CEL gene. As a negative control, we
simulated 10 WGS experiments with a range of sequence cover-
age values. We ran adVNTR, SAMtools mpileup (Li 2011), and
GATK Haplotype-Caller (DePristo et al. 2011), which uses GATK
IndelRealigner, to identify frameshifts in each of the simulated
data sets and the 10 control data sets. On the control data, none
of the tools found any variant. On the simulated indels, adVNTR
made the correct prediction in each case (Supplemental Table
S6),whereas SAMtools andGATKwere unable to predict a single in-
sertion or deletion. This result is not surprising because the reads
have poor alignment scores, and the indel can be mapped to mul-
tiple locations (Supplemental Fig. S9; Robinson et al. 2011). We
note thatmappingambiguity in aligningeach readmade it difficult
to pinpoint the location of single indels. However, by integrating
the information across all reads, we could predict the occurrence
of a frameshift in theVNTR.Wenext tested adVNTRframeshift pre-
diction on the 115 VNTRs in the IlluminaFrameshift data set, sim-
ulating 4090 total cases. Overall, the frameshifts in the VNTR
regions were predicted with 51.7% sensitivity and 86.8% specific-
ity, in contrast with the 49.7% sensitivity and 43.5% specificity
achieved by GATK. Detailed performance of methods for each
VNTR is available in Supplemental Table S7. Note that the perfor-
mance is model specific and depends on the similarity of different
repeat units in a VNTR. For 29 of the 115 VNTRs, adVNTR showed
high sensitivity (≥90%) and specificity (100%).

Because frameshifts in the VNTR region of the CEL gene have
been linked to a monogenic form of diabetes (Ræder et al. 2006),
we tested for frameshifts in CEL using whole-exome sequencing
(WES) data from 2081 cases with Type 2 Diabetes (Fuchsberger
et al. 2016) and compared the numbers to 2090 control individu-
als. WES data analysis is challenging because high GC-content
makes it difficult to PCR-amplify this VNTR. adVNTR found that
although none of the controls had any evidence of a frameshift,
eight of the 2081 diabetes cases showed a frameshift in this
VNTR region (Supplemental Fig. S10).

Computing requirements for genotyping

adVNTR is multithreaded. In genotyping-mapped PacBio reads at
30× coverage, adVNTR took 6 h using Intel Xeon four-core CPUs
(≤24 CPU hours) to genotype all 2944 VNTRs, and 14:15 h (≤57
CPU hours) for 70× coverage. For Illumina reads at 40× coverage,
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Figure 3. VNTR genotyping using Illumina data. (A–D) Correctness of RU count prediction for 1775 coding VNTRs in the IlluminaSim data set, described
by RU count discrepancy (A), haplotypes with correct estimates (B), correctness as a function of VNTR length (C), and RU length (D). (E) Consistency of
adVNTR calls on the AJ trio WGS data from GIAB. The red line describes the cumulative number of calls made at specific posterior probability cutoffs.
(F ) Gel electrophoresis–based validation of adVNTR calls on five short VNTRs using WGS of individual NA12878 from GIAB. The red arrows correspond
to VNTR lengths estimated by multiplying the RU lengths with the estimated RU counts.
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adVNTR took 87:30 CPU hours on a single core to complete read
recruitment as well as genotyping of 1775 VNTRs.

Discussion

TheproblemofgenotypingVNTRs (determiningdiploidRUcounts
andmutations) is increasingly important for clinicalpipelines seek-
ing to find the genetic mechanisms of Mendelian disorders.
Because VNTRs have not been extensively studied, existing re-
search is often focused on their discovery.Oneof the contributions
of this paper is the separation of initial VNTRdiscovery fromVNTR
genotyping, and a focus on the genotyping problem. adVNTR ge-
notypes VNTRs using a hidden Markov model for each target
VNTR, providing a uniform training framework, but still allowing
us to tailor the models for complex VNTRs on a case by case basis.
The problem ofmismapping due to indels introduced by changing
RU counts confoundsmostmapping-based tools but is solved here
by collapsing all RU copies and building HMMs that allow for var-
iation in the RUs. adVNTRwas tested extensively on data from dif-
ferent sequencing technologies, including Illumina and PacBio.
Because someof thedata sets usedweremappedonly tohg19, espe-
cially the 150 whole-genome sequencing data set from the Polaris
project,wedecided tousehg19as the reference throughout, includ-
ing simulations. Validation of the data used either orthogonal in-
formation (e.g., trios or experiments), or simulations and would
not be affected by the use of GRCh38.

Like other STR genotyping tools, adVNTR works best when
reads span the VNTR. However, even with this limitation, there
are (1) close to 100,000 VNTRs in the genic regions of human ge-
nome that can be spanned by Illumina reads; (2) indel detection
is possible, even when RU counting is not, for long VNTRs; and
(3) lower bounds onRU counts can separate somepathogenic cases
from normal cases, particularly when the normal VNTR length is
shorter than the read length, while the pathogenic case is much
longer (e.g., CSTB). Finally, dropping costs for long-read sequenc-
ing (especially PacBio and Nanopore) will allow us to span and ge-
notype over 158,000 genic VNTRs.

The choice between short- and long-read technologies offers
some trade-offs. Specifically, long reads allow for the targeted gen-
otyping of a larger set of VNTRs (559,804) and are becoming in-
creasingly cost-effective. However, the large numbers of indels in

these technologies reduce the accuracy somewhat, and they are
best used when there is a big difference between normal and path-
ogenic cases in terms of RU counts or when the VNTRs are too long
to be spanned by Illumina.

In contrast, short-read Illumina sequencing is increasingly
used forMendelian pipelines and can be easily extended to include
VNTR genotyping with higher accuracy than PacBio. Also, the
large number of VNTRs (458,158) that can be spanned by Illumina
reads makes it the technology of choice for association testing and
population-based studies.

In this research, we also provided initial results on genotyping
frameshift errors in coding VNTRs, focusing on the easier case
when all RUs have the same length. Future work will focus on ex-
tending the target VNTRs for RU counting and frameshift detec-
tion for VNTRs that are of medical interest, population genetics
of VNTRs, and algorithmic strategies for speeding upVNTR discov-
ery and genotyping.

Methods

AVNTR sequence can be represented as SR1R2…RuP, where S and P
are the unique flanking regions, and Ri(1≤ i≤ u) correspond to the
tandem repeats. For each i, j, Ri is similar in sequence to Rj, and the
numberof occurrences,u, is denoted as theRUcount.Wedonot im-
pose a length restriction on S and P, but assume that they are long
enough to be unique in the genome. For genotyping a VNTR in a
donor genome, we focus primarily on estimating the diploid RU
counts (u1,u2). However, many (∼103) VNTRs occur in coding re-
gions, and mutations, particularly frameshift causing indels, are
also relevant. Our method, adVNTR, models the problems of RU
counting and mutation detection using HMMs trained for each
target VNTR. adVNTR requires a one-time training of models for
each combination of a VNTR and sequencing technology, al-
though the user has the option to retrain models. Once models
are trained, it has three stages for genotyping: (1) read recruitment,
(2) RU count estimation, and (3) variant (indel) detection. We
describe the training procedure and the three modules below.

HMM training

The goal of training is to estimatemodel parameters for each VNTR
and each sequencing technology. Previous works have shown that
an HMM with three groups of states could be used to find

A B

Figure 4. Population-scale genotyping of VNTRs. (A) RU count frequencies for the VNTR in CCDC66 gene; (B) CSTB in African, Asian, and European pop-
ulation samples from The 1000 Genomes Project. RU counts of 4 and higher in CSTB are associated with myoclonal epilepsy.
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similarities between biological sequences (Eddy 1996). In this
model, a profile HMM can model a group of sequences. Then, a
new sequence can be aligned to a profile HMM to discover se-
quence family (Krogh et al. 1994). We use an HMM architecture
with three parts, which have their own three groups of states
(Fig. 5). The first part matches the 5′ (left) flanking region of the
VNTR. The second part is an HMM thatmatches an arbitrary num-
ber of (approximately identical) repeating units. The last part
matches the 3′ (right) flanking region (Supplemental Fig. S1).
The RU pattern is matched with a profile HMM (RU HMM), with
states for matches, deletions, and insertions, and its model param-
eters are trained first. To train RU HMM for each VNTR, we collect-
ed RU sequences from the reference assembly (International
Human Genome Sequencing Consortium 2001) and performed a
multiple sequence alignment (Eddy 1995). Let h(i, j) denote the
number of observed transitions from state i to state j in hidden
path of each sequence in multiple alignment, and hi(α) denote
the number of emissions of α in state i.We define permissible tran-
sition (arrows in Fig. 5) and match-state emission probabilities as
follows:

T(i, j) = h(i, j)+ b0∑
i�l (h(i, l)+ b0)

Ei(a) = hi(a)+ b1∑
a′ (hi(a′)+ b1)

for a, a′ [ {A, C, G, T}.

Nonpermissible transitions have probability 0, and hi(α) = 1/4 for
insert state i and 0 for deletions. The pseudocounts b0 and b1
were estimated by initially setting them to the error rate of the se-
quencing technology, but they (along with other model parame-
ters) were updated after aligning Illumina or PacBio reads to the
model. The RU HMM architecture was augmented by adding (1)
transitions from Ue to Us to allow matching of variable number
of RU; (2) adding the HMMs for the matching of any portions of
left and right flanking sequences; and (3) by adding transitions
tomatch reads thatmatch either the left flanking or the right flan-
king region. In addition, reads anchored to one of the unique re-
gions can jump past the other HMM using dotted arrows.

Although error correction tools for PacBio have been devel-
oped, most do not work for repetitive regions (Au et al. 2012;
Hackl et al. 2014; Lee et al. 2014; Salmela and Rivals 2014;
Miclotte et al. 2016; Miller et al. 2017), and others assume a single
haplotype for error correction (Berlin et al. 2015; Salmela et al.
2016). In contrast, the HMM allows us to model many of the com-
mon (homopolymer) errors directly. Insertion deletion errors are
common in single-molecule sequencing, particularly in homopol-

ymer runs of length ≥6, and occur mostly as insertions in the ho-
mopolymer run (Chaisson and Tesler 2012). Consider a match
state i with highest emission probability for nucleotide α. The
transition probability T(i, i) from a match state i to itself was set
based on the match probabilities of α in previous k=6 states. The
model parameters were further updated using genome sequencing
data of NA12878 (Supplemental Material, “Model Structure and
Parameter Setting”).

Read recruitment

The first step in adVNTR is to recruit all reads that match a portion
of the VNTR sequence. Alignment-based methods do not work
well due to changes in RU counts (Results), but the adVNTR
HMM allows for variable RU count. To speed up recruitment, we
used an Aho-Corasick keyword matching algorithm available as
part of the BLAST package (Altschul et al. 1990) to identify all reads
that match a keyword from the VNTR patterns or the flanking re-
gions. Note that the dictionary construction is a one-time process,
and all reads must be scanned once for filtering. The keyword size
and number of keywords were empirically chosen for each VNTR.

Filtered readswere aligned to theHMMusing theViterbi algo-
rithm. Only reads with matching probability higher than a speci-
fied threshold were retained. To compute the selection threshold
for each VNTR, we aligned nontarget genomic sequences that
passed the keyword matching step to the HMM to form an empir-
ical false distribution. Subsequently, we aligned VNTR encoding
sequences to the HMM to form the score distribution of true reads.
Then, we used a Naïve Bayes classifier to select a threshold.

Estimating VNTR RU counts

All reads covering an RU element are aligned, or ‘matched’ to the
HMM using the Viterbi algorithm to create, in effect, a newmulti-
ple alignment. Recalling the Viterbi algorithm, let Vk,j denote the
highest (log) probability of emitting the first k letters of the se-
quence s1, s2,… sn and ending in state j of an HMM. Let Prevk,j
denote the state j′ immediately prior to j in this optimum parse.
Then

Vk,j = max
j′

{Vk′ ,j + log T(j′, j)+ logEj(sk)}, (1)

Prevk,j= argmax
j′

{Vk′ ,j+logT(j′, j)+ logEj(sk)}, (2)

where k′ = k−1 for match or insert states; k′ = k otherwise. For each
read, the Viterbi algorithm allows for the enumeration of the

Figure 5. The VNTR HMM. The HMM is composed of three profile HMMs, one each for the left and right flanking unique regions, and one in the middle
tomatchmultiple and partial numbers of RUs. The special statesUs (“Unit-Start”), andUe (“Unit-End”) are used for RU counting. Dotted lines refer to special
transitions for partial reads that do not span the entire region.
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maximum likelihood (ML) path by going backward fromPrev(End,
n). Ignoring all but theUs andUe states in the Viterbi path, we get a
pattern of the form Uk1

e (UsUe)
k2Uk3

s with k1, k3[ {0,1}, and k2≥0.
We estimate the RU count of the read as k1 + k2 + k3 and mark it
as a lower bound if k1 + k3>0 (for an example, see Fig. 6).

One of the main reasons for erroneous RU counts is stutter
during PCR amplification. The PCR amplification process is similar
to replication errors that result on genetic RU count variation dur-
ing cell division, except that there are multiple rounds of amplifi-
cation. In each PCR round, the number of copies might change by
1 with some probability. Once a single event has occurred and an
erroneous template is generated, the event of having another
change is likely to be independent of the previous event
(Gymrek 2016). To model errors in read counts, we define param-
eter r such that r[

Δ is the probability of RU counting error by ±Δ in
the estimation of the true count. Thus, the probability of getting
the correct count is 1− r, where

r = 2(r[ + r2[ + r3[ . . . ) = 2r[
1− r[

.

The analysis of reads at a VNTR gives us a multiset of RU
counts (or lower bounds) c1, c2, . . . , cn. We assume that the donor
genome is diploid but do not require any phasing information in
the computation of the multiset. Additionally, we allow the possi-
bility that all reads are sampled from one haplotype with the RU
count of the missing haplotype being X. We define C= {c1, c2,… ,
cn} ∪ {X} and use C to get a list of possible genotypes (ci, cj) with
ci ≤ cj. Then, the conditional likelihood of a read with RU count
c is given by

Pr (RU = c|(ci, cj)) =

1− r c = ci = cj
1
2
((1− r)+ r|c−cj |

[ ) c = ci

1
2
((1− r)+ r|c−ci |

[ ) c = cj

1
2
(r|c−cj|
[ + r|c−ci |

[ ) c = ci, c = cj

1
2
(1− r) c = ci, cj = X

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Similarly, the likelihood of a read with a lower bound c on the RU
count is given by

Pr (RU ≥ c|(ci, cj)) =
(1− r) c ≤ ci
1
2
(1− r) ci , c ≤ cj

r c . cj

⎧⎪⎨
⎪⎩

The likelihood of the data C is given by
∏

ck[C Pr (ck|(ci, cj)). The
posterior genotype probabilities can be computed using Bayes’

theorem

Pr ((ci, cj|C)) =
Pr (C|(ci, cj)) Pr ((ci, cj))∑

ci′ ,c j′[C Pr (C|(ci′ , c j′ )) Pr ((ci′ , c j′ )) . (3)

We generally set equal priors. However, in the event that we
only see reads with a single count c′, we choose Pr((c′, c′)) = Pr((c′,
X)) = 1/2. The probability of a “missing haplotype” event is mod-
eled as a Bernoulli process because in genome sequencing, sam-
pling from either chromosome is done at random, and so the
probability of not observing a haplotype in each read (failure) is
1/2. If we see multiple counts, we set Pr((c′, X)) = 0 for all c′ [C,
and give equal priors to all other genotypes.

VNTR mutation detection

It is not difficult to see that alignment-based methods do not
work well in VNTRs. Changes in RU counts make it difficult to
align reads even for mappers that allow split reads, because the
gaps in different reads can be placed in different locations. A sim-
ilar problem appears with small indels, because there are multiple
ways to align reads with an indel in a Repeat Unit. The adVNTR
HMM aligns all repeat units to the same HMM, and this has the
effect of aligning all mutations/indels in the same column.
Consider the case where reads contain a total of v nucleotides
matching a VNTR RU of length ℓ and RU count u. Moreover at
a specific position covered by d repeats, suppose we observe ɩ indel
transitions.

For a true indel mutation, we expect uℓ/v fraction of transi-
tions at a location to be an indel, giving a likelihood of the
observed data as Binom(d, i, uℓ/v). Alternatively, for a homopoly-
mer run of i>0 nucleotides, let εi denote the per-nucleotide indel
error rate. Wemodeled ε1 empirically in non-VNTR, nonpolymor-
phic regions and confirmed prior results that εi increases with in-
creasing i (Margulies et al. 2005). Thus, the likelihood of seeing ɩ
indel transitions due to sequencing error in a homopolymer run
of length i is Binom(d, i, 1i). We scored an indel in the VNTR using
the log-likelihood ratio

− 2 ln
Binomial d, i,

uℓ
v

( )

Binomial(d, i, 1i)

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (4)

which follows a χ2 distribution. We select the indel if the nominal
P-value is lower than 0.01.

Command line usage of adVNTR for RU count genotyping
and frameshift identification is available in Supplemental
Material (“Running adVNTR”).

Software availability

adVNTR source code can be found in the Supplemental Material
and is also available at https://github.com/mehrdadbakhtiari/
adVNTR.
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