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Summary
Effective genetic diagnosis requires the correlation of genetic variant data with detailed phenotypic information. However, manual en-

coding of clinical data into machine-readable forms is laborious and subject to observer bias. Natural language processing (NLP) of elec-

tronic health records has great potential to enhance reproducibility at scale but suffers from idiosyncrasies in physician notes and other

medical records.We developedmethods to optimize NLP outputs for automated diagnosis.We filtered NLP-extracted Human Phenotype

Ontology (HPO) terms to more closely resemble manually extracted terms and identified filter parameters across a three-dimensional

space for optimal gene prioritization. We then developed a tiered pipeline that reduces manual effort by prioritizing smaller subsets

of genes to consider for genetic diagnosis. Our filtering pipeline enabled NLP-based extraction of HPO terms to serve as a sufficient

replacement for manual extraction in 92% of prospectively evaluated cases. In 75% of cases, the correct causal gene was ranked higher

with our applied filters than without any filters. We describe a framework that can maximize the utility of NLP-based phenotype extrac-

tion for gene prioritization and diagnosis. The framework is implemented within a cloud-based modular architecture that can be de-

ployed across health and research institutions.
Introduction

Over the past decade, the introduction of next-generation

sequencing has revolutionized the diagnosis and discovery

of rare monogenic conditions. Exome sequencing (ES) has

been shown to be an effective first-tier test for the diag-

nosis of a variety of congenital and neurodevelopmental

phenotypes.1,2 The technical ability to generate high-qual-

ity genomic data in a timely manner has reached a plateau,

and significant progress has been made in the field of

variant interpretation, particularly in the coding region

of the genome.3 Despite these advances, the diagnostic

rate of ES remains relatively low at 25%–50%.2,4,5 Patho-

genic variants in a significant percentage of these undiag-

nosed cases may be hidden in poorly understood non-cod-

ing regions or in the approximately 15,000 genes that have

yet to be associated with human disease.6 Nevertheless, it

is clear that a lack of accurate and deep phenotyping to

correlate with genotypic findings remains a major issue

in variant interpretation, especially in high-throughput

clinical diagnostic situations.7–10 The process of deep phe-

notyping, whether through clinical encounter or medical
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record review, is a labor- and time-intensive process

requiring a high degree of expertise.11,12

Natural language processing (NLP) has been adopted as a

scalable approach to automate the extraction of pheno-

typic information from electronic health records (EHRs).

Standardization of outputs by encoding clinical informa-

tion using the Human Phenotype Ontology (HPO) in a

high-throughput manner has great potential to help

shorten the diagnostic odyssey, thereby reducing costs

and improving care.13,14 However, given idiosyncrasies

and variation in the structure and content of different

EHR systems and notes from health care providers, it has

been a challenge to develop automated phenotyping ap-

proaches comparable or superior to manual curation to

facilitate the diagnosis of genetic diseases.11,12

The goal of this project is to provide a replicable frame-

work to maximize the utility of NLP-based phenotype

extraction from EHRs for use with gene prioritization

algorithms. Here, we compare the efficacy of a gene prior-

itization tool, Exomiser,15 in correctly identifying the

disease-causing gene in previously diagnosed children us-

ing manual phenotyping by an expert curator versus
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automated NLP extraction from the EHR. Utilizing differ-

ences identified between the manual and NLP-extracted

HPO terms, we constructed a tiered pipeline that automat-

ically filtered NLP-extracted HPO terms and improved gene

prioritization in prospectively evaluated cases.

Our approach enabled NLP-based extraction of HPO

terms to be a sufficient replacement for manual extraction,

providing evidence for the utility of the tiered filtering

approach in a high-throughput environment. Overall, we

illustrate a framework for learning from already genetically

diagnosed cases to maximize the utility of NLP via filtering

methods and describe a modular software architecture to

implement our framework for research and clinical appli-

cations, which can be replicated across different health

care systems. Implementation of this scalable automated

approach has potential to significantly reduce the manual

effort required to phenotype patients with complex dis-

eases and increase the efficiency of molecular genetic diag-

nostic programs.
Subjects and methods

Study overview
The goal of this study is to provide a replicable framework tomaxi-

mize the utility of NLP-based phenotype extraction from EHRs for

use with gene prioritization algorithms and is motivated by the

need to reduce the manual effort required to evaluate prioritized

variants/genes. Our hypothesis is that a solution lies in filtering

NLP-extracted terms to more closely resemble manually extracted

terms. Figure 1 summarizes our study design and analysis plan.

Subsequent sections describe the patient cohorts and data used,

and the methods and results for comparing manual- versus NLP-

extracted HPO lists, translating observed differences to a tiered

NLP filtering approach and evaluating gene prioritization perfor-

mance on a subsequently ascertained test set.
Study subjects
All patients were ascertained through an existing rare disease gene

discovery protocol of the Manton Center for Orphan Disease

Research Gene Discovery Core at Boston Children’s Hospital

(BCH), and all provided informed consent under the supervision

of the hospital’s Institutional Review Board. Some were sequenced

through the Children’s Rare Disease Cohort initiative,16 and data

on a subset of these patients have been analyzed previously.8,12

The study subjects represent probands with a variety of clinical

presentations, all with a genetically diagnosed rare monogenic eti-

ology (Table S1). Patients’ ages for which most recent phenotypic

data were available ranged from 0.04 to 24 years (mean ¼ 7.69

years) (Table S2). All patients had at least one physician-authored

outpatient record or inpatient consultation in the Boston Chil-

dren’s Hospital EHR system and genomic data in the form of a

variant call file (VCF) available from ES. Manual curations of

HPO terms for all cases were carried out by two expert curators

by reading patient medical records and identifying or applying

HPO terms using the HPO lookup tool incorporated in

PhenoTips.17 NLP extraction of HPO terms was performed by

Clinithink’s patented Clinical Natural Language Processing

(CNLP) engine, CLiX16 (see Supplemental subjects and methods).

Clinical phenotypic data in the EHR were de-identified following
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extraction of HPO terms and related to de-identified genotypic

data matched by study ID. All human studies described herein

adhere to the principles set out in the Declaration of Helsinki,

and every subject involved in this study provided informed con-

sent in accordance with the ethical standards of the Boston Chil-

dren’s Hospital Institutional Review Board.
Phenotype data extraction
Patient records were stored in the Boston Children’s Hospital

Cerner Electronic Health Record (CERNER EHR) database, which

enables integrated storage of different types of medical records

from health care providers, including outpatient and inpatient re-

cords, consultations, surgical notes, and imaging and procedure

forms, as well as lab results.

The patients’ clinician-authored outpatient records or inpatient

consultations in the EHR were used for both manual and Clini-

think NLP curations. Scanned records, such as images from

external health care institutions, were omitted.

Manual curations of HPO terms for all cases were carried out by

two curators by reading patient medical records and identifying or

applying HPO terms using the HPO lookup tool incorporated in

PhenoTips.2 The curators were trained genetic research assistants

with 2 to 3 years of experience, under the supervision of a certified

and licensed Master’s degree level genetic counselor (C.A.G.), and

with the oversight of a physician (P.B.A.) and a PhD molecular

geneticist (A.H.B.). The curators were blinded to the genetic diag-

nosis of the patient. For each phenotype, the most precise term

was picked depending on the definition of the HPO term. The

curator was selective for terms potentially relevant to the patient’s

overall clinical presentation and useful for diagnosis and omitted

less-relevant terms such as a single fever or trauma.

NLP extraction of HPO terms from 462 different document

types from CERNER EHR was performed by Clinithink’s patented

CNLP engine, CLiX, using HPO Queryset v.11.2 (see Table S6 in

Rockowitz et al.16).

Raw NLP-extracted terms included a number of different false

positives in contrast to manual curations of medical records. The

most significant source of false positives was physician’s notes

regarding differential diagnoses containing unconfirmed disor-

ders. As an example, a patient with transient infantile hypertrigly-

ceridemia had false positives like hyperglycosemia and abnormal

amino-acid metabolism generated from a differential diagnosis

list in an outpatient medical record. Other false positives gener-

ated by NLP included medication-induced symptoms and signs,

terms generated from patient/physician names, and the misinter-

pretation of common words as clinical symptoms. Based on

manual review of 6 sets of medical records (data not shown), we

estimated 21% of raw NLP-extracted terms to be false positives.

Data, available at initiation of this project, for a training set of 52

patients with a known causal diagnostic variant(s) were utilized to

establish the filtering methodology described herein. A test set,

comprised of 12 similar cases ascertained subsequently, was used

to prospectively test the filtering infrastructure to ensure reproduc-

ibility and effectiveness across multiple groups (Table S2).
NLP term features
We computed the following values per patient for a given set of

NLP-extracted HPO terms: (1) mean frequency percentile, (2)

mean depth, and (3) diversity.

Frequency percentile was calculated using the ranks of all HPO

terms for a given patient based on term frequency; tied ranks



Figure 1. Study flow diagram
Schematic of the overall study design and
analysis plan. For each patient in a training
set of 52 patients, we employed uniform
processes to collect Human Phenotype
Ontology (HPO) terms extracted by natu-
ral language processing (NLP), manually
extracted HPO terms, and exome
sequencing (ES) data in the form of variant
call files (VCFs). Manually extracted HPO
terms were compared to NLP-extracted
HPO terms per patient in the training set
with respect to (1) frequency of use, (2)
HPO term depth within the ontology,
and (3) diversity of phenotypic abnormal-
ity classes captured, confirming significant
differences across all three dimensions.
Next, we established thresholds per
dimension that were used to create filtered
lists of NLP terms per patient. Exomiser
was run on each of the filtered NLP term
lists (in addition to the manual and unfil-
tered NLP lists for comparison) per patient,
and performance per filter was evaluated
using metrics such as area under the
receiver operating curve (AUC) and sensi-
tivity. Top-performing NLP filters were
combined into a tiered pipeline, which
was finally applied to and evaluated on a
subsequently ascertained set of 12 patients
in the test set, whose data were collected
using the same uniform processes
described above.
were averaged. Depth was calculated as the distance of the shortest

directed path from the root node in the HPO ontology to the

respective term using an unweighted breadth-first search. Each

term was assigned all unique phenotypic abnormality classes

that its shortest paths passed (Table S3). We defined diversity as

the number of unique phenotypic abnormality classes represented

within a given set of HPO terms.We utilize the diversity and depth

features as a proxy for term specificity in our analysis below (see

Supplemental subjects and methods for additional details).
Comparing distributions of NLP-extracted versus

manually extracted terms
We split the NLP-extracted terms into two sets per patient in the

training set: (1) those that were also identified by manual curation

of EHR (‘‘Both Manual and NLP’’), and (2) those that were identi-

fied by NLP but not by manual curation of EHR (‘‘NLP Only’’).

The goal was to understand how best to filter the NLP-derived

terms based on their features, with the assumption that there

may be false positives among the terms that were not also identi-

fiedmanually. Therefore, we excluded from this analysis the group

of terms that were identifiedmanually but not byNLP. On average,
Human Genetics and Gen
82% of all manually derived terms were

also identified by NLP, indicating that the

overlapping terms are a representative

sample of all manually identified terms

(Figure S1A). Extending the analysis to

include ontologically related terms within

two steps of each other revealed that only

3.5% of manually extracted terms had no
closely related overlapping term in the NLP-derived set, and

manual inspection did not identify any particular classes or char-

acteristics of missed terms (Figure S1B).

Next, we computed values for the three-term set features (mean

frequency percentile, mean depth, and diversity) for each of the

two sets (‘‘Both Manual and NLP’’ and ‘‘NLP Only’’) per patient.

We compared distributions of the two sets, each with 52 values

for a given feature such as diversity, using a Wilcoxon’s signed-

rank test, where the values were paired by patient. The distribu-

tions were considered significantly different if the p value was

less than 0.01.

Filtering NLP-derived terms
We set thresholds for frequency percentile, depth, and diversity

equal to the 5th, 25th, 50th, 75th, and 95th percentiles of the distri-

butions of mean frequency percentile, mean depth, and diversity

for the ‘‘Both Manual and NLP’’ sets of HPO terms. For a given pa-

tient and threshold per feature, the NLP-derived terms were

filtered as follows:

Step 1: calculate frequency percentiles per term and remove all

terms below a frequency percentile threshold
omics Advances 2, 100035, July 8, 2021 3



Step 2: remove all remaining terms with distances from the

HPO root node below a depth threshold

Step 3: calculate mean frequency percentiles for terms grouped

by phenotypic abnormality class (note that a term may

contribute to multiple), sort abnormality classes by mean fre-

quency percentile in descending order, and select terms

belonging to the top N (inclusive) classes, where N is the diver-

sity threshold.

Step 4: if the remaining number of terms is <5, then do not

apply any filters.

The choice of filtering by diversity last was due to the impact of

prior filtering on sorting the phenotypic abnormality classes by

mean frequency percentile.
Performance evaluation criteria
Performance was evaluated using results from the Exomiser

variant prioritization tool.15 Exomiser output was evaluated using

seven criteria: (1) the median gene score corresponding to the

correctly identified variants, (2) the median rank of the genes con-

taining the correctly identified variants, (3) the minimum number

of ranked genes needed to identify all correct diagnostic patho-

genic variants, (4) the area under the receiver operating character-

istic curve (AUC) and the sensitivity for causal variants to be

ranked within the top (5) 5 genes, (6) 10 genes, and (7) 20 genes.

Exomiser outputs a variant score based on variant pathogenicity, a

phenotype score based on semantic similarity, and a combined

score that is a function of the variant and phenotype scores. Exom-

iser groups variants by gene, assigning each gene the score of its

highest-scoring variant (or mean top 2 for compound heterozy-

gotes); the gene score is used to rank the genes. The performance

metrics were computed using the gene score and rank (see Supple-

mental subjects and methods for details).
Ensemble algorithm
For each patient, we averaged the combined Exomiser scores per

gene across all 294 combinations of NLP filtering parameters to

calculate the ensemble scores.We used themean combined Exom-

iser score to rank the genes. The ranks were then used to compute

the expected average performance, as described above, of our NLP

filtering methods as an ensemble. Note that an ensemble ranking

can be determined usingmaximum votes or average ranking if the

mean score is not a reasonable option for a different gene prioriti-

zation tool.
Results

Manual phenotyping results in better gene

prioritization

We used seven criteria (see Subjects and methods) to

compare the diagnostic impact of usingmanual phenotyp-

ing by an expert curator versus automated NLP extraction

of phenotypes from the EHR. This comparison was done

using Exomiser, a representative variant prioritization

tool, on a training set of 52 diagnosed patients. All the ge-

netic data processing parameters for Exomiser were held

constant (details in Supplemental subjects and methods).

Exomiser reported the disease-causing variant in 45 of

the 52 patients in the training set. The overall performance
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of Exomiser in correctly identifying the causal gene in 45

patients using manual phenotyping was better than NLP-

based phenotyping, with an AUC of 0.85 versus 0.73,

respectively (Figure 2A). The greatest difference in sensi-

tivity was seen when considering only the top 5 ranked

genes with manual phenotyping (46.7%) being more

than twice as sensitive as the NLP-based approach

(22.2%). The difference in sensitivity was reduced when

considering a larger set of top 10 (73.3% manual versus

51.1% NLP) or top 20 genes (82.2% manual versus 68.9%

NLP). Causal genes that were correctly identified when us-

ing manual phenotyping were ranked higher than when

using NLP phenotyping, with a decrease of 4 in median

rank (lower value of rank is better) and a corresponding

0.25 increase in median score; Exomiser scores range be-

tween 0 and 1 (Figures 2B and 2C.). However, the rank of

the correct causal gene in 10 patients when using NLP-

based phenotyping was the same or better than with

manual phenotyping (Table S4).

To rule out that underlying characteristics of a patient’s

genetic disorder impacted which phenotyping method

led to better Exomiser performance, we compared distribu-

tions of (1) the type of genetic disorder, (2) pathogenicity

status of the causal variant, and (3) the variant effect in

the group of patients where manual phenotyping resulted

in higher gene ranks than NLP-based phenotyping versus

the group of patients where it did not. None of these char-

acteristics were enriched in either of the two groups of pa-

tients, indicating that these factors did not influence the

relative efficiencies of the manual and NLP-enabled ap-

proaches (Figure S2). Overall, gene ranking wasmore corre-

lated with the phenotypic sub-score rather than the

variant sub-score (Figures S3 and S4).

We next focused our efforts on post-extraction pheno-

typic data processing. An obvious difference was that the

number of HPO terms extracted by NLP was higher (me-

dian number of terms ¼ 340) than the corresponding

manual extraction (median number of terms ¼ 15), sug-

gesting the potential for extraneous NLP-derived terms

affecting the performance of Exomiser.
Comparing features of NLP-extracted versus manually

extracted HPO terms

We looked for differences in features of the HPO terms that

were identified by NLP but not by the manual approach,

hypothesizing possible enrichment of false-positive and

non-specific terms. We suspected that correct terms, as

verified by manual curation, are likely to be entered more

often in the EHR (have a higher frequency) and that

more specific terms have a higher significance in

describing the phenotype of the disease. Therefore, we

defined two features as proxies for specificity of a set of

terms: mean depth and diversity. While depth captured

the specificity of the description of a single term relative

to its parents in the ontology structure, diversity captured

the breadth of phenotypes by counting how many
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Figure 2. Performance of Exomiser using phenotypes extracted by manual curation versus natural language processing (NLP)
among training set cases
(A) Receiver operating characteristic curves with sensitivities noted for specificities corresponding to the top 5, 10, and 20 ranked genes,
respectively.
(B) Box and whiskers plots of distribution of the ranks of the correct genes. Each data point in a distribution corresponds to a specific
patient, with lines connecting the ranks of each patient across the two phenotype extraction methods to indicate increase versus
decrease in rank. The median and max (worst) ranks are also noted adjacent to the corresponding values in the distributions.
(C) Box and whiskers plots of the distribution of the combined Exomiser scores for the correct gene per patient. Each data point in a
distribution corresponds to a specific patient, with lines connecting the scores of each patient across the two phenotype extraction
methods to indicate increase versus decrease in score. The median scores are noted adjacent to the median values in the distributions.
different phenotypic abnormality branches (classes) of the

ontology were represented within a set of terms.

We compared the term frequency as a percentile, depth,

and diversity per patient between (1) the set of terms that

were identified using both approaches, and (2) the set of

terms identified by NLP alone (Figure 3). The mean fre-

quency percentile for terms identified by both approaches

was consistently higher (grand mean 75%) than with NLP

alone (grand mean 49%). In all patients, there were more

HPO terms in the top half of most frequent terms (mean

percentile> 50%) that were identified by both approaches.

Terms per patient identified manually and by NLP were

0.62 levels deeper on average than terms identified by

NLP alone for the same patient. The greatest difference be-

tween the pairs of term sets per patient was in diversity,

where terms identified by both approaches represented

an average of 6.5 different phenotypic abnormality classes

versus 22.37 different phenotypic abnormality classes for

NLP alone. There are 25 total unique phenotypic abnor-

mality classes within HPO, suggesting that NLP-extracted

terms spanned most of the breadth of the ontology, while

human curation led to more targeted classes. The differ-

ence in distributions between the two sets of terms was sig-

nificant, with Wilcoxon’s signed-rank test p values < 0.01

for all three features, frequency percentile (p value ¼
5.3E�10), mean depth (p value ¼ 6.4E�9), and diversity

(p value ¼ 3.4E�10).

Effect of NLP-extracted term filtering on gene

prioritization performance

Given the above feature differences between the HPO term

sets, we hypothesized that filtering NLP-extracted terms to
H

more closely resemble terms that had also been identified

manually may improve gene prioritization. Since filtering

may adversely impact gene prioritization by removing

true-positive terms as well, we varied the threshold per

term set feature from tolerant to stringent (5–95 percen-

tiles; see Subjects and methods) to filter the list of NLP-ex-

tracted terms per patient and evaluated the impact of

filtering on Exomiser performance (Figure S5). We

explored the 3D performance landscape for all possible

combinations of seven different frequency thresholds

(0%, 40%, 50%, 60%, 70%, 80%, 90%), six different mini-

mum depth thresholds (0, 4, 5, 6, 7, 8), and seven different

diversity thresholds (0, 2, 4, 6, 8, 10, 12) for a total of 294

filter parameter combinations applied to the NLP-extracted

HPO terms. We ran Exomiser on the 52 patients in the

training set using each of the 294 sets of filtered NLP-ex-

tracted HPO terms for a total of 15,288 Exomiser runs

and measured performance using the aforementioned

criteria (Figure S6; Table S5).

Top-performing filter combinations tended to have a

high frequency percentile threshold between 70%–90%,

a depth threshold of 6, and diversity thresholds of 6 or

higher (Table 1; Table S3). These thresholds more closely

resemble expected characteristics of NLP-extracted HPO

terms that were also identified manually than NLP-only

terms (Figure 3). In the subsequent sections, we refer to

an NLP filter combination by its frequency/depth/diversity

thresholds (e.g., frequency percentile threshold of 80%,

depth threshold of 6 levels, and diversity threshold of 6 ab-

normality classes is designated as 80/6/6).

NLP filter combinations 80/6/6 and 90/6/6 appeared to

be most promising based on our retrospective analysis of
uman Genetics and Genomics Advances 2, 100035, July 8, 2021 5
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Figure 3. Comparing features of HPO terms identified by NLP alone versus terms identified by both manual- and NLP-based extrac-
tion
Box andwhiskers plots of (A) distribution ofmean frequency percentiles of HPO terms, (B) distribution ofmean depth of HPO terms, and
(C) distribution of diversity of HPO terms. Each data point in a distribution corresponds to a specific patient in the training set, with lines
connecting values of the respective summary feature per patient across the two NLP term subsets to indicate increase versus decrease in
value. Mean values per distribition, the difference in means, and associated p-values, calculated using a Wilcoxon’s signed-rank test, are
noted above each plot.
the training set (Table 1; Table S6). Combination 80/6/6

had the best sensitivity for causal variants to be ranked

within the top 5 genes (51.1%, which was superior to man-

ual’s 46.7%) and median rank (5, which was superior to

manual’s 6), while 90/6/6 had the best sensitivity for inclu-

sion in the top 20 genes (91.1%, which was superior to

manual’s 82.2%). Finally, we found that the average NLP

filter (‘‘ensemble’’) was a better choice than not applying

any filter (unfiltered NLP) across all performance metrics

and was superior to manual phenotyping in terms of the

number of genes needed (49 versus 64 genes) to identify

causal genes for all 45 patients and consequently the sensi-

tivity for inclusion in the top 50 genes (100% versus

97.8%) (Figure S7).

Optimizing diagnostic efficiency through a tiered

approach to filtering NLP-extracted HPO terms

Our primary motivation is to minimize the number of vari-

ants for a clinician or expert to manually evaluate. We

constructed a tiered approach to prioritizing genes using

NLP-based phenotype extraction that incrementally in-

creases the number of genes/variants to consider as the

true diagnosis (Figure S8). Based on the previous analysis

(Table 1), we ran gene prioritization with NLP terms filtered

using 80/6/6 thresholds as our first tier (step 1) where we

examined only the variants within the first 5 ranked genes,

which reflects our ideal and most efficient outcome. If

none of those variants were considered for further evalua-

tion, the second tier (step 2)was to rungene/variant prioriti-

zation with NLP terms filtered using 90/6/6 and evaluating

variants within the top 20 genes. If none of the variants in

the top 20 genes were considered for further evaluation,
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we ran all combinations of NLP filters and ranked the genes

by the average score (ensemble, step 3). Here, we would

consider variants within the top 50 genes, representing the

practical limit atwhichwe assessed the case as having causal

variants that were either not identifiable or represented in

thedataor that theNLPmayhavenot captured relevantphe-

notypes. Finally, if none of the top 50 geneswere considered

for follow-up, the last tier would be to manually review the

medical record and revert to evaluating all variants using

that gold standard for HPO curation.

Applying an NLP-extracted phenotype filtering strategy

on prospective cases

As expected, optimizing our approach in this way led to

improved performance in the training set. To evaluate

the utility of this approach in the real world, we applied

this NLP filtering method on 12 additional genetically

diagnosed patients, referred to as the test set. The 12 cases

were subsequently ascertained using the same criteria and

data processing workflows as those in the training set

(Figure 1). By following the tiered filtration protocol,

Exomiser was able to detect the correct causal gene in all

12 cases. Of the 12 cases, the correct causal variant for

one patient was identified in step 1, for seven additional

patients in step 2, for three additional patients in step 3,

and for the one remaining patient in step 4 (Table 2). Over-

all, NLP-based extraction of HPO terms was a sufficient

replacement for manual extraction in 11 out of 12 (92%)

cases. The sensitivity within the top 50 genes when using

manual phenotyping was also 92% (Figure S9).

We also compared the above tiered pipeline results with

results using the unfiltered NLP-extracted HPO terms.



Table 1. Parameter combinations for the top-performing natural language processing (NLP) filters

Filtering criteria for top combinations

Best NLP Filter

Frequency (%) Depth Diversity

AUC 90 6 6

Median rank 80 6 6

Median score 90 0 12

Genes needed 60 4 10

Sensitivity top 5 80 6 6

Sensitivity top 10 90 6 4

Sensitivity top 20 90 6 6

Median (median absolute deviation) 90 (0) 6 (0) 6 (0)
Compared to 92% sensitivity in the top 50 genes when us-

ing our tiered pipeline, unfiltered NLP phenotyping was a

sufficient replacement for manual phenotyping in only

75% of prospective cases (Table 2). In 9 of the 12 cases

(75%), the gene with the correct variant was ranked higher

with an applied filter (including the ensemble) than

without any filters (Table S7); the gene ranks were tied in

the remaining three cases. In one case (MAN_0842) NLP

filtering led to a 23-rank improvement, with the correct

variant being ranked in the top 10 (ranked 6) genes as

opposed to falling out of the top 20 genes (ranked 29)

without any NLP filtering. In two other cases (MAN_1845

and MAN_0805), the correct variant would have been

ranked out of the top 50 genes if the NLP terms were not

filtered. These results indicate that beneficial NLP term fil-

ters can be applied to new patients to improve gene prior-

itization results. While out of the scope of this work, the

diagnostic sensitivities achieved with NLP filtering could

be further improved by optimizing Exomiser parameters

or using other gene prioritization tools.

Enrichment of manually identified phenotypes after

filtering NLP-extracted terms

Our NLP filtering approach was designed to select HPO

terms that more closely resemble manual terms with

respect to frequency, depth, and diversity. In doing so,

we enriched for phenotypes that manual curators selected

to characterize each patient’s disease (Figure S10A). On

average, 4% of unfiltered NLP terms were also identified

manually, which coincides with the proportion of the

average number of manual terms (14.6) versus NLP terms

(355.4). However, after applying the filters in steps 1 and

2 of our tiered pipeline, the average percentage of manual

terms in the remaining set of NLP terms increased to 17%

(of an average 19.9 terms) and 23% (of an average 12.7

terms), respectively. Moreover, of the NLP terms that did

not exactly match a manually identified term, the percent-

age of closely related terms (defined as having an undi-

rected path length % 2 in the ontology) increased from

13% in the unfiltered NLP lists to 32% and 34% on average

after applying step 1 and 2 NLP filters, respectively
H

(Figure S10B). Similarly, the average percentage of un-

matched NLP terms that belonged to the phenotypic ab-

normality classes represented in the manual terms also

increased from 57% in the unfiltered NLP lists to 80%

and 85% after the step 1 and 2 filters, respectively

(Figure S10C). The increased proportion of manually ex-

tracted and related terms in the filtered NLP lists indicates

that our approach achieved the desired reduction of extra-

neous terms, a better characterization of the disease

phenotype, and the consequent improvement in gene pri-

oritization performance.
Overview of modular software architecture

Our tiered pipeline, running one patient or many patients

at a time, requires batch processing of multiple VCF-HPO

file combinations, especially when running the ensemble

algorithm in step 3. This approach is intended to be appli-

cable to many different diagnostic settings and computa-

tional environments; therefore, it was imperative that we

implemented a replicable and scalable framework that

could batch process many VCF-HPO combinations in par-

allel. To achieve this, we implemented a batch-processing

system that ran Exomiser within a docker container on

the Amazon Web Services (AWS) cloud with all input

data and results stored on AWS simple storage service

(S3) and computed using their elastic compute cloud

(EC2) (see Figure S11 and Supplemental subjects and

methods).
Discussion

The patient cohort employed for this study represents the

most challenging types of cases encountered in a clinical

environment. Subjects were enrolled into the Manton

Center Gene Discovery Core after extensive clinical evalu-

ation and diagnostic sequencing, including gene panel

testing and/or ES that were deemed negative. While ES is

increasingly being used as a first-tier diagnostic tool, the

infrastructure and funding needed for reanalysis of ES-

negative cases is lacking in most clinical and research
uman Genetics and Genomics Advances 2, 100035, July 8, 2021 7



Table 2. Sensitivity in prospectively analyzed test set cases comparing NLP filters from the pipeline versus using unfiltered NLP

Pipeline step Using pipeline NLP filters (n, cumulative %) Using unfiltered NLP (n, cumulative %)

Step 1: top 5 genes (pipeline uses 80/6/6
filter)

1 (9.09) 1 (9.09)

Step 2: top 20 genes (pipeline uses 90/6/6
filter)

8 (66.67) 7 (58.33)

Step 3: top 50 genes (pipeline uses filter
ensemble)

11 (91.67) 9 (75.00)

Step 4: all genes (pipeline uses manual
phenotyping)

12 (100) 12 (100)
settings. Furthermore, the expertise and time needed to

manually phenotype individuals who often undergo

extensive evaluations over long periods of time with com-

plex and large medical charts can be challenging. The use

of NLP to extract phenotypic information can overcome

this issue. However, a drawback of this automated

approach is the relatively high numbers of false-positive

and non-specific repetitive terms compared with results

of more laborious manual curation. In this paper, we

describe the creation and implementation of an auto-

mated, reproducible filtering technique that can be applied

across health care systems and computing environments

to enable the utilization of NLP-extracted terms as an effec-

tive substitute for manually extracted HPO terms.

We scanned a three-dimensional feature space of NLP-

derived HPO terms—each feature displaying significant

variability between NLP-extracted versus manually ex-

tracted terms—for filter parameter combinations that opti-

mized gene/variant prioritization. We incorporated the

optimal parameter combinations within a tiered filter pipe-

line that resulted in an outcome comparable to or better

than manually curated terms when applied to an indepen-

dent test set. While previous work12 has evaluated similar

features such as term frequency and proxies for term speci-

ficity such as information content, this is the first effort, to

the best of our knowledge, to consider combinations of pa-

rameters. Furthermore, our approach does not rely on third-

party datasets such as STRIDE,18 facilitating integration

with different NLP extractors. However, future work that in-

tegrates more sophisticated measures of term specificity,

such as information content and weighted paths, as well

as ensembles of gene prioritization andNLP extraction algo-

rithms, may improve our filtration approach. A continuing

challenge with rare disease data analysis is the limited size

of available patient datasets. We are encouraged by the con-

sistency between the results in the training and test sets in

terms of overall performance as well as patterns in the un-

derlying metrics. Nevertheless, future studies ought to be

expanded to larger datasets for learning filter parameters

and out-of-sample testing in larger cohorts.

We considered that other institutions may choose to use

different computing environments and aim to modularize

their software architecture with substitutable components

(Figure S11). The key modules in our architecture are (1)

the NLP engine for HPO term extraction, (2) the gene priori-
8 Human Genetics and Genomics Advances 2, 100035, July 8, 2021
tizer, and (3) the batch-processing engine, forwhichweused

Clinithink’s CLiX Focus, Exomiser, and parallel processing

usingRay19 on a single AWSEC2 instance, respectively.Mul-

tiple options are available for each of thesemodules and can

readily replace our choices (see Supplemental information).

We expect that cohorts, EHRs, and consequently optimal

combinations of filter parameters will vary by applications

and institutions. However, the framework of learning filter

parameters from a training set of approximately 50 patients,

where HPO terms are extracted manually as well as using

NLP, is generally applicable.

Within the context of the Manton Center’s Gene Discov-

ery Core, much greater effort is given to manual curation

and selection of HPO terms than is normally available in a

clinical diagnostic setting. Indeed, the depth and quality

of phenotypic data typically available to clinical DNA diag-

nostic services are notoriously poor, leading to missed diag-

noses. The rigorous use of appropriately filtered NLP-based

phenotyping has the potential to significantly improve

the efficiency of the diagnostic process by limiting the

numbers of genes and variants that analysts and clinicians

will need to consider before reviewing what ultimately

may be determined to represent the causative genetic

variant for patients with rare genetic diseases. Such an

approach should have similar benefits in both a routine

first-pass clinical diagnostic setting, as well as for clinical

and research-based reanalysis programs where automated

updating from more recently acquired clinical information

may provide critical new data to enable a diagnosis.
Data and code availability

Variant interpretations for causal variants are deposited in ClinVar.

Additional data are available upon request from qualified investi-

gators. Code is available at https://github.com/alxndgb/pheno_
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Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2021.100035.
Acknowledgments

Alexion would like to acknowledge the AWS Digital innovation

team and Slalom, who helped to refine our approach to address

https://github.com/alxndgb/pheno_manuscript_Manton_ALXN
https://github.com/alxndgb/pheno_manuscript_Manton_ALXN
https://doi.org/10.1016/j.xhgg.2021.100035
https://doi.org/10.1016/j.xhgg.2021.100035


the diagnostic odyssey for all childrenwith rare diseases, which led

us to this research project. The authors thank Mohamad Daniar

and James Gregoric from the Clinical Research Informatics Team

at BCH who helped integrate clinical notes from the CERNER

EHR. Support for this study was provided by Alexion Pharmaceu-

ticals, Inc. The mission and activities of The Manton Center for

Orphan Disease Research at Boston Children’s Hospital are sup-

ported and enabled by a visionary gift from the Manton Founda-

tion. Sanger sequencing to confirm causal variants was performed

by the BostonChildren’s Hospital IDDRCMolecular Genetics Core

Facility funded by U54HD090255 from the US National Institutes

of Health.
Declaration of interests

J.R.P. is the owner and founder of J Square Labs LLC. J.R.P, T.D.,

P.M., J.R., and S.L. are current or former employees or consultants

of Alexion Pharmaceuticals, Inc., and C.Y., R.G., T.W., M.M., A.B.,

and A.F. are current or former employees of Clinithink Ltd. J.R.P.

has consulted for and received compensation from GNS Health-

care and TCB Analytics. J.R. is the owner and founder of Latent

Strategies, LLC. A.H.B. has received funding from the NIH, MDA

(USA), AFM Telethon, Alexion Pharmaceuticals, Inc., Audentes

Therapeutics Inc., Dynacure SAS, and Pfizer Inc. He has consulted

and received compensation or honoraria from Asklepios BioPhar-

maceutical, Inc., Audentes Therapeutics, Biogen, F. Hoffman-La

Roche AG, GLG, Inc., Guidepoint Global, and Kate Therapeutics

and holds equity in Ballard Biologics and Kate Therapeutics.

P.B.A. is on the Clinical Advisory Board of Illumina Inc. and Gen-

eDx. C.A.B. has consulted for, and received compensation or hon-

oraria from, Q State Biosciences. All other authors declare no

competing interests.

Received: January 29, 2021

Accepted: May 6, 2021
Web resources

Docker, https://www.docker.com/

Exomiser, http://exomiser.github.io/Exomiser/

Human Phenotype Ontology, https://hpo.jax.org/app/

Manton_ALXN code, https://github.com/alxndgb/pheno_manuscript_

Manton_ALXN

OMIM, https://omim.org/

OMIM Gene Map, https://omim.org/statistics/geneMap

Ray, https://ray.io/
References

1. Srivastava, S., Love-Nichols, J.A., Dies, K.A., Ledbetter, D.H.,

Martin, C.L., Chung, W.K., Firth, H.V., Frazier, T., Hansen,

R.L., Prock, L., et al.; NDD Exome Scoping ReviewWork Group

(2019). Meta-analysis and multidisciplinary consensus state-

ment: exome sequencing is a first-tier clinical diagnostic test

for individuals with neurodevelopmental disorders. Genet.

Med. 21, 2413–2421.

2. Retterer, K., Juusola, J., Cho, M.T., Vitazka, P., Millan, F., Gibel-

lini, F., Vertino-Bell, A., Smaoui, N., Neidich, J., Monaghan,

K.G., et al. (2016). Clinical application of whole-exome

sequencing across clinical indications. Genet. Med. 18, 696–

704.
H

3. Posey, J.E., O’Donnell-Luria, A.H., Chong, J.X., Harel, T., Jhan-

giani, S.N., Coban Akdemir, Z.H., Buyske, S., Pehlivan, D., Car-

valho, C.M.B., Baxter, S., et al.; Centers for Mendelian Geno-

mics (2019). Insights into genetics, human biology and

disease gleaned from family based genomic studies. Genet.

Med. 21, 798–812.

4. Dragojlovic, N., Elliott, A.M., Adam, S., van Karnebeek, C.,

Lehman, A., Mwenifumbo, J.C., Nelson, T.N., du Souich, C.,

Friedman, J.M., and Lynd, L.D. (2018). The cost and diagnostic

yield of exome sequencing for children with suspected genetic

disorders: a benchmarking study. Genet. Med. 20, 1013–1021.

5. Trujillano, D., Bertoli-Avella, A.M., Kumar Kandaswamy, K.,
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