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Objective: To explore the value of quantitative parameters of artificial intelligence (AI) and
computed tomography (CT) signs in identifying pathological subtypes of lung adenocar-
cinoma appearing as ground-glass nodules (GGNs). Methods: CT images of 224 GGNs
from 210 individuals were collected retrospectively and classified into atypical adenoma-
tous hyperplasia (AAH)/adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma
(MIA), and invasive adenocarcinoma (IAC) groups. AI was used to identify GGNs and to ob-
tain quantitative parameters, and CT signs were recognized manually. The mixed predictive
model based on logistic multivariate regression was built and evaluated. Results: Of the
224 GGNs, 55, 93, and 76 were AAH/AIS, MIA, and IAC, respectively. In terms of AI pa-
rameters, from AAH/AIS to MIA, and IAC, there was a gradual increase in two-dimensional
mean diameter, three-dimensional mean diameter, mean CT value, maximum CT value, and
volume of GGNs (all P<0.0001). Except for the CT signs of the location, and the tumor–lung
interface, there were significant differences among the three groups in the density, shape,
vacuolar signs, air bronchogram, lobulation, spiculation, pleural indentation, and vascular
convergence signs (all P<0.05). The areas under the curve (AUC) of predictive model 1 for
identifying the AAH/AIS and MIA and model 2 for identifying MIA and IAC were 0.779 and
0.918, respectively, which were greater than the quantitative parameters independently (all
P<0.05). Conclusion: AI parameters are valuable for identifying subtypes of early lung ade-
nocarcinoma and have improved diagnostic efficacy when combined with CT signs.

Introduction
Lung cancer is the second most common cancer and remains the leading cause of cancer deaths for both
men and women, with an estimated 1.8 million deaths (18%) [1]. Lung adenocarcinoma is the most com-
mon subtype of non-small cell lung cancer (NSCLC) and is subdivided into adenomatous precursor le-
sions, such as atypical adenomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS), minimally
invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC), according to the recent classifica-
tion of lung tumors in 2021 [2]. Ground-glass nodules (GGNs), also called subsolid nodules, are a typical
imaging manifestation and can be found at any stage of lung adenocarcinoma [3, 4]. There are two types
of GGNs: mixed ground-glass nodules (mGGNs) and pure ground-glass nodules (pGGNs). The detec-
tion rate of GGNs has grown dramatically as a result of the widespread use of high-resolution computed
tomography (HRCT) in early lung cancer screening [5].

The management principles, surgical approach, and prognosis of GGNs differ depending on the patho-
logical subtype, and accurate preoperative prediction of pathological subtypes is a critical step in optimiz-
ing patient management [6–8]. With adequate surgical resection, the 5-year survival rate can be as high as
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100% for patients with AAH/AIS, and MIA, but MIA has the ability to transfer, while in IAC, the 5-year disease-free
survival rate is 70–90% [9–11]. Therefore, it is vital to identify IAC earlier to achieve a better outcome. However, due
to the heterogeneity of tumor tissue, pathological diagnosis of preoperative puncture or intraoperative rapid frozen
specimens of GGNs typically differs from postoperative complete histological findings [12, 13], making accurate
preoperative prediction of probable pathological subtypes difficult.

GGNs are characterized by their small size, poor contrast and highly variable shape, and most patients with GGNs
lesions are asymptomatic. Some investigators reported that qualitative computed tomography (CT) findings such as
the lobulation sign, irregular shape, lobulation, pleural indentation, spiculation, and the air bronchogram sign vary
among early lung adenocarcinoma with GGNs [14–16]. However, manually interpreting hundreds of CT pictures of
GGNs is a tremendous workload for clinicians and radiologists. Based on certain algorithms, artificial intelligence
(AI) can complete a reading of HRCT in an average of 10 s and can automatically identify the location of the le-
sion [17]. Radiologists showed better performance when accompanied by AI software (improvement from 65.1 to
70.3%) for the detection of malignant pulmonary nodules on chest radiographs [18]. In addition, many quantitative
parameters can be derived from AI to assist physicians in diagnosis and treatment, such as size and volume. Prior
AI-based studies mainly concentrated on distinguishing between benign and malignant lung nodules [19–21]. It is
reported that the area under the curve (AUC) of an AI-assisted CT diagnostic technique to classify lung nodules as
benign or malignant was 0.95 [22]. However, only a few studies have distinguished the pathological subtypes of lung
adenocarcinoma.

The purpose of the present study was to investigate the differences between AI quantitative parameters based on
machine learning and deep convolutional neural networks and CT signs of GGNs with different pathological subtypes
and assess the diagnostic value of a model combining the above indicators to identify pathological subtypes of lung
adenocarcinoma.

Materials and methods
Patients
The clinical data and CT images of 210 patients with GGNs between August 2019 and June 2021 were reviewed
retrospectively. Patients were eligible for inclusion if they met the following criteria: (1) the availability of a chest
CT conducted to identify GGNs within 1 month before surgery; (2) the maximum diameter of GGNs was ≤30 mm;
(3) the availability of complete chest CT images with a reconstructed thin-layer sequence and a layer thickness of
≤1.5 mm; (4) postoperative pathology revealed primary lung adenocarcinoma. The exclusion criteria were as follows:
(1) no thin-layer sequence or slice thickness > 1.5 mm, or there were artifacts that prevented image diagnosis; (2)
malignant tumor history; (3) auxiliary investigation revealed distant metastases; (4) biopsy or anti-tumor treatment
prior to the CT scan.

All GGNs were divided into three groups according to pathological diagnosis: the AAH/MIS group, the MIA group,
and the IAC group. The patients consisted of 146 women and 64 men with a mean age of (51.42 +− 11.15) years (range,
17–77 years). A total of 224 pulmonary GGNs included 55 AAHs/AISs, 93 MIAs, and 76 IACs. According to the
medical history records, nodules were discovered in 151 cases by chest CT conducted during a physical examination,
38 cases for respiratory symptoms, and 21 cases for other reasons (digestive symptoms and others).

Chest CT scan
A chest CT scan (supine position, ranging from the apex to the base of the lung) without contrast media was performed
with a 16 or 64-detector CT system (Revolution CT, GE Healthcare, or SOMATOM Force CT, SIEMENS Healthineers)
using the following scan parameters: tube voltage of 120 kV, tube current of 50–200 mA, rotation time was 0.5–1.0
s, a pitch of 1.0–1.5, conventional layer thickness of 5.0 mm, reconstruction layer thickness of 1.0–1.5 mm. All CT
images were reviewed with the lung window (window width, 1500 HU; window level, −500 HU) and the mediastinal
window (window width, 350 HU; window level, 40 HU).

Pathological diagnosis
According to the World Health Organization (WHO) classification of lung tumors, the pathological diagnosis of lung
adenocarcinoma includes subtypes of AAH, AIS, MIA, and IAC. All specimens were obtained from thoracoscopic
or open chest biopsies, routinely fixed in 10% formaldehyde, paraffin-embedded, sectioned, and stained with hema-
toxylin and eosin. Two physicians with more than 10 years of experience in diagnostic pathology of chest diseases
reviewed and provided the final pathological diagnosis.
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CT signs
Without knowing the pathological outcome, two senior diagnostic radiologists (more than 10 years of experience)
browsed the images on the picture archive and communication systems workstation from a comprehensive view
at transverse, coronal, and sagittal levels and recorded the CT signs of GGNs. The recorded CT signs were as fol-
lows: location (upper right lobe, middle right lobe, lower right lobe, upper left lobe, lower left lobe), density type
(mGGN, pGGN), shape (round/round-like, irregular shape), margin (lobulation, spiculation), internal features (vac-
uolar sign, air bronchogram), adjacent structures (pleural indentation, vascular convergence), tumor–lung interface
(clear, blurred). When two radiologists disagreed, they reached an agreement through consultation.

AI quantitative parameters
CT images were saved in a standard format for medical digital imaging and communication, and patient information
was extracted and imported into the SANMED Target Call Lung Nodule Analysis Platform (http://ctai.sanmedbio.
com/, Version 1.3.2, SANMED Biotech Inc, Zhuhai, China), which is based on machine learning and deep convolu-
tional neural networks.

The AI platform automatically reconstructed, segmented, and analyzed the CT images and labeled the lung nod-
ules with the relevant parameter values. The parameters were defined as follows: (1) two-dimensional (2D) mean
diameter (mm): (2D long diameter + 2D short diameter)/2, where 2D long diameter is the distance between the two
farthest points on the largest cross-section, 2D short diameter is the shortest diameter perpendicular to the longest
diameter; (2) three-dimensional (3D) mean diameter (mm): (3D long diameter + 3D short diameter)/2, where 3D
longest diameter is the longest diameter of an ellipsoid with the same volume as the nodule and the standard diameter
of a sphere with the same volume as the nodule is 3D short diameter; (3) volume (mm3): number of pixels × volume
of each pixel, where the nodule consists of multiple pixels after AI segmentation, the volume of each pixel = dx × dy
× dz; (4) mean CT value (HU): each pixel has a density value (HU). The mean of all the pixel density values of the
nodule is the mean CT value; (5) maximum CT value (HU): the 95th percentile density value.

Statistical analysis
SPSS 26.0 (IBM Cor P, NY, U.S.A.) and Medcalc 19.8 (Ostend Ltd, Belgium) were used for statistical analysis. Quan-
titative parameters were expressed as mean +− standard deviation, and comparisons between the three groups were
performed using the F test or Kruskal–Wallis test (nonparametric test). Count data were expressed as frequencies
(percentages), and the Pearson χ2 test or Fisher’s exact test (expected frequency < 5) were used for comparison
among the three groups. Pairwise comparisons were made by the Bonferroni method with an adjustment for test
levels. We selected variables with significant differences as independent variables between the two groups. Logistic re-
gression (stepwise regression method) was applied to build the model and predicted probability values were obtained.
The χ2 test was used to test the significance of the model and obtain regression coefficients. The goodness-of-fit for
the model was determined using the Hosmer–Lemeshow test. A receiver operating characteristic (ROC) curve was
elaborated, and the AUC, sensitivity (SE), specificity (SP), and critical value of each variable were calculated. The di-
agnostic accuracy was considered low when AUC was 0.5–0.7, medium when AUC was 0.7–0.9, and high when AUC
was above 0.9. The AUC difference of each variable is examined by the Delong test. A P-value <0.05 was considered
statistically significant.

Results
Demographic data
The mean age of the AAH/AIS, MIA, and IAC groups was (49.11 +− 10.28), (51.02 +− 11.21), and (53.61 +− 11.04) years,
respectively, and the difference in age distribution among the three groups was statistically significant (H=8.419,
P=0.004). However, a two-by-two comparison showed no statistically significant differences in age between the
AAH/AIS and MIA groups, the MIA and IAC groups (both P>0.05). Sex, smoking history, and family history of
lung cancer showed no statistical differences among the three groups (for all, P>0.05) (Table 1).

AI quantitative parameter analysis of GGNs
All GGNs were automatically identified and labeled by the AI platform based on machine learning and deep convo-
lutional neural network. At the same time, quantitative parameters including 2D mean diameter, 3D mean diameter,
mean CT value, maximum CT value, and volume were calculated. Table 2 shows that the differences in 2D mean
diameter, 3D mean diameter, mean CT value, maximum CT value, and volume were statistically significant across
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Table 1 Demographic data of AAH/AIS, MIA, and IAC groups

Variables AAH/AIS (n=55) MIA (n=93) IAC (n=76) H/χ2 P-value

Age (years) 8.419 0.004

Mean +− SD 49.11 +− 10.28 51.02 +− 11.21 53.61 +− 11.04

Sex 1.041 0.594

Male 19 (34.55%) 25 (26.88%) 24 (34.29%)

Female 36 (65.45%) 68 (73.12%) 52 (65.71%)

Smoking history 0.997 0.607

Yes 4 (7.27%) 6(6.45%) 8 (10.52%)

No 51 (92.73%) 87 (93.55%) 68 (89.47%)

Family history of lung
cancer

0.344 0.842

Yes 7 (12.73%) 15 (16.13%) 12 (15.79%)

No 48 (87.27%) 78 (83.87%) 64 (84.21%)

Abbreviation: SD, standard deviation.

Table 2 Analysis and comparison of AI quantitative parameters among different pathological subtypes (mean +− standard
deviation)

Parameters AAH/AIS MIA IAC H/χ2 P-value

2D mean diameter (mm) 8.54 +− 2.23 10.19 +− 2.68 14.98 +− 4.06 92.735 <0.001

3D mean diameter (mm) 8.44 +− 2.03 10.00 +− 2.39 14.60 +− 3.82 98.851 <0.001

Mean CT value (HU) −631.75 +− 54.38 −594.03 +− 63.87 −516.42 +− 99.32 57.795 <0.001

Maximum CT value (HU) −492.69 +− 135.90 −405.39 +− 152.22 −263.64 +− 169.65 37.344 <0.001

Volume (mm3) 352.56 +− 257.92 588.39 +− 435.76 1807.72 +− 434.42 97.325 0.001

The pairwise comparison showed that the difference in quantitative parameters between two groups was statistically significant (for all, P<0.05 after
adjustment by the Bonferroni method).

the AAH/AIS, MIA, and IAC groups and between each paired comparison (all P<0.001). With the increasing degree
of infiltration, the mean diameter, volume, the mean, and maximum density increased gradually.

CT sign analysis of GGNs
Table 3 shows the findings of the CT signs among the three groups. The differences in the location and the tumor–lung
interface (clear/blurred) were not statistically significant among the three groups (for all, P>0.05), yet the remaining
CT signs were significantly different (for all, P<0.05). Each paired comparison showed that density type, shape, and
lobulation between the AAH/AIS and MIA groups were statistically significant (for all, P<0.05), while the differ-
ences in density type, shape, lobulation, spiculation, air bronchogram sign, and pleural indentation were significant
between the MIA and IAC groups (for all, P<0.001). The frequency of positive signs, including density type (mG-
GNs), lobulation and shape (irregular), gradually increased from AAH/AIS to MIA and IAC.

Establishment of the multivariate logistic regression model and ROC
curve analysis
The variables that were statistically significant in the univariate analysis comparing the AAH/AIS and MIA groups
were included in the multivariate logistic regression analysis by stepwise regression. The results showed that the mean
3D diameter (X2), mean CT value (X3), and shape (X5) were independent predictors for identifying AAH/AIS and
MIA (Table 4), and the regression equation for model 1 was:

Logit(P ) = 3.478 + 0.322X2 + 0.01X3 + 0.878X5

The model 1 was statistically significant (likelihood ratio χ2 = 34.70, P<0.001), and all the regression coefficients
also were significantly different (for all, P<0.05), while the goodness-of-fit for model was excellent (χ2 = 3.052,
P=0.931). ROC curves for each quantitative parameter and predictive model 1 identifying AAH/AIS and MIA were
plotted (Figure 1), and the AUCs of 2D mean diameter, 3D mean diameter, mean CT value, maximum CT value,
volume, and predictive model 1 used to diagnose MIA were 0.683, 0.705, 0.676, 0.669, 0.699, and 0.779 (Table 5).
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Table 3 Analysis and comparison of CT signs among different pathological subtypes

CT signs AAH/AIS (n=55) MIA (n=93) IAC (n=76) χ2 P-value

Density type 33.199 0.001

pGGNs 47 (85.45%)1 61 (65.59%)2 28 (36.84%)3

mGGNs 8 (14.55%)1 32 (34.41%)2 48 (63.16%)3

Shape 23.156 0.001

Round/oval 40 (72.73%)1 43 (46.24%)2 23 (30.26%)3

Irregular 15 (27.27%)1 50 (54.76%)2 53 (69.74%)3

Location 8.653 0.371

Superior lobe of right
lung

26 (47.27%) 31 (33.70%) 31 (36.56%)

Middle lobe of right lung 5 (9.09%) 11 (11.96%) 11 (11.83%)

Inferior lobe of right lung 7 (12.73%) 14 (15.22%) 13 (13.98%)

Superior lobe of left lung 12 (21.82%) 23 (25.00%) 23 (24.73%)

Inferior lobe of left lung 5 (9.09%) 13 (14.13%) 12 (12.90%)

Peripheral signs

Lobulation 20 (36.36%)1 50 (53.76%)2 71 (93.42%)3 50.287 0.001

Spiculation 11 (20.00%) 32 (34.41%)2 51 (67.11%)3 32.799 0.001

Internal signs

Vacuolar sign 12 (21.80%) 28 (30.10%) 32 (42.10%)3 6.323 0.042

Air bronchogram 11 (20.00%) 27 (29.03%)2 39 (51.32%)3 15.884 0.001

Adjacent structure

Pleural indentation 2 (3.64%) 12 (12.90%)2 35 (46.05%)3 41.082 0.001

Vascular convergence 39 (70.91%) 76 (81.72%)2 71 (93.42%)3 11.675 0.003

Tumor–lung interface 0.351 0.839

Blurred 33 (60.00%) 58 (62.37%) 44 (57.89%)

Clear 22 (40.00%) 35 (37.63%) 32 (42.11%)

1Indicates a statistically significant difference between AAH/AIS and MIA.
2Indicates a statistically significant difference between MIA and IAC.
3Indicates a statistically significant difference between IAC and AAH/AIS.
Bonferroni method was used for pairwise comparison(for all, P<0.05 after adjustment).

Table 4 Results of Multivariate logistic regression analysis

Variable β S.E Wald OR P-value

AAH/AIS and MIA

3D mean diameter (X2) 0.322 0.093 12.078 1.381 0.001

Mean CT value (X3) 0.010 0.004 8.498 1.010 0.004

Irregular Shape (X5) 0.878 0.399 4.832 2.405 0.028

MIA and IAC groups

3D mean diameter (X2) 0.544 0.107 26.036 1.722 0.001

Mean CT value (X3) 0.014 0.003 16.953 1.014 0.001

Lobulation (X8) 1.982 0.652 9.250 0.138 0.002

Abbreviations: OR, odds ratio; S.E, standard error.

Model 1, with moderate accuracy, has a higher AUC than each quantitative parameter (Supplementary Table S1,
Delong test, for all, P<0.05); the threshold value of prediction probability was 0.581.

Similarly, the results of the multivariate logistic regression analysis between MIA and IAC are shown in Table 4.
Model 2 consisted of the mean 3D diameter (X2), mean CT value (X3), and lobulation (X8). The regression equation
for model 2 was as follows:

Logit(P ) = 1.744 + 0.544X2 + 0.014X3 + 1.982X8(1)

Model 2 was statistically significant (likelihood ratio χ2 = 112.92, P<0.001), and all the regression coefficients
also were significantly different (for all, P<0.05), and the goodness-of-fit for model 2 was satisfactory (χ2 = 5.206,
P=0.735). ROC curves for each quantitative parameter and predictive model 2 identifying MIA and IAC were plotted

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5



Bioscience Reports (2022) 42 BSR20212416
https://doi.org/10.1042/BSR20212416

1-Specificity 

Se
ns

iti
vi

ty
 

Figure 1. ROC curve graph of predictive model 1 and quantitative parameters for distinguishing AAH/AIS and MIA

(Figure 2), and the AUCs of 2D mean diameter, 3D mean diameter, mean CT value, maximum CT value, volume,
and predictive model 2 were 0.851, 0.738, 0.731, 0.845, 0.918 (Table 5). Model 2, with high accuracy, has a greater
AUC than each quantitative parameter (Supplementary Table S2, Delong test; for all, P<0.05); the threshold value of
prediction probability was 0.680.

Discussion
GGNs are a particular imaging feature that emerges as a result of local alveolar cavity infiltration. It can be a benign
lesion, such as a fungal infection and bleeding, or a malignant lesion, such as AIS, MIA, or IAC [23]. Various lung
adenocarcinoma subtypes require different surgical approaches and achieve different clinical outcomes. Because there
is no evidence of local lymph node metastases in AAH/AIS, sublobar resection or even local wedge resection can be
used for AAH/AIS instead of regional lymph node dissection. With the possibility of local lymph node metastases,
MIA is also resected in the same way as AIS. However, lobectomy and regional lymph node dissection are indicated for
IAC [6, 24]. Because CT images consist of hundreds of layers, clinicians and radiologists spend a copious amount of
time and effort on identifying GGNs and estimating the risk of invasion. In terms of item position and classification,
AI, based on deep learning outperforms manual observation, requires less manhours and decreases measurement
error [25, 26], while improving accuracy and repeatability, which has been shown to exceed the traditional model in
detecting benign and malignant lung nodules [27]. Identifying the pathological subtypes of GGNs can contribute to
the development of a scientifically acceptable follow-up and diagnosis strategy for patients, along with an improved
prognosis. In the present study, we retrospectively reviewed the data of patients with 224 GGNs to explore the value
of AI quantitative parameters combined with CT signs in the differential diagnosis of pathological subtypes of lung
adenocarcinoma.
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Table 5 Results of the ROC curve analysis

Parameters AUC 95% CI P SE SP YI Threshold

AAH/AIS and MIA

2D mean
diameter (mm)

0.683 0.594–0.772 0.001 0.613 0.691 0.304 8.98

3D mean
diameter (mm)

0.705 0.617–0.793 0.001 0.731 0.636 0.367 8.33

Mean CT value
(HU)

0.676 0.588–0.765 0.001 0.538 0.664 0.202 −607.00

Maximum CT
value (HU)

0.669 0.579–0.759 0.001 0.634 0.691 0.325 −450.50

Volume (mm3) 0.699 0.611–0.786 0.001 0.753 0.618 0.371 291.00

Predicted
probability 1

0.779* 0.701–0.857 0.001 0.785 0.673 0.458 0.581

MIA and IAC

2D mean
diameter (mm)

0.838 0.779–0.897 0.001 0.921 0.619 0.540 10.33

3D mean
diameter (mm)

0.851 0.795–0.907 0.001 0.908 0.624 0.532 10.38

Mean CT value
(HU)

0.738 0.662–0.813 0.001 0.566 0.806 0.372 −542.50

Maximum CT
value (HU)

0.731 0.655–0.807 0.001 0.632 0.731 0.363 −325.00

Volume (mm3) 0.845 0.788–0.903 0.001 0.908 0.624 0.532 549.00

Predicted
probability 2

0.918** 0.879–0.957 0.001 0.908 0.774 0.682 0.680

Abbreviations: CI, confidence interval; YI, Youden index.
Compared with other quantitative parameters, *P<0.05, **P<0.001.

The invasiveness of GGNs is closely associated with the size and density of lung nodules. Meng et al. (2021) [28]
found that 2D long diameter, 2D short diameter, volume, and mean CT value could be predictive indicators of the
differential diagnosis of lung adenocarcinoma, which was similar to prior studies [29–31]. In our study, the 2D mean
diameter, 3D mean diameter, mean CT value, maximum CT value, and volume measured by AI were significantly
different among the AAH/AIS, MIA, and IAC groups (all P<0.001), which were basically consistent with the men-
tioned studies above. The 2D mean diameter, 3D mean diameter, mean CT value, maximum CT value, and volume
of GGNs were gradually increased from AAH/AIS to MIA and IAC. Yang et al. (2020) [32] found that the cut-off
values for 2D mean diameter and mean CT value to identify IAC from non-IAC were 10.09 mm and −582.28 HU,
respectively. Another study [30] suggested that the maximum CT value with a threshold of −300 HU can be used as
an independent predictor to distinguish between pre-invasive and invasive lesions for lung adenocarcinoma. Another
study indicated that the threshold of 2D mean diameter for identifying IAC was 8.12 mm. In our study, the cut-off
values for the 2D mean diameter, 3D mean diameter, mean CT value, maximum CT value, and volume to identify
AAH/AIS and MIA were 8.98 mm (AUC = 0.683), 8.33 mm (AUC = 0.705), −607 HU (AUC = 0.676), −450.50 HU
(AUC = 0.669), and 291 mm3(AUC = 0.699), respectively, while the cut-off values to distinguish between MIA and
IAC were 10.33 mm (AUC = 0.838), 10.38 mm (AUC = 0.851), −542.50 HU (AUC = 0.738), −325 HU (AUC =
0.731), and 549 mm3 (AUC = 0.845). These thresholds were slightly different from previous studies, which might be
due to differences in measuring techniques, grouping, or other factors. The Fleischner Society [33] suggested that the
mean diameter of lung nodules could be measured to assess changes of the size. In terms of CT value, the overall CT
value and mean CT value can be used to identify the subtypes of adenocarcinoma, but standards should be unified
before application. In our study, multivariate logistic regression analysis showed that the 3D mean diameter and mean
CT value (both P<0.05) might be more suitable as indicators of size and density for the identification of pathological
subtypes of GGNs.

There are different views on the role of CT signs in differentiating pathological subtypes of lung adenocarcinoma.
Hsu et al. (2021) [29] reported there were significant differences between the IAC and the non-IAC with respect
to lobulation, air cavity except for location, shape, interface, margin, spiculation, vessel relationship, and pleural re-
traction. Zhan et al. (2019) [16] found that the IAC groups had a higher frequency of mixed GGNs, bubble-like
appearance, spiculation, pleural indentation, different locations, and a lower frequency of clear tumor–lung interface
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Figure 2. ROC curve graph of predictive model 2 and quantitative parameters for distinguishing MIA and IAC

when compared with the AIS-MIA group. Gao et al. (2019) [14] analyzed GGNs with a diameter of ≤10 mm and the
results showed that there was no significant difference in burr sign, lobulation, or pleural indentation between the
IAC/MIA and AAH/AIS groups. Our study further compared the CT signs of AAH/AIS and MIA, MIA and IAC.
The results showed that except for the location (χ2 = 8.653, P=0.371), and the tumor–lung interface (χ2 = 0.351,
P=0.839), there were significant differences among the three groups in terms of the density type, shape, vacuolar sign,
air bronchogram, lobulation, spiculation, pleural indentation, and vascular convergence sign. Further pairwise com-
parisons indicated that compared with AAH/AIS group, MIA had a higher frequency of mGGNs, irregular shape,
lobulation, and mixed GGNs, while irregular shape, air bronchogram, lobulation, spiculation, pleural indentation,
and vascular convergence sign were reported to be more common in the IAC groups compared with the MIA group.
The differences between studies might be attributable to the natural processes of GGNs. AAH/AIS and MIA are still
in the early stages, with a small offensive force, so there were no notable differences in CT signs between the two
groups. Of course, the differences may also be linked to the technology in detecting lung nodules and the individ-
ual factors. Tumor cells actively reproduce and show aggressive invasion when GGNs develop to the IAC stage. Due
to the differentiation of tumor margin cells, tumors present different growth rates or contraction of fibrous tissues
within the tumor, and thus, lesions may grow with glandular, papillary, squamous, or solid patterns, resulting in the
occurrence of irregular shapes, lobulation, mixed ground-glass opacity, higher frequency pleural indentation, spicu-
lation, air bronchograms, and an abnormal dilation and distortion of blood vessels. CT signs may play a crucial role
in differentiating pathological subtypes of lung adenocarcinoma. However, a meta-analysis consisting of 12 studies
[34] found that CT features alone were unable to discriminate pre-invasive lesions from invasive lesions in GGNs,
necessitating the development of a diagnostic mathematical model integrating CT imaging features.

8 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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In our study, multivariate logistic regression analysis was applied to variables with statistical significance in univari-
ate analysis. The results showed that the 3D mean diameter, mean CT value, and irregular shape were independent
predictive factors identifying AAH/AIS and MIA groups, and the AUC of predictive model 1 was 0.779, which was
higher than the independent diagnosis of each quantitative parameter. The 3D mean diameter, mean CT value, and
lobulation were independent predictive factors for the diagnosis of IAC, and the AUC of predictive model 2 with high
accuracy reached 0.918, which was greater than the independent diagnosis of each quantitative parameter. Therefore,
whether GGNs are in the pre-invasive or invasive stages of early lung adenocarcinoma, the diagnostic efficacy of the
mixed predictive model incorporating CT signs and AI quantitative parameters was superior to that of quantitative
parameters alone.

There are some limitations to the study that should be considered: (1) the study is retrospective, with some selection
bias, and (2) the solid component of mGGNs was not quantified.

Conclusions
The present study revealed that AI-based deep learning can conveniently and quickly identify GGNs. Quantitative
parameters and CT signs of GGNs are different among the AAH/AIS, MIA, and IAC groups. The diagnostic efficiency
of the regression model combined with the 3D mean diameter, mean CT value, irregular shape, or lobulation was
higher than the single quantitative parameters.

Data Availability
To preserve patient confidentiality, the datasets generated for the present study are not publicly available but are available from
the corresponding author on reasonable request.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported by the Special Project for the Prevention and Control of Major Chronic Non-communicable Diseases
of National Key R&D Program of China [grant number 2018YFC1311903]; and the Key Scientific Research Projects of Henan
Province Colleges and Universities [grant number 20A320043].

CRediT Author Contribution
Weiyuan Fang: Data curation, Formal analysis, Investigation, Methodology, Writing—original draft. Guorui Zhang: Formal anal-
ysis, Methodology, Writing—review & editing. Yali Yu: Supervision, Project administration, Writing—review & editing. Hongjie
Chen: Supervision, Project administration, Writing—review & editing. Hong Liu: Resources, Supervision, Funding acquisition,
Project administration.

Ethics Approval
Our study was approved by the Hospital Ethics Committee at the First Affiliated Hospital of Zhengzhou University, China (Ethics
approval number: 2020-KY-455). The present study was conducted according to the Declaration of Helsinki.

Acknowledgements
We would like to thank Dr. Bingjie Li and Professor Yongjun Wu for the design and their critical reviews.

Abbreviations
AAH, atypical adenomatous hyperplasia; AI, artificial intelligence; AIS, adenocarcinoma in situ; AUC, area under the curve; CI,
confidence interval; CT, computed tomography; GGN, ground-glass nodule; HRCT, high-resolution computed tomography; IAC,
invasive adenocarcinoma; mGGN, mixed ground-glass nodule; MIA, minimally invasive adenocarcinoma; OR, odds ratio; pGGN,
pure ground-glass nodule; ROC, receiver operating characteristic; S.E, standard error; SE, sensitivity; SP, specificity; WHO,
world health organization; YI, youden index.

References
1 Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249, https://doi.org/10.3322/caac.21660

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

9

https://doi.org/10.3322/caac.21660


Bioscience Reports (2022) 42 BSR20212416
https://doi.org/10.1042/BSR20212416

2 WHO Classification of Tumours Editorial Board (2021) WHO classification of tumours. Thoracic Tumours, 5th , pp. 55–64, IARC Press, Lyon
3 Naidich, D.P., Bankier, A.A., MacMahon, H., Schaefer-Prokop, C.M., Pistolesi, M., Goo, J.M. et al. (2013) Recommendations for the management of

subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology 266, 304–317,
https://doi.org/10.1148/radiol.12120628

4 Succony, L., Rassl, D.M., Barker, A.P., McCaughan, F.M. and Rintoul, R.C. (2021) Adenocarcinoma spectrum lesions of the lung: detection, pathology
and treatment strategies. Cancer Treat. Rev. 99, 102237, https://doi.org/10.1016/j.ctrv.2021.102237

5 Wiener, R.S., Gould, M.K., Arenberg, D.A., Au, D.H., Fennig, K., Lamb, C.R. et al. (2015) An Official American Thoracic Society/American College of
Chest Physicians Policy Statement: implementation of low-dose computed tomography lung cancer screening programs in clinical practice. Am. J.
Respir. Crit. Care Med. 192, 881–891, https://doi.org/10.1164/rccm.201508-1671ST

6 Altorki, N.K., Yip, R., Hanaoka, T., Bauer, T., Aye, R., Kohman, L. et al. (2014) Sublobar resection is equivalent to lobectomy for clinical stage IA lung
cancer in solid nodules. J. Thorac. Cardiovasc. Surg. 147, 754–762, discussion 762-754, https://doi.org/10.1016/j.jtcvs.2013.09.065

7 Kadota, K., Villena-Vargas, J., Yoshizawa, A., Motoi, N., Sima, C.S., Riely, G.J. et al. (2014) Prognostic significance of adenocarcinoma in situ, minimally
invasive adenocarcinoma, and nonmucinous lepidic predominant invasive adenocarcinoma of the lung in patients with stage I disease. Am. J. Surg.
Pathol. 38, 448–460, https://doi.org/10.1097/PAS.0000000000000134

8 MacMahon, H., Naidich, D.P., Goo, J.M., Lee, K.S., Leung, A.N.C., Mayo, J.R. et al. (2017) Guidelines for management of incidental pulmonary nodules
detected on CT images: from the Fleischner Society 2017. Radiology 284, 228–243, https://doi.org/10.1148/radiol.2017161659

9 Luo, J., Wang, R., Han, B., Zhang, J., Zhao, H., Fang, W. et al. (2016) Analysis of the clinicopathologic characteristics and prognostic of stage I invasive
mucinous adenocarcinoma. J. Cancer Res. Clin. Oncol. 142, 1837–1845, https://doi.org/10.1007/s00432-016-2201-9

10 Yoshizawa, A., Motoi, N., Riely, G.J., Sima, C.S., Gerald, W.L., Kris, M.G. et al. (2011) Impact of proposed IASLC/ATS/ERS classification of lung
adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 Stage I cases. Mod. Pathol. 24,
653–664, https://doi.org/10.1038/modpathol.2010.232

11 Yotsukura, M., Asamura, H., Motoi, N., Kashima, J., Yoshida, Y., Nakagawa, K. et al. (2021) Long-term prognosis of patients with resected
adenocarcinoma in situ and minimally invasive adenocarcinoma of the lung. J. Thorac. Oncol. 16, 1312–1320,
https://doi.org/10.1016/j.jtho.2021.04.007

12 Liu, S., Wang, R., Zhang, Y., Li, Y., Cheng, C., Pan, Y. et al. (2016) Precise diagnosis of intraoperative frozen section is an effective method to guide
resection strategy for peripheral small-sized lung adenocarcinoma. J. Clin. Oncol. 34, 307–313, https://doi.org/10.1200/JCO.2015.63.4907

13 Yeh, Y.C., Nitadori, J., Kadota, K., Yoshizawa, A., Rekhtman, N., Moreira, A.L. et al. (2015) Using frozen section to identify histological patterns in stage I
lung adenocarcinoma of ≤ 3 cm: accuracy and interobserver agreement. Histopathology 66, 922–938, https://doi.org/10.1111/his.12468

14 Gao, F., Sun, Y., Zhang, G., Zheng, X., Li, M. and Hua, Y. (2019) CT characterization of different pathological types of subcentimeter pulmonary
ground-glass nodular lesions. Br. J. Radiol. 92, 20180204, https://doi.org/10.1259/bjr.20180204

15 Li, Q., Fan, L., Cao, E.T., Li, Q.C., Gu, Y.F. and Liu, S.Y. (2017) Quantitative CT analysis of pulmonary pure ground-glass nodule predicts histological
invasiveness. Eur. J. Radiol. 89, 67–71, https://doi.org/10.1016/j.ejrad.2017.01.024

16 Zhan, Y., Peng, X., Shan, F., Feng, M., Shi, Y., Liu, L. et al. (2019) Attenuation and morphologic characteristics distinguishing a ground-glass nodule
measuring 5-10 mm in diameter as invasive lung adenocarcinoma on thin-slice CT. AJR. Am. J. Roentgenol. 213, W162–W170,
https://doi.org/10.2214/AJR.18.21008

17 Liu, X., Zhou, H., Hu, Z., Jin, Q., Wang, J. and Ye, B. (2019) Clinical application of artificial intelligence recognition technology in the diagnosis of stage
T1 lung cancer. Chin. J. Lung Cancer 22, 319–323, https://doi.org/10.3779/j.issn.1009-3419.2019.05.09

18 Sim, Y., Chung, M.J., Kotter, E., Yune, S., Kim, M., Do, S. et al. (2020) Deep convolutional neural network-based software improves radiologist detection
of malignant lung nodules on chest radiographs. Radiology 294, 199–209, https://doi.org/10.1148/radiol.2019182465

19 Li, X., Shen, L. and Luo, S. (2018) A solitary feature-based lung nodule detection approach for chest X-ray radiographs. IEEE J. Biomed. Health Inform.
22, 516–524, https://doi.org/10.1109/JBHI.2017.2661805

20 Nishio, M., Nishizawa, M., Sugiyama, O., Kojima, R., Yakami, M., Kuroda, T. et al. (2018) Computer-aided diagnosis of lung nodule using gradient tree
boosting and Bayesian optimization. PLoS ONE 13, e0195875, https://doi.org/10.1371/journal.pone.0195875

21 Xu, T., Huang, C., Liu, Y., Gao, J., Chang, H., Yang, R. et al. (2020) Artificial intelligence based on deep learning for differential diagnosis between benign
and malignant pulmonary nodules: a real-world, multicenter, diagnostic study. J. Clin. Oncol. 38, 9037–9037,
https://doi.org/10.1200/JCO.2020.38.15˙suppl.9037

22 Huang, G., Wei, X., Tang, H., Bai, F., Lin, X. and Xue, D. (2021) A systematic review and meta-analysis of diagnostic performance and physicians’
perceptions of artificial intelligence (Ai)-assisted CT diagnostic technology for the classification of pulmonary nodules. J. Thorac. Dis. 13, 4797–4811,
https://doi.org/10.21037/jtd-21-810

23 Park, C.M., Goo, J.M., Lee, H.J., Lee, C.H., Chun, E.J. and Im, J.G. (2007) Nodular ground-glass opacity at thin-section CT: histologic correlation and
evaluation of change at follow-up. Radiographics 27, 391–408, https://doi.org/10.1148/rg.272065061

24 Kent, M., Landreneau, R., Mandrekar, S., Hillman, S., Nichols, F., Jones, D. et al. (2013) Segmentectomy versus wedge resection for non-small cell lung
cancer in high-risk operable patients. Ann. Thorac. Surg. 96, 1747–1754, discussion 1754-1745, https://doi.org/10.1016/j.athoracsur.2013.05.104

25 Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W. et al. (2018) Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics
16, 17–32, https://doi.org/10.1016/j.gpb.2017.07.003

26 Gong, J., Liu, J.Y., Wang, L.J., Zheng, B. and Nie, S.D. (2016) Computer-aided detection of pulmonary nodules using dynamic self-adaptive template
matching and A FLDA classifier. Phys. Med. 32, 1502–1509, https://doi.org/10.1016/j.ejmp.2016.11.001

27 Baldwin, D.R., Gustafson, J., Pickup, L., Arteta, C., Novotny, P., Declerck, J. et al. (2020) External validation of a convolutional neural network artificial
intelligence tool to predict malignancy in pulmonary nodules. Thorax 75, 306–312, https://doi.org/10.1136/thoraxjnl-2019-214104

10 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

https://doi.org/10.1148/radiol.12120628
https://doi.org/10.1016/j.ctrv.2021.102237
https://doi.org/10.1164/rccm.201508-1671ST
https://doi.org/10.1016/j.jtcvs.2013.09.065
https://doi.org/10.1097/PAS.0000000000000134
https://doi.org/10.1148/radiol.2017161659
https://doi.org/10.1007/s00432-016-2201-9
https://doi.org/10.1038/modpathol.2010.232
https://doi.org/10.1016/j.jtho.2021.04.007
https://doi.org/10.1200/JCO.2015.63.4907
https://doi.org/10.1111/his.12468
https://doi.org/10.1259/bjr.20180204
https://doi.org/10.1016/j.ejrad.2017.01.024
https://doi.org/10.2214/AJR.18.21008
https://doi.org/10.3779/j.issn.1009-3419.2019.05.09
https://doi.org/10.1148/radiol.2019182465
https://doi.org/10.1109/JBHI.2017.2661805
https://doi.org/10.1371/journal.pone.0195875
https://doi.org/10.1200/JCO.2020.38.15_suppl.9037
https://doi.org/10.21037/jtd-21-810
https://doi.org/10.1148/rg.272065061
https://doi.org/10.1016/j.athoracsur.2013.05.104
https://doi.org/10.1016/j.gpb.2017.07.003
https://doi.org/10.1016/j.ejmp.2016.11.001
https://doi.org/10.1136/thoraxjnl-2019-214104


Bioscience Reports (2022) 42 BSR20212416
https://doi.org/10.1042/BSR20212416

28 Meng, F., Guo, Y., Li, M., Lu, X., Wang, S., Zhang, L. et al. (2021) Radiomics nomogram: a noninvasive tool for preoperative evaluation of the
invasiveness of pulmonary adenocarcinomas manifesting as ground-glass nodules. Transl. Oncol. 14, 100936,
https://doi.org/10.1016/j.tranon.2020.100936

29 Hsu, W.C., Huang, P.C., Pan, K.T., Chuang, W.Y., Wu, C.Y., Wong, H.F. et al. (2021) Predictors of invasive adenocarcinomas among pure ground-glass
nodules less than 2 cm in diameter. Cancers (Basel) 13, 3945, https://doi.org/10.3390/cancers13163945

30 Ichinose, J., Kawaguchi, Y., Nakao, M., Matsuura, Y., Okumura, S., Ninomiya, H. et al. (2020) Utility of maximum CT value in predicting the invasiveness
of pure ground-glass nodules. Clin. Lung Cancer 21, 281–287, https://doi.org/10.1016/j.cllc.2020.01.015

31 Li, X., Zhang, W., Yu, Y., Zhang, G., Zhou, L., Wu, Z. et al. (2020) CT features and quantitative analysis of subsolid nodule lung adenocarcinoma for
pathological classification prediction. BMC Cancer 20, 60, https://doi.org/10.1186/s12885-020-6556-6

32 Yang, H.H., Lv, Y.L., Fan, X.H., Ai, Z.Y., Xu, X.C., Ye, B. et al. (2020) Factors distinguishing invasive from pre-invasive adenocarcinoma presenting as pure
ground glass pulmonary nodules. Radiat. Oncol. 15, 186, https://doi.org/10.1186/s13014-020-01628-x

33 Bankier, A.A., MacMahon, H., Goo, J.M., Rubin, G.D., Schaefer-Prokop, C.M. and Naidich, D.P. (2017) Recommendations for measuring pulmonary
nodules at CT: a statement from the Fleischner Society. Radiology 285, 584–600, https://doi.org/10.1148/radiol.2017162894

34 Dai, J., Yu, G. and Yu, J. (2018) Can CT imaging features of ground-glass opacity predict invasiveness? A meta-analysis. Thorac. Cancer. 9, 452–458,
https://doi.org/10.1111/1759-7714.12604

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

11

https://doi.org/10.1016/j.tranon.2020.100936
https://doi.org/10.3390/cancers13163945
https://doi.org/10.1016/j.cllc.2020.01.015
https://doi.org/10.1186/s12885-020-6556-6
https://doi.org/10.1186/s13014-020-01628-x
https://doi.org/10.1148/radiol.2017162894
https://doi.org/10.1111/1759-7714.12604

