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Patients tolerant to a kidney graft display a specific blood cell

transcriptional pattern but results from five different studies

were inconsistent, raising the question of relevance for future

clinical application. To resolve this, we sought to identify a

common gene signature, specific functional and cellular

components, and discriminating biomarkers for tolerance

following kidney transplantation. A meta-analysis of studies

identified a robust gene signature involving proliferation of

B and CD4 T cells, and inhibition of CD14 monocyte related

functions among 96 tolerant samples. This signature was

further supported through a cross-validation approach,

yielding 92.5% accuracy independent of the study of origin.

Experimental validation, performed on new tolerant samples

and using a selection of the top-20 biomarkers, returned

91.7% of good classification. Beyond the confirmation of

B-cell involvement, our data also indicated participation of

other cell subsets in tolerance. Thus, the use of the top

20 biomarkers, mostly centered on B cells, may provide

a common and standardized tool towards personalized

medicine for the monitoring of tolerant or low-risk patients

among kidney allotransplant recipients. These data point to a

global preservation of genes favoring the maintenance of a

homeostatic and ‘healthy’ environment in tolerant patients

and may contribute to a better understanding of tolerance

maintenance mechanisms.
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Transplantation is the treatment of choice for end-stage
renal disease. Recent advances in immunosuppression (IS)
have improved management of acute rejection and graft
survival.1 However, due to their toxicity, these drugs have
numerous deleterious side effects and only a marginal effect
on long-term rejection.2–5 Tolerance is thus increasingly
regarded as an ideal solution.6 This situation, mainly
corresponding to incompliant cases, has been observed in
renal transplantation7,8 and current estimates report
roughly 100 cases.9 Besides, efforts have been devoted by
the European and US transplant community to decipher the
regulatory mechanisms and to identify noninvasive
biomarkers. These studies could report several gene lists,
with evidence converging towards the potential implication of
B cells as attested by the identification of numerous related
markers,10–14 a unique differentiation profile,15 and an
increasing number of several subtypes in the blood of these
patients.13,14,16,17 Although informative, these lists poorly
overlapped, raising question about the pertinence of the
results for future clinical application. However, as recently
exemplified by the identification of rejection markers across
multiple transplanted organs,18 comparing and integrating
data from several studies by meta-analysis19 is an ideal
solution to increase reliability and consistency in the results
and conclusions. Hence, when applied to the five existing
tolerance-related studies,10–14 such meta-analysis may also
enable to reconcile data.

In this context, the first objective of our work was to
define a robust gene signature20 indicative of tolerance. The
second objective was to define specific functional and cellular
components supported by the signature, as previously
defined,20 and that may bring clues for the understanding
of peripheral regulatory mechanisms. The third objective was
to validate a subset of markers that could be further used in
clinics for the stratification of kidney recipients with a low
risk of rejection.
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RESULTS
Comparison of gene lists from the different data sets failed
to identify a robust gene signature of tolerance

A k-means clustering identified 10 clusters (K1 to K10) in
each study (Supplementary Figure SI1 online) with clear
functional annotations (Figure 1a). A total of 19 clusters
from the 50 were found to be significant (Supplementary
Figures SI2 and SI3 online) between tolerant (TOL) and
stable (STA), with at least one of the two tests (Student
and/or Fisher, Po0.01). These clusters had relevant but
limited similarities (Figure 1b, Supplementary Figure SI2
online). From the 19 clusters (Figure 1c), most of the
differential genes (81% in average) in one study did not
replicate in other studies (Supplementary Figure SI2 online).
Only 0.08% (14 genes: APOM, ARHGAP17, AURKB, IGBP1,
IL10RA, IL15RA, IL1RL1, INSM1, IRF4, MAOA, MICB,
SMAD3, TK1, and YPEL2) was in fact commonly identified
across the five studies (Supplementary Figures SI3 and SI4
online). Two of them (TK1 and IRF4) were present either in
the 49-gene footprint from Brouard11 or in the top 30 genes
from Newell13 (Supplementary Figure SI5 online). These 14
genes did not accurately discriminate TOL from STA (Supple-
mentary Figure SI6 online). Altogether, these data show that
comparison of gene lists identified a limited consensus and was
not enough to derive a robust meta-signature.

Meta-analysis by integration of the data sets identified a
statistically and functionally relevant gene signature of
tolerance

To ensure comparability across studies, the 1846 common
genes were retained. This selection is highly skewed towards
immune functions (Supplementary Figure SI7 online);
however, it covers as high as 65% of the biological functions
from the gene ontology. After standardization, data sets were
merged and analyzed as a single corpus of data (Figure 2a)
comprising 596 samples and available in the Gene Expression
Omnibus repository (no. GSE49198). Hierarchical clustering
highlighted clear profiles correlated to sample groups
(Figure 2a and b). To identify the ones associated with
tolerance, we further analyzed the 10-K-means clusters
(Figure 2c), K1 (224 genes) linked to proliferation, K2 (183
genes) to endocytosis, and K10 (188 genes) to lymphocyte
(B and T) activation and differentiation (Figure 2d,
Supplementary Figures SI8 and SI9 online) were found to
be the most differential (Po0.00001) between TOL (n¼ 96)
and STA (n¼ 343). They thus defined a highly discriminative
(P¼ 5.05E� 15) 595-gene signature as measured by Fisher’s
exact test on the contingencies of the sample tree (Figure 2d,
Supplementary Figure SI8 online). It comprised eight
(APOM, AURKB, IGBP1, IL10RA, IL1RL1, IRF4, SMAD3,
and TK1) out of the 14-consensus genes from gene list com-
parison (Supplementary Figure SI4 online) and also 13 B-cell
molecules (AFF3, BLK, BLNK, CD22, CD79B, FCER2, FCRL2,
ID3, IGKC, IGLL1, MS4A1, MZB1 and TCL1A) belonging to
the top-ranked gene lists (Supplementary Figure SI5 online)
from the different studies.10–14 Altogether, these data show

that integrative meta-analysis can identify a robust gene
meta-signature of tolerance.

Gene set analysis corroborated functionality and revealed
the possible involvement of specific cell populations in
tolerance

A screening of the compendium of gene sets retained the 100
best hits for each cluster (K1, K2, and K10; Figure 3, Supplemen-
tary Figure SI10 online). Although significant (Po0.00001),
these overlaps were partial (mean coverage¼ 8.89±4.82%)
but displayed good functional congruence (Figure 3a): the
100 best hits converged to cell proliferation and cell adhesion
for K1, inflammatory response for K2 and lymphocyte
activation for K10. A similar analysis with a collection of
blood transcriptional modules (Supplementary Figure SI11
online)21 significantly (Po0.001) linked K2 genes to pro-
inflammatory-related monocyte modules, whereas K10 genes
were linked to B-cell and T-cell modules. Particular results
(Figure 3b) from different studies22–27 illustrate the link to T
CD4 (panel 1)26 and especially B (panels 2–4 and 6)23–25,27

lymphocytes at various differentiation stages. For instance
(panels 1 and 4),24,26 K1 was remarkably enriched
(Po1.00E� 16) in early proliferating T- and B-cell markers.
Conversely, markers of differentiated cell subsets were signifi-
cantly linked to K10: P¼ 1.01E� 13 for T CD4þ 26 and
P¼ 7.55E� 09 for B cells.24

Virtual microdissection analysis revealed the clear
participation of B cells, CD4 T lymphocytes, and monocytes in
tolerance

The TOL signature (K1, K2, and K10; Figure 4a) was
compared with clusters from various tissue (Figure 4b) and
blood cell (Figure 4c) samples. This comparison identified K1
as a proliferation cluster (for example, AURKB, CCNB2,
CDC20, CHEK1, NEK2, and PLK4) gathering 67% (P¼ 6.31
E� 13) and 73% (P¼ 1.04E� 13), respectively, of the genes
from proliferating tissues (for example, testis and skin;
Figure 4b) or cells (early blood precursors; Figure 4c). K2 and
K10 gathered 90% (P¼ 2.30E� 20) of immune tissue markers
(for example, bone marrow, thymus, spleen, and lymph
nodes; Figure 4b) showing their immunological specificity.
K2 contained 82% (P¼ 3.44E� 85) of the granulocyte/
monocyte lineage markers (Figure 4c) and corresponded to a
CD14 monocyte cluster (for example, CD14, CD163, CD68,
ITGAM, ITGB2, and PECAM1; Figure 4d). K10 contained
86% (P¼ 5.12E� 40) of the T lineage makers (Figure 4c)
that were preferentially expressed in naive and differentiated
CD4 subsets (for example, CD247, CD28, CD48, CD5, LAT,
and MAL; Figure 4d). It also harbored 71% (P¼ 9.31E� 10)
of the B lineage markers (Figure 4c) expressed in naive and
differentiated subsets (for example, BLNK, CD22, CD40,
CD79B, FCER2, and MS4A1; Figure 4d). Altogether,
these data suggest the involvement of different cell subsets
in tolerance, as attested by the specific expansion and
differentiation of B and CD4 T cells, and the inhibition of
monocyte functions.
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Figure 1 | Comparisons of gene lists from the re-analyzed studies. (a) Individualization of clusters of genes. For each data set (Braud: dark
blue bar; Brouard: black bar; Lozano: turquoise blue bar; Newell: yellow bar; Sagoo: purple bar; see legend, ‘data sets’), results from K-means
clustering are displayed by a heat-map view using green for gene underexpression, black for gene expression close to the median, and red for
gene overexpression (see color scale). Samples are ordered according to the status of origin (see legend, ‘groups’). They correspond to healthy
volunteers (HV, green bar), tolerant recipients (TOL, pink bar), stable recipients under minimal immunosuppression (MIS, light orange bar) or
classical treatment (STA, dark orange bar), and recipients with chronic (CR, red bar) or acute rejection (AR, brown bar). For each data set,
individualized clusters of genes from K-means clustering (K1 to K10) are annotated by a representative term (in yellow) from the Gene Ontology
(GO) project. GO terms in italic denote significance of the enrichment but sensitivity to multitesting (false discovery rate adjusted P-values). The
propensity of each K cluster to discriminate tolerant (TOL) and stable (STA) recipients was assessed by a Student’s t-test (T in blue) applied on its
median profile and a Fisher’s exact test (F in blue) applied on the contingencies of the related dendrogram (see legend, ‘statistics’). P-values
resulting from the tests are indicated on the right of each cluster using shades of blue (see legend, ‘statistics’). The 19 clusters significant at
Po0.01 with at least one of the two tests are indicated by arrows. (b) Similarity in gene composition between the 50-K clusters of co-expressed
genes. The 50-K clusters from the five re-analyzed studies (10 clusters per study) were compared in terms of overlapping genes. The normalized
intersections resulting from pairwise comparisons are presented by a diagonally symmetric matrix ordered by hierarchical clustering (rows and
columns) to highlight groups of similar clusters (see trees on top and left). For each cluster, its study of origin (see legend), its number (1–10),
and its differential status (light blue square) are given. From the heat-map visualization, a strong overlap between two distinct clusters is
portrayed in red and a poor overlap is portrayed in blue (see color scale). Particular similarities are framed on the diagonal along with a
representative GO term identified from the functional annotation of the overlap. (c) Intersection of the 19 differential clusters. The 19 clusters
(denoted by blue arrows in the top panel) discriminative of TOL and STA groups were compared altogether. The results (left side) are depicted
by colored histograms giving for each study (see legend) the percentage of cross-validation of its merged differential clusters (size of the list
‘Ng’) with the differential clusters originating from the other data sets. The global cross-validation rate (right side) is indicated by the
proportions of differential genes observed in one (Ns¼ 1) to five (Ns¼ 5) data sets. Study from Sagoo comprises two independent cohorts (EU
IOT: ‘Indices of Tolerance’; US ITN: ‘Immune Tolerance Network’) sponsored, respectively.
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Generalization of the results using external data confirmed
the biological relevance (functionality and cellularity) of the
tolerance gene signature and its reproducibility

To assess the reproducibility of the signature with external
data, similar trends of expression were searched in a
collection of data sets using co-expression (Figure 5a) and
rank (Figure 5b)-based approaches. A clustering analysis
showed that recurrent partners of co-expression fell into six
functionally relevant meta-clusters (Figure 5a). The two
most significant meta-clusters (M3 and M6) gathered 169
(P¼ 1.1E� 84) and 62 (P¼ 1.1E� 55) genes that were
involved in immune and cell cycle functions. In the second

analysis (Figure 5b), 215 distinct pairs of samples signifi-
cantly (area under curveo0.8; Q-valueo10� 11) harbored
the same pattern in terms of rank differences. A text-
mining analysis revealed that 70% (P¼ 3.40E� 14) of the
matched studies were related to blood (Supplementary Figure
SI12 online) or other cell subsets (mononuclear cells:
P¼ 3.45E� 10; lymphocytes: P¼ 2.88E� 07; B cells: P¼ 6.29
E� 03).

Altogether, these data show that genes from the signature
are recurrently associated with the same functionally related
neighbors of co-expression and display a TOL-like pattern in
numerous blood cell–related studies.
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Figure 2 | Meta-analysis of the five studies. (a) Reliability of the meta-matrix. Results from a two-way hierarchical clustering are visualized by
a heat map (1846 genes in lines, 596 samples in columns) using the same color code: green for gene underexpression and red for gene
overexpression (see color scale). (b) Sample classification. The zoomed tree (bottom) reflects correlation between samples for which the status
and the study of origin are indicated (see color legend). (c) Individualization of the meta-clusters. To identify discriminative groups of genes, the
meta-data set was partitioned into 10 clusters (from K1 to K10) using a k-means clustering. The results are depicted by a heat map (same color
code for gene expression values). Samples are supervised according to their status of origin: healthy volunteer (HV, green), tolerant recipient
(TOL, pink), stable recipient under minimum immunosuppression (MIS, light orange) or classical treatment (STA, dark orange), and recipient
with chronic (CR, red) or acute (AR, brown) rejection (see legend). The discriminative propensity of each meta-cluster to discriminate tolerant
(TOL) from the control group of stable recipients (MIS and STA) was assessed by a Student’s t-test (T in blue) applied on its median profile and a
Fisher’s exact test (F in blue) applied on the contingency of its dendrogram (see legend, ‘statistics’): resulting P-values are indicated on the right
of each meta-cluster using shades of blue (see color legend). The three most differential ones (TOL vs. STA/MIS, Po0.00001) with the two tests
(namely K1, K2, and K10) are denoted by arrows. (d) Definition of the meta-signature of tolerance. For each of the three most differential
(Po0.00001) meta-clusters (K1, K2, and K10) pertaining to the signature, a heat map visualization is depicted. Information provided includes the
following: the median profile (M) of the cluster and the P-value from the Student’s t-test (T) applied to it; the contingencies (number of TOL,
MIS, and STA samples) from the two main branches of the dendrogram (blue and black, respectively); and the P-value from the Fisher’s exact
test applied to them. For each meta-cluster, the top ten significant Gene Ontology (GO) terms from functional annotation analysis are also
given and summarized by a representative term (right side of the panel). Terms with an asterisk indicate significance of the enrichment but
sensitivity to multiple testing corrections (FDR-adjusted P-values). CSR, class-switch recombination.
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Cross-validation analysis yielded good prediction
performances and the use of the top-20 biomarkers enabled
the experimental validation of the tolerance gene signature
in new samples and new patients

To statistically validate the signature, a cross-validation
(Figure 6a) and an experimental validation (Figure 6b) were
performed. A full sixfold cross-validation was performed on
the set of 1846 genes (Figure 6a). Each initial data set was
used as an external validation set, whereas the five others

served as training sets for the selection of the top discri-
minating genes (panel 1). An optimal selection of top-200
genes (Supplementary Figure SI13 online), conserved at 76%
across iterations, yielded good mean classification perfor-
mances (Supplementary Figure SI6 online): 92.5% accuracy,
76.3% sensitivity, 98.2% specificity, 91.1% positive predictive
value, and 91.0% negative predictive value. These perfor-
mances were not compromised regardless of the data set used
for test (panel 2).
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Figure 3 | Functional interpretation by Gene Set Analysis (GSA). (a). Functional convergence of the overlapping gene sets. For each
differential meta-cluster (K1, K2, and K10), the 100 top overlapping gene sets from the C2_CGP collection (chemical and genetic perturbation
sets) of the GSEA Molecular Signature Database (MSigDB v.4) are retained. The functional annotation of these 300 overlapping sets is
performed and enrichment P-values for each Gene Ontology (GO) term retained. These values were hierarchically clustered to order and place
GO terms (rows) with similar patterns of enrichment across gene sets (columns) in proximity. Results are visualized by a heat map in which each
cell represents a specific P-value of enrichment in a specific gene set, using the following color code: blue for poor P-values and yellow for
highly significant P-values (see color scale). For each main GO ‘cluster’, 10 significant terms are given and summarized by a representative
annotation on the right side. (b) Particular similarities with data sets related to immune cell subsets. Overlapping gene sets (see legend) from
human (1, 2, 5, and 6) or mice (3 and 4), and related to T- (1) or B-cell development (2, 3 and 4), myeloid-derived dentritic cells (5) or
hematopoietic stem cells (6), are detailed by heat map views. Illustration 1 includes human samples corresponding to thymic stromal cultures
(TSCs), intrathymic T progenitor (ITTP) cells, ‘double positive’ (DP) thymocytes, ‘single positive 4’ (SP4) thymocytes, ‘naive’ T cells from cord
blood (CB4) and ‘naive’ T cells from adult blood (AB4). Illustration 2 includes human samples corresponding to bone marrow plasma cells
(BMPCs), memory B cells on day 0 of in vitro differentiation (D0 MBCs), activated B cells on day 4 (D4 ActBCs), plasmablasts on day 7 (D7 PBs),
and plasma cells on day 10 of culture (D10 PCs). Illustration 3 includes samples from mouse corresponding to plasma cells (plasma), germinal
center B cells (GC), naive B cells (naive B), and memory B cells (memory B). Illustration 4 gathers B samples from mouse at the following stages
of development: Pre-BI, large Pre-BII, small Pre-BII, immature, and mature. Illustration 5 is on human immature monocyte–derived dendritic cells
(MDDCs) untreated (control) or treated with vehicle alone (vehicle) and matured with galectin-1 (GAL-1) or lipopolysaccharide (LPS). Illustration
6 is on human hematopoietic progenitor cells (HPC) corresponding to prothymocytes (Pro-THYM), early pre-proB precursors (ProB), and
lymphogranulomacrophagic precursors (Pro-LGM).
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Second, a limited selection of the top-20 markers, mostly
centered on B cells and overexpressed in TOL (Supple-
mentary Figure SI14 online), was sufficient to accurately

discriminate TOL from STA (Supplementary Figure SI6
online). One of these markers, IRF4, was also identified by
gene list comparison (Supplementary Figure SI4 online).
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Figure 4 | Identification of the cellular component by virtual microdissection analysis (VMDA). (a) Gene meta-signature of tolerance.
Gene expression profiles (in rows, same order as (b and c) from the three most differential meta-clusters (K1, K2, and K10) are shown for the
following clinical groups (in columns): control group comprising stable recipients under classical treatment (STA, dark orange) or minimal
immunosuppression (MIS, light orange) and tolerant recipients (TOL, pink). Results are displayed by a heat map using red for gene
overexpression and green for gene underexpression (see color scale). (b and c) Related gene profiles across a large compendium of human
tissues (b) and blood cell types (c). A hierarchical clustering was performed on the whole matrix to group genes on the basis of similar profiles
across the collection of samples. Results are displayed by expression heat-map views using the same color code. (b) Expression profiles across a
large collection of tissues. The 1661 tissue samples (in columns) were ranged according to a hierarchical classification and annotated according
to eight main categories (see legend): the immune (red), the nervous (green), the muscle (orange), the internal (dark blue), the secretory
(purple), the reproductive (turquoise blue), the mucosa (yellow), and the cancer (black) types of samples. Some particular tissues from these
categories are noted on the top: heart (H) and skeletal muscle (M) for the muscle type; testis (Te), prostate (P), and endometrium/myometrium
(E/M) for the reproductive type; bone marrow (BM), thymus (Th), spleen (Sp), lymph node (LN) for the immune type; adipose (A), lung (Lu),
trachea (Tr), intestine (I), stomach (St), kidney (K), and liver (Li) for the internal type. Four major gene clusters are indicated on the right by
colored bars: black bar for overexpression in proliferating tissues; gray bar for ubiquitous overexpression across a large panel of tissue samples;
red bar for specific overexpression in immune tissues; blue bar for preferential expression in the liver. (c) Expression profiles across a large
compendium of blood cell types. The 681 cell samples (in columns) are ranged according to their respective positions in hematopoiesis (see
tree on top) and pertain to eight main categories (see legend): the hematopoietic progenitors (gray) comprising the hematopoietic stem cells
(HSC1–2) and the common myeloid (CMP) and myeloid/erythroid (MEP) progenitors; the erythroid lineage (orange) gathering early (eE) to late
(lE) erythroid cells; the megakaryocytic category (pink) comprising megakaryocytes (M); the granulocyte/monocyte lineage (purple) comprising
granulocyte/monocyte progenitors (GMP), granulocytes (G), monocytes (M), eosinophils (E), and basophils (B); the dentritic category (light blue)
comprising dentritic cells (D1–2); the B-cell lineage (light green) gathering pre-B (PB) to mature B cells (B); the natural-killer (NK) lineage (dark
green) comprising natural killers (NK); and the T-cell lineage (dark blue) gathering T CD8 (CD8) and T CD4 (CD4) lymphocyte populations.
Expression from whole blood (WB), peripheral blood monocytes (PBMC), and peripheral lymphocytes (PL) is also shown on the left side. Four
major gene clusters are indicated by colored bars on the right: orange bar for overexpression in proliferating progenitors; purple bar for
overexpression in granulocyte/monocyte lineage; blue bar for higher expression in T-cell lineage; green bar for higher expression in B-cell
lineage. (d) Tolerance expression profiles specificity of immune cell subtypes. The heat-map view on top details the genes predominantly
overexpressed across cell types from the granulocyte/monocyte lineage (purple bar) including: granulocyte/monocyte (GM) progenitors,
colony-forming unit (CFU) granulocytes, granulocytes, neutrophils, CFU and CD14 monocytes, eosinophils, and basophils. The heat-map view in
middle shows the genes overexpressed in the CD8 and CD4 populations from the T lymphocyte lineage (blue bar) including the following cell
subsets: naive, effector memory (TEM and TEMRA), and central memory (CM). The heat-map view on bottom depicts the genes having higher
expression in cell subsets from the B-cell lineage (green bar) corresponding to: pre-B (including early and proB), naive B, mature B (gathering
samples from B able to switch to fully switched B), and memory B (gathering immunoglobulin IgG and IgA and IgM-secreting B). For more
details on the specificity of these gene expression profiles, results from pairwise comparisons (CD14 monocytes vs. B lymphocytes, CD14
monocytes vs. T lymphocytes, and T lymphocytes vs. B lymphocytes) along with expression in specific related cell lines (THP-1, Jurkat, and Raji)
are also depicted on the top right of each heat-map view.
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Their quantitative measurement by real-time PCR (indepen-
dent technique) on a new collection of 67 samples (Figure 6b,
Supplementary Figure SI15 online) yielded strong discrimi-
nation of TOL and STA (P¼ 4.39E� 9): 16 markers (80%)
were indeed altered (Po0.05) in the same sense. Leave-one-
out prediction yielded excellent reproducibility (100% recall)
on the 12 new time samples from already analyzed TOL cases
and good external validation on the six new TOL cases
(83.3% recall). Good classification (91.7%) was achieved
(94.4% sensitivity, 90% specificity, 85% positive predictive
value, and 96.4% negative predictive value), with one TOL
and three STA being misclassified (Supplementary Figure
SI16 online).

Altogether, these data show that the signature can be
revalidated regardless of the study, the technology, and the
sample provided.

A ‘healthy’ profile of the top 20 biomarkers in blood from
tolerant patients

Of the 20 biomarkers, TOL and HV were closely related as no
(0 gene, Po0.001) or minor difference (three genes, Po0.05)
could be detected in meta-analysis (Supplementary Figure
SI14 online) and RT-PCR (Supplementary Figure SI15
online) sets. This similarity between TOL and HV was
reinforced by the observation that only 68 genes out of the
1846 analyzed were differential (Po0.001; not shown).
Conversely, 18 of the markers (90%) were also differential

between STA and HV, both in the meta-analysis (Po0.001)
and in the RT-PCR (Po0.05) sets (Supplementary Figures
SI14 and SI15 online). Altogether, these data show that TOL
and HV display roughly the same ‘healthy’ profile.

DISCUSSION

Five studies were attempted to analyze tolerance through
noninvasive blood transcriptomic analyses.10–14 However, no
significant overlap in the expression pattern could emerge.12

In a first attempt to derive a consensus gene signature, we
performed comparisons of gene lists generated from the five
studies. Although valuable,28 this approach unfortunately
led to a limited 14-gene consensus, which is not sufficient to
accurately detect tolerant among recipients. This result matches
with our previous observations12 as, by comparison, no
overlap emerged from the five studies using a per-gene
selection (Student’s t-test, 5% false discovery rate). Such
discrepancies, classically observed,29–33 raise questions about
the reproducibility, validity, and biological significance of
microarray outcomes34 when tested on independent data
sets.35 Inconsistencies are related to several factors. The
different microarray platforms contain probes pertaining to
different gene collections, ranging from dedicated10,11,14 to
all-genome.12,13 Such a disparity makes comparisons
difficult36 and it could reflect the poor percentage of cross-
validated genes (o1%). For that reason, the intersection of
these platform gene lists is the only genes to be retained for
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Figure 5 | Validation of the functionality and cellularity of the meta-signature of tolerance. (a) Similar neighbors of co-expression across
public data sets. The results (co-expression-based meta-analysis) are visualized by a network representation of the six identified meta-clusters
(see color legend and functional annotation) gathering 1462 genes. Nodes from the network are clusters (colored circles on the graph, size
proportional to the number of genes they gather) of strongly connected genes (3–101 genes, density X0.5) and edges intercluster density
X0.2. (b) Similar gene patterns across public data sets. The results (rank-based meta-analysis) are visualized by a heat map of the 244 top genes
(in rows) discriminating tolerant (TOL) from stable (STA) recipients (Po0.005) across 215 sample pairs (in columns) from unique Gene
Expression Omnibus (GEO) data sets. (A) Genes upregulated in TOL recipients; (B) genes downregulated in TOL recipients; (C) 215 samples
having a ‘stable’ (STA)-like pattern. (D) In all, 215 samples with a ‘tolerant’ (TOL)-like pattern.
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further analysis. Microarray outcomes are also often limited
by the small number of samples while analyzing thousands of
genes,37,38 leading to underestimation of variances and
reduction of statistic power.39 This can be exacerbated in
our situation knowing that blood samples can deeply vary
between individuals40–42 or even the day the sample was
taken.42,43 In addition, the heterogeneity of the clinical
outcome of these patients on the long term may add to these
problems.7 Moreover, gene lists are also greatly influenced by
the subsets of the patients used for their selection, even in the
same study,35 and this could reflect the differences between
the two cohorts (IOT and ITN) in the study by Sagoo et al..14

In light of this, it has been suggested that more samples
are required to reach a decent level of marker stability.44 This
was the objective of our second attempt, consisting of the
integration of all the initial data sets. Most of the meta-
analysis approaches first identify a set of common genes
across studies from which they then derive a gene expression
signature.36 Because of different data formats and experi-
mental effects,45,46 direct comparison of raw data is difficult,
not straightforward, and sometimes impossible even using
standard normalization techniques.47,48 Standardization of
the data obtained from individual research into values

derived from a common scale before combination has been
successfully applied.49 We adopted this solution to identify a
robust signature from the set of 1846 genes.

Our gene signature was defined owing to the meta-
analysis of blood transcriptome studies comparing TOL with
the more related group of STA patients. This group of
patients was chosen as the most appropriate cohort to look at
tolerance markers to identify the patients who may benefit
from an IS-weaning protocol in the future. Of course, blood
may not be the best compartment. However, disease gene
profiles showed good concordance between blood and solid
tissues.50 In transplantation, gene changes in blood correlate
with biopsy-proven rejection.51–53 Moreover, rare cases of
biopsies from tolerant cases did not evidence graft infiltrate,8

suggesting that biopsy may not be informative. Conversely,
blood is a promising source of therapeutic molecules,54 and
as it flows throughout the body it acts as a pipeline for the
immune system and may be a good compartment to analyze
complex patterns of recirculation. In tolerance, gene changes
observed in blood may thus reflect active processes involving
peripheral regulation55 as attested by the characterization of
regulatory molecules56 and the possibility to induce tolerance
with peripheral lymphocytes in animal models.57
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Figure 6 | Reproducibility of the meta-signature of tolerance. (a) Cross-validation of the meta-signature. In panel 1, the classification
performances through the six cross-validation folds are shown. Results are displayed with a histogram in which each bar (one of the six folds)
represents the accuracy obtained on one data set used as test, whereas learning is performed on the five others. From left (first fold) to right
(sixth fold), tests were data sets from Braud (dark blue), Brouard (black), Lozano (turquoise blue), Newell (yellow), Sagooa (European ‘Indices of
Tolerance’ (IOT) cohort, purple), and Sagoob (American ‘Immune Tolerance Network’ (ITN) cohort, purple). In panel 2, the influence of the origin
of a data set on the performances of classification is assessed. The accuracy from the six test data sets (green circle) is compared with the
accuracy obtained on comparable test data sets (equal size and same sample composition) constructed by a random selection of tolerant (TOL)
and stable (STA) samples from the total pool of samples (whatever the study of origin). Results are depicted by box plots (boxes: interquartile
range (IQR); whiskers: 1.5�IQR) corresponding each to the values obtained after 1000 repeated random selections. Values beyond the range are
considered outliers and shown as circles. (b) Experimental validation of the meta-signature. The expression of the 20 top ranked biomarkers
discriminating tolerant (TOL) from stable (STA) recipients is assessed in a new collection of 48 samples. The results from real-time PCR are
displayed by an expression heat map (red for gene overexpression and green for gene underexpression) showing the patterns from 18 TOL
(pink; dot: new cases) and 30 STA (orange). Misclassified samples are denoted by an asterisk. Significance of the individual markers (17
upregulated and 3 downregulated) is assessed by a Student’s t-test: resulting P-values are depicted by shades of blue on the right side (see
color legend). From the 20 genes, those corresponding to B-cell–related markers are quoted by a cross.
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In this context, several cell types (B, CD4 T, and
monocytes) may participate in the regulatory mechanisms
as attested by related markers. Among all, the confirmation
and identification of new B-cell markers appeared thus as one
of the interesting findings reinforcing a suspected role for B
lymphocytes in tolerance.58 Indeed, B cells are able to drive
immune responses59 and there is compelling evidence that
they act as multifaceted regulatory cells.60–64 They may have a
crucial role in regulating other cell subtypes reflecting the
observed gene changes linked to CD4 T cells and CD14
monocytes. Moreover, although deep depletion of the B-cell
compartment is associated with higher incidence rejection,65

its preservation would be a prerequisite to favor the
development of tolerance.66 Interestingly, we found that
most of the genes differentially expressed in TOL and STA
were unchanged between TOL and HV both through the top-
20 genes and the whole meta-analysis. Similar results were
observed in previous studies both at transcriptional and cell
phenotype levels.13,66 This suggests that, as previously men-
tioned,67 tolerant patients may harbor a global preservation
of their ‘phenotype’, especially the B-cell compartment. It
may contribute to maintain a physiological cell homeostasis
counteracting inflammation and preserving a ‘healthy profile’
in these patients. To ascertain that our results are not the only
reflection of the absence of treatment, we also look at these
markers in patients with chronic rejection and off IS available
in the study by Brouard et al.11 As these patients harbor a
highly differential profile from TOL, we reasonably exclude
an effect of the absence of treatment (Supplementary
Figure SI14 online). Even more, these markers, particularly
the B-cell ones, were not present in drug-free, operationally
tolerant liver recipients.12 Accordingly, operational tolerance
in kidney transplants is more often detected in patients who
have carried the graft, and thus IS, for a long time.7,8 In this
case, long IS may create a immune restart68,69 towards a
homeostatic equilibrium, as the one observed in healthy
volunteers.67

Finally, to assess the reliability of our signature, we first
performed a full cross-validation procedure. This analysis
yielded good predictions and enabled the validation of B
cell–related markers (for example, BLK, BLNK, CD22, CD40,
CD79B, CD83, FCER2, FCRL2, and MS4A1) but also genes
related to other cell subsets including CD4 T (for example,
CD150, CD28, CD52, and NFATC1) and CD14 monocyte (for
example, CCR2, CD163, ITGAM, and ITGB2) molecules. For
diagnosis purpose, a selection of the top-20 markers from
this list, mostly centered on B cells, accurately discriminate
tolerant from stable recipients. In a second step, these
20 markers were experimentally revalidated in an indepen-
dent cohort of new TOL samples, from which six corre-
sponded to new cases. These results showed that our initial
findings were not dependent on the technology used or the
analyzed set of samples. Both analyses yielded good
prediction performances (more than 90%). Hence, our
biomarkers could be reliably used to detect tolerance and
stratify kidney recipients in clinics. First, they may help for a

better follow-up of the tolerant patients. Indeed, several lines
of evidence suggest that tolerance is likely not a stable
situation for ‘entire life’ for most of the studied cases.7 In
such situations, immunotherapy could be reinstated before
degradation of the graft. Second, these biomarkers may help
to monitor kidney-transplanted recipients under classical IS.
Such stable cases, presenting a low risk of rejection, would
thus be highly eligible for progressive IS weaning. In our
meta-analysis, 3% (eight cases) of the STA patients did
express this signature and further examination of their
clinical status revealed that they were still stable without
degradation of renal function, years after the test. This
result agreed previous observations ranking from 3.5 to
15%.11,14,70,71 However, only prospective studies of IS
weaning in a controlled and randomized setting will enable
proof of concept of this hypothesis.

In conclusion, our results indicated the participation of
different immune cell subsets in natural operational tolerance.
Among them, B cells certainly have a role in the maintenance
of tolerance, reinforcing our previous observations. Although
the implied regulations are still largely unknown, preserva-
tion of this compartment and maintenance of a physiological
homeostasis and ‘healthy profile’ seem to be necessary for
tolerance and may drive current therapies. According to its
independent validation and its worldwide origin as collab-
oration between different teams, we hope that our signature,
especially the restricted set of 20 markers, will aid in the
identification of ‘low-risk’ patients among cohorts of
transplanted recipients as recently performed for heart
allograft rejection.72

MATERIALS AND METHODS
Data collection
The data used in this study were published10–14 and are publicly
available. The five microarray data sets and related information on
samples were retrieved from Gene Expression Omnibus. They are
referred to by the first author of the original publication and include
studies from Braud (GSE47755),10 Brouard (GSE47683),11 Lozano
(GSE22707),12 Newell (GSE22229),13 and Sagoo (GSE14655)14 (Table 1).
Altogether, 596 samples were available (equivalent to 932 distinct
hybridizations), gathering 62 samples from HV, 96 samples corres-
ponding to 50 unique operationally TOL (Supplementary Figure
SI17 online), 32 samples from recipients under MIS, 311 samples
from long-term stable recipients under classical immunosuppressive
therapy (STA), 81 samples from patients with CR, and 14 samples
from patients undergoing AR. Some of the TOL patients were
assessed in more than one study (Supplementary Figure SI17 online):
according to extremely good interstudy correlations (Supplementary
Figure SI18 online), and as most of these samples were collected at
different time-points and processed on different platforms, they
were thus analyzed as unique samples. The clinical definition of the
patient groups has been described previously.10–14

Meta-analysis
To identify a gene signature of tolerance, the comparison was
focused on the TOL group (n¼ 96) and patients with stable graft
function (n¼ 343) either under standard (STA, n¼ 311) or minimal
immunotherapy (MIS, n¼ 32). To this end, we performed two types
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of meta-analyses. The first captures in each individual data set the
clusters of differential genes between the two groups and identifies
the overlap as a consensus gene set.12 The second relies on the
integration of the different data sets as a single corpus of data73 and
identifies, after an analysis similar to the one performed on the
individual data sets, the clusters of differentially expressed genes.
Details about the procedures can be found online (Supplementary
Figure SI19 online) along with MOOSE and PRISMA flowcharts
(Supplementary Figure SI20 online).

Reprocessing, integration, and analysis
Data sets were renormalized using a Lowess procedure, log-trans-
formed, and median-centered on genes as previously described.74–78

Probe annotation was performed using MADGene79 to convert and
match the genes across array platforms. Data sets were standardized73

according to the STA group, before their integration and merging on
the 1846 consensus genes. The relationship between genes and
samples was investigated by hierarchical clustering using the Cluster
program.80

Individualization of gene clusters and analysis
Ten clusters per data set (Supplementary Figure SI21 online) were
individualized by K-means81 and further analyzed by hierarchical
clustering.80 They were functionally interpreted by gene ontology,82

gene set,28 and virtual microdissection83 analyses (Supplementary
Figure SI22 online). Their ability to statistically discriminate TOL
and STA was evaluated by the Student’s t-84 and Fisher’s exact85

tests. The discriminative clusters thus defined the ‘signature’ as
previously shown.20

Independent reproducibility of the results
To confirm the functional and cellular components of the signature,
we mined a large collection of 4658 public data sets from Gene
Expression Omnibus (Supplementary Figure SI23 online). Two
blind analyses were performed, supported by the conservation of
co-expressed genes across studies86 and rank-based differences
between two biological situations.87

Cross-validation and classification performances
The method was based on the following three parts: a gene selection
based on T statistics,88 a sample classifier based on support vector
machine,13 the best accurate one in our conditions (Supplementary
Figure SI24 online), and a performance evaluation through
cross-validation analysis.89 The quality of the gene selection was
determined by the classification performances (Supplementary
Figure SI25 online) of the predictor over the six data sets.

External validation of the signature by real-time PCR
To confirm our results, we investigated the expression of the top-20
discriminating biomarkers (T statistics selection) by real-time PCR
(TLDA cards, Applied Biosystems, Foster City, CA). Experiments
were performed using new samples from 19 HV and 48 cases (30
STA, 18 TOL) collected from French transplantation centers
(Supplementary Figure SI26 online). The 18 TOL samples (details
in Brouard et al.7) correspond to 12 already analyzed cases and 6
new cases (Supplementary Figure SI27 online). The discriminating
capacity of the data was then evaluated by a leave-one-out strategy.
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SUPPLEMENTARY MATERIAL
Figure SI1. Lists the K-clusters from the initial studies.
Figure SI2. Lists cluster pairwise comparisons.
Figure SI3. Lists the 19 differential K-clusters.
Figure SI4. Lists the 14 consensus genes.
Figure SI5. Lists the markers from the original studies.
Figure SI6. Lists the classification performances.
Figure SI7. Lists GO categories for the 1846 genes.
Figure SI8. Lists the 595 gene signature.
Figure SI9. Lists significant terms from GOA.
Figure SI10. Lists significant overlaps from GSA.
Figure SI11. Lists significant overlaps with transcriptional modules.
Figure SI12. Lists significant terms from the text mining analysis.
Figure SI13. Lists the top-200 genes.
Figure SI14. Shows expression of the top-20 markers across samples
from the meta-analysis.
Figure SI15. Shows expression of the top-20 markers in the
experimental validation set.
Figure SI16. Gives classification performances from the experimental
validation set.

Table 1 | Summary of the five tolerance-related studies used for the meta-analysis

Study PMID GEO no. GPL ID Description Total HV TOL MIS STA CR AR

Braud 17910029 GSE47755 GPL8798 Cancerochip (B7000 genes)a,c 250 (528) 8 (16) 21 (54) 0 190 (380) 31 (78) 0
Brouard 17873064 GSE47683 GPL6271 Lymphochip (B18,000 genes)a,c 67 8 12 10 12 11 14
Lozano 21827613 GSE22707 GPL570 Affymetrix HG-U133_Plus_2 (B33,000 genes)b,d 42 6 12 0 12 12 0
Newell 20501946 GSE22229 GPL570 Affymetrix HG-U133_Plus_2 (B33000 genes)b,d 58 12 19 0 27 0 0
Sagoo IOT 20501943 GSE14655 GPL8136 RISET 2.0 Agilent custom (B5000 genes)b,c 74 (95) 8 10 (13) 11 (16) 36 (48) 9 (10) 0
Sagoo ITN 20501943 GSE14655 GPL8136 RISET 2.0 Agilent custom (B5000 genes)b,c 105 (142) 20 22 (31) 11 (14) 34 (52) 18 (25) 0

596 (932) 62 (70) 96 (141) 32 (40) 311 (531) 81 (136) 14

Abbreviations: AR, acute rejection; CR, chronic rejection; GEO, Gene Expression Omnibus; HV, healthy volunteer; MIS, minimally immunosuppressed; STA, stable under
classical treatment; TOL, tolerant.
For each study, the numbers of samples in each group—HV, TOL, MIS, STA, CR, AR—are given (brackets: number of hybridizations). Technical information on the microarray
platform (GPL ID) is also provided (a: two-channel; b: single-channel; c: dedicated; d: whole genome). Study from Sagoo comprises two independent cohorts (EU IOT:
‘Indices of Tolerance’; US ITN: ‘Immune Tolerance Network’) sponsored, respectively.
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Figure SI17. Details numbers of tolerant cases common between
studies.
Figure SI18. Details correlation between tolerant samples.
Figure SI19. Gives information and details on procedures.
Figure SI20. Shows MOOSE & PRISMA flowcharts.
Figure SI21. Gives details on the silhouette analysis.
Figure SI22. Lists data sets used for VMDA analyses.
Figure SI23. Lists the 4658 GSE data sets used for rank-based and
co-expression-based analyses.
Figure SI24. Details comparison of classifiers.
Figure SI25. Details the calculation of performance metrics.
Figure SI26. Gives clinical data of HV, TOL and STA patients.
Figure SI27. Gives detailed clinical data of the six new tolerant cases.
Supplementary material is linked to the online version of the paper at
http://www.nature.com/ki
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