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Streptomyces are a large and valuable resource of bioactive and complex secondary metabolites, many of
which have important clinical applications. With the advances in high throughput genome sequencing
methods, various in silico genome mining strategies have been developed and applied to the mapping
of the Streptomyces genome. These studies have revealed that Streptomyces possess an even more signif-
icant number of uncharacterized silent secondary metabolite biosynthetic gene clusters (smBGCs) than
previously estimated. Linking smBGCs to their encoded products has played a critical role in the discov-
ery of novel secondary metabolites, as well as, knowledge-based engineering of smBGCs to produce
altered products. In this mini review, we discuss recent progress in Streptomyces genome sequencing
and the application of genome mining approaches to identify and characterize smBGCs. Furthermore,
we discuss several challenges that need to be overcome to accelerate the genome mining process and
ultimately support the discovery of novel bioactive compounds.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549
2. Current status of the Streptomyces genome sequencing projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549
2.1. Features of Streptomyces genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549
2.2. Currently available Streptomyces genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549
2.3. Importance of high-quality genome sequences for genome mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1550
3. Genome mining for smBGCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551

3.1. Classical approaches for the identification of smBGCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
3.2. In silico tools for genome mining of smBGCs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
3.3. Characterizing smBGCs identified by genome mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551
4. Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1554

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2020.06.024&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2020.06.024
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bcho@kaist.ac.kr
https://doi.org/10.1016/j.csbj.2020.06.024
http://www.elsevier.com/locate/csbj


N. Lee et al. / Computational and Structural Biotechnology Journal 18 (2020) 1548–1556 1549
1. Introduction

Streptomyces species are filamentous Gram-positive bacteria
found in the soil and a member of the largest genus of Actinobac-
teria. They are well-known for their ability to produce a wide array
of bioactive secondary metabolites, which have a number of antivi-
ral, antifungal, anticancer, immunosuppressive, and antibiotic
functions. The large number of secondary metabolites produced
by these bacteria allow them to compete in diverse microbial com-
munities and survive in various habitats including soils, rivers,
lakes, and marine ecosystems [1]. Since the first report of Strepto-
myces ability to produce antibiotics in the 1940s, a significant
number of novel antibiotics have been characterized by screening
the antimicrobial activity of soil Streptomyces against the target
pathogens. Most of the currently available antibiotic classes were
discovered in and produced from Streptomyces species isolated
between 1940 and 1962. However, after two decades of success
using traditional biochemical screening approaches, since cultured
soil microorganism constitutes less than 0.1% of the total of soil
microorganisms, the rediscovery rate of known species and com-
pounds has continuously increased and reached 99% in the late
1980s, with no new classes of antibiotics being approved since
[2,3]. Meanwhile, with the rapid emergence of broad-spectrum
antibiotic resistance, it is increasingly important that we isolate
novel classes of antimicrobial compounds. This search for new
bioactive products has reinvigorated the field of Streptomyces
research [4].

One bottleneck in the traditional screening methods is that
Streptomyces often downregulates or inactivates secondary
metabolite production under axenic laboratory culture conditions.
Secondary metabolites are produced from the multi enzyme com-
plexes encoded by the secondary metabolite biosynthetic gene
clusters (smBGCs). smBGCs generally contain whole pathways that
facilitate precursor biosynthesis, assembly, modification, resis-
tance, and regulation of their product. The expression of these clus-
ters is tightly controlled by complex regulatory networks governed
by biotic and abiotic stresses found in the bacteria’s natural habitat
[5]. Therefore, only a small fraction of secondary metabolites can
be produced under laboratory culture conditions, especially when
we do not know the precise environmental stimuli needed to
induce their synthesis. To fully realize the biosynthetic potential
of Streptomyces, it is necessary to develop tools to identify all of
the smBGCs, including those that are silenced under laboratory
conditions, in their entirety encoded in the Streptomyces genomes.

With the recent advances in DNA sequencing technology, the
number of fully sequenced Streptomyces genomes has increased
exponentially [6,7]. As a result, it has become increasingly neces-
sary to develop a suite of bioinformatics tools that can be used to
annotate and mine these genomes. Several bioinformatics tools
have been developed, including BAGEL [8], ClustScan [9], CLUSEAN
[10], NP.searcher [11], PRISM [12], and antiSMASH [13], to identify
smBGCs within the genome, with most of these technologies rely-
ing on the highly conserved sequences within the smBGCs to map
their location. Genome mining approaches have revealed that each
Streptomyces species possesses about 30 smBGCs, including many
clusters whose products are not yet identified. These findings have
supported the hypothesis that the biosynthetic potential of Strepto-
myces has been underestimated [14]. Genome mining approaches
enable prediction of smBGCs from Streptomyces genome data
quickly and easily, but characterizing these predicted smBGCs still
requires extensive laboratory work, including the activation of
silenced smBGCs, purification of the final products, and determina-
tion of their chemical structure. Therefore, accelerating the process
linking the product with their corresponding smBGCs is of para-
mount importance in the effort to advance our practical under-
standing of the secondary metabolite biosynthetic pathways of
these bacteria.

This mini review focuses on the genome mining approaches for
smBGC identification from Streptomyces genome data and their
utility in discovering novel bioactive compounds. We briefly
describe the current status of the Streptomyces genome sequencing
projects and the importance of high-quality genomic data for
smBGC identification. Next, we introduce several in silico genome
mining tools that have been developed for this purpose and
describe the characterization process of several key examples.
Finally, we highlight future challenges that need to be overcome
for the efficient discovery of novel secondary metabolites from
Streptomyces.
2. Current status of the Streptomyces genome sequencing
projects

2.1. Features of Streptomyces genomes

Unlike other bacteria, Streptomyces have large linear chromo-
somes with high G + C content. The origin of replication (oriC) is
usually located at the center of the linear chromosome and termi-
nal inverted repeats sequences (TIRs), which covalently bind with
the terminal proteins, are found at each end [15]. Interestingly,
the lengths and sequences of the TIRs are highly variable between
species, and the number of TIR iterations does not correlate with
the size of the genome [16]. The most distinct feature of the Strep-
tomyces genome is the high degree of chromosomal instability,
which leads to frequent spontaneous deletions and rearrange-
ments, especially at the ends of the chromosome. For example,
about 0.5% of the germinating spores of Streptomyces lividans
undergo large deletions removing up to 25% of the genome (~2
Mbp) under laboratory-culture conditions [17]. As a result, essen-
tial genes related to cell maintenance, including transcription,
translation, and DNA replication, are located in the ‘‘core” region
of the chromosome. In contrast, conditionally adaptive genes,
especially those related to the secondary metabolism, are usually
located within the ‘‘arm” regions of the chromosome [18]. This
chromosomal plasticity results in a high degree of variation in
the smBGCs, which could have been acquired via prevalent gene
duplications and horizontal gene transfer with other Streptomyces
species or bacteria [19].
2.2. Currently available Streptomyces genomes

Since the whole genome sequences of Streptomyces coelicolor A3
(2) and Streptomyces avermitilis were completed by shotgun
sequencing in 2003 [20,21], a number of Streptomyces genome
sequences has been reported. Next Generation Sequencing (NGS)
has revolutionized the field and enabled a drastic increase in the
number of reported genomes for Streptomyces since 2013
(Fig. 1A). According to the RefSeq database, a total of 1,749 Strep-
tomyces genomes had been deposited as of the 6th of February
2020, and more than 73% of the genomes were sequenced by
NGS techniques, such as Illumina, PacBio, 454, and MinION. The
1,749 Streptomyces genomes composed of 867 contig level (i.e.,
genomes include only contigs), 646 scaffold level (i.e., genomes
include scaffolds and contigs), 36 chromosome level (i.e., genomes
include chromosomes, scaffolds, and contigs), and 200 complete
genomes (Fig. 1A) [6]. Considering that the 36 chromosome level
genomes were assembled using ambiguous (N) bases, and that
three of the complete genomes contained ambiguous (N) bases,
high-quality Streptomyces genomes comprise only about 11% of
the total Streptomyces genomes available. The length of the 236



Fig. 1. Current status of Streptomyces genome sequences. (A) Annual number of deposited Streptomyces genomes in RefSeq database as of the 6th of Feb 2020. (B)
Chromosome length and G + C content of 236 scaffold and complete level Streptomyces genomes.
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scaffold and complete chromosomes ranged from 5.9 to 12.7 Mbp
and an average G + C content of 71.7% (B). Large genome size and
unusually high G + C content are the representative features of the
Streptomyces genome as mentioned above. Interestingly, the
shorter the chromosome length, the higher the G + C content
observed (Fig. 1B). This is probably because G + C content in the
‘‘core” region is highly conserved between various species, while
the ‘‘arms” are less conserved and contain relatively low G + C
content.

2.3. Importance of high-quality genome sequences for genome mining

SmBGC prediction using contig-level genome is usually inap-
propriate because genes in an smBGC are often predicted to be
scattered through several contigs. As described above, approxi-
mately 90% of the reported Streptomyces genomes are incomplete,
containing varying degrees of contig or ambiguous sequence con-
tributions. Securing high-quality Streptomyces genome sequences
is challenging as a result of the low fidelity of current sequencing
techniques when dealing with high G + C and repetitive sequences
[7]. Furthermore, because of its linear chromosome, it is difficult to
evaluate the completeness of the genome assembly when com-
pared to other bacteria with circular chromosomes. Completeness
of the genome is typically quantified using Benchmarking Univer-
sal Single-Copy Orthologs (BUSCO), which measures the number of
copies of single copy genes in the sequence data and provides a
quantitative assessment of genome assembly and gene sets [22].
In 2016, genome completeness of 653 Streptomyces genomes was
analyzed using BUSCO, which revealed that about 36% of Strepto-
myces genomes have poor completeness [23]. Given that the Strep-
tomyces BUSCO markers used in this analysis included only 40
genes, and the fact that the number of single copy genes in the
Streptomyces genome now sits at 352, even the reported complete-
ness of the Streptomyces genomes needs to be reassessed.

In addition to the completeness of genome assembly, quality of
genome sequence (i.e., quality of bases) is also important for deter-
mining smBGC, in the aspect of accurate coding sequence (CDS)
prediction. Especially as most of the smBGCs are composed of long
core biosynthetic genes (>5 kb) containing repetitive sequences,
thus, inaccurate genome sequence often results in frameshift
errors during the prediction of CDSs within the smBGCs. For
instance, the genome sequence of Streptomyces clavuligerus ATCC
27064, which produces b-lactam class antibiotic clavulanic acid,
has been determined, but the quality of the reported genomes
was poor and contained a large number of ambiguous (N)
sequences [24,25]. Recently, a high-quality genome sequence for
S. clavuligerus was obtained using PacBio and Illumina sequencing
methods, revealing that 2,184 genes out of a total of 7,163 genes
were miss- or not-predicted in the previous low-quality genome
sequences, including 47 genes encoded in smBGCs. The accurate
CDS prediction often improves the functional annotation of genes.
For example, in a low-quality genome, CRV15_02370, which
located in terpene BGC, was annotated as unknown lipoprotein.
Meanwhile, in the high-quality genome, the exact sequence of tan-
dem ambiguous (N) sequences located at the upstream region of
CRV15_02370 was determined, resulting in correction and re-
annotation of the CRV15_02370 as 1-hydroxy-2-methyl-2-
butenyl 4-diphosphatereductase [26]. As in the case of S. clavuli-
gerus, applying both the PacBio sequencing method generates long
reads of several kb, and the Illumina sequencing method, which
has a low error rate, could be the solution to obtaining high-
quality Streptomyces genomes [6,26]. In addition, Oxford nanopore
sequencing method, which has been dominating the long-read
sequencing platform with PacBio sequencing method, is more
cost-effective and provides even longer reads (current record of
2.3 Mbp) than PacBio sequencing method [27]. Thus, Oxford nano-
pore sequencing method is expected to be an attractive alternative
to PacBio sequencing method for securing high-quality Strepto-
myces genomes.

Nevertheless, the functional annotation of high-quality Strepto-
myces genome still yields a considerable amount of hypothetical
proteins, due to the limited number of experimentally validated
genes in the database. Indeed, about 24% of total S. clavuligerus
genes and 25% of smBGC encoded genes were annotated as
unknown genes. Even worse, the currently automated gene anno-
tation pipelines utilize incorrect annotation existing in previous
genomes to annotate new genomes because the public annotation
database does not update any corrected annotation errors, neglect-
ing the spread of misinformed functional role of the gene [28].
These incomplete functional annotations have been hampered
the accurate genome mining of smBGCs and mechanistic under-
standing of secondary metabolite biosynthesis. Frequent and effi-
cient update of the smBGC database with the support of
individual functional genomic studies would mitigate these
problems.
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3. Genome mining for smBGCs

3.1. Classical approaches for the identification of smBGCs

The traditional method for identifying smBGCs in Streptomyces
relies on the identification of the secondary metabolites using
chemistry-based methods, like mass spectrometry and NMR, and
then isolating the corresponding biosynthetic genes by random-
ized gene deletion or mutagenesis, followed by screening for non-
producing clones [29–31]. This tedious method was improved after
the identification of the conserved regions in the smBGCs, which
could be used to screen for unknown smBGCs. Secondary metabo-
lites have tremendous structural diversity, but biosynthetic
machineries, including assembling and tailoring enzymes, for sec-
ondary metabolites belong to the same highly conserved enzyme
families [32]. Especially, polyketide synthases (PKS) producing
polyketides (PK) and non-ribosomal peptide synthetases (NRPS)
producing non-ribosomally synthesized peptides (NRP) which are
assembled by the core enzymes of large multi-modular complexes
consisting of highly conserved domains and sequences. Designing
probes based on these conserved sequences and screening for
smBGCs using Southern blots was a popular and widely used
approach for several decades. One example of this approach is
the identification of the aminocoumarin antibiotic clorobiocin
BGC discovered by screening the cosmid library of Streptomyces
roseochromogenes using two heterologous probes designed against
the sequence of the novobiocin BGC [33].
3.2. In silico tools for genome mining of smBGCs

Development of in silico nucleotide or amino acid sequence
alignment tools, such as BLAST, Diamond, and HMMer, enabled
researchers to mine for novel smBGCs in databases and genome
sequences using a conserved sequence without the time-
consuming processes of performing a Southern blot. The first
microbial natural-product biosynthetic loci database for in silico
genome mining of smBGCs was DECIPHER, which is a proprietary
database constructed by Ecopia Biosciences Inc. [34]. Since then,
various free databases and tools for smBGC prediction have been
developed, including BAGEL [8], ClustScan [9], CLUSEAN [10], and
NP.searcher [11]. Many of these tools have already been compre-
hensively reviewed, and the recently released web portal called
‘‘Secondary Metabolite Bioinformatics Portal” provides a descrip-
tion of and manual for each of these mining software and data-
bases [35]. However, most of these tools are limited to the
discovery of specific classes of secondary metabolites, including
PKS and NRPS.

PRISM and antiSMASH are representative in silico tools for pre-
dicting various types of smBGCs [12,13]. These tools predict
smBGC types by employing a sequence alignment-based profile
in a Hidden Markov Model (HMM) of genes that are specific for
certain types of smBGCs. For example, antiSMASH identifies
smBGCs based on the highly conserved core biosynthetic enzymes
and evaluates the results using a set of manually curated BGC clus-
ter rules, followed by discarding false positives using negative
models (e.g., fatty acid synthases are homologous to PKSs). The lat-
est version, PRISM version 3, can identify 22 different types of
smBGCs, and antiSMASH version 5 can predict up to 52 different
types of smBGCs. Both tools are user-friendly web applications,
which provide rapid gene annotation when bacterial genomes
are submitted in FASTA format, making them popular tools in cur-
rent mining studies. These are the most used genome mining tools,
but these rule-based tools are restricted to detect similar smBGCs
to known pathways. Accordingly, recently, smBGC mining tools
that utilize machine learning strategies like ClusterFinder and
DeepBGC, have been developed to allow the identification of
unknown smBGCs [36,37]. However, current machine learning
based genome mining tools have a much higher false-positive rate
than the rule-based tools. Moreover, these tools are trained with
the set of known clusters (e.g., MIBiG database) or a set of clusters
predicted by one of the rule-based tools (e.g., antiSMASH); thus, it
is still challenging to detect completely novel smBGCs.

SmBGC mining of Streptomyces genomes using these in silico
tools confirmed that the genetic potential of Streptomyces to pro-
duce secondary metabolites has been under-estimated. According
to the genome-wide study of Actinobacteria, the genomes of each
Streptomyces species possesses about 40 smBGCs [14,38]. Consider-
ing that Streptomyces is the largest genus of Actinobacteria (ap-
proximately 700 valid species at present) and that the smBGCs of
each Streptomyces are highly different, Streptomyces are ines-
timable resources for the discovery of novel bioactive compounds.
In addition, a recent genome mining study of the 1,110 publicly
available Streptomyces genomes suggested the importance of gen-
ome mining at the strain level as it increases the likelihood that
researchers discover useful derivatives of known secondary
metabolites and expands the diversity of recognized secondary
metabolites used in new mining approaches [14].

3.3. Characterizing smBGCs identified by genome mining

Although genome mining approaches showcase the full biosyn-
thetic potential of Streptomyces, it is worthless without linking the
predicted smBGCs to their product. In this section, we describe sev-
eral examples of genome mining approaches, which connect vari-
ous metabolites with their corresponding smBGCs using (i)
reverse (metabolites to genes) or (ii) forward (genes to metabo-
lites) approaches. The reverse approach allows researchers to
determine the BGCs of known secondary metabolites, and forward
approach identifies the products of novel smBGCs (Fig. 2).

In the pre-genomic era, especially in the golden age of antibiotic
discovery (1950 to 1960), plenty of Streptomyces species were iso-
lated from the environment and screened for antimicrobial activ-
ity. However, after isolation, only antimicrobial compounds were
identified via chemistry-based methods, and in most cases, the cor-
responding smBGCs were not determined as a result of the lack of
information and relevant technologies, including DNA sequencing
method [39,40]. In recent years, advances in genome mining tools
have allowed researchers to adopt a reverse approach to determin-
ing the BGCs of known secondary metabolites produced from
Streptomyces. These efforts have enabled us to identify and eluci-
date the biosynthetic pathways of various important secondary
metabolites much faster and more efficiently than conventional
randomized mutagenesis-based methods (Table 1). For example,
anthracimycin, a macrolide antibiotic that exhibits antibacterial
activity against methicillin-resistant Staphylococcus aureus and
vancomycin-resistant enterococci [41], was isolated from Strepto-
myces sp. T676 in 1995, but its BGC could not be determined at
the time [42]. Recently, the genome sequence of Streptomyces sp.
T676 was captured, and two type I modular PKS gene clusters were
identified by genome mining using antiSMASH. Through additional
bioinformatics analysis, one PKS gene cluster was identified as the
candidate pathway for the production of anthracimycin, and
heterologous expression of this BGC in S. coelicolor resulted in
the production of anthracimycin [42]. SmBGC information
obtained from reverse approaches has expanded smBGC databases,
increasing the accuracy of the genome mining tools and the num-
ber of predictable smBGC types.

Accumulated Streptomyces genome sequences and advanced
genome mining tools provide opportunities for the forward
approach to smBGC identification, which allows researchers to
identify the novel smBGCs from the genome, then identify the pro-



Fig. 2. Overview of genome mining approaches to identify smBGCs in Streptomyces. Minimum Information about a Biosynthetic Gene cluster (MIBiG) is repository for
secondary metabolite biosynthetic gene clusters.

Table 1
Selected examples of the reverse approach in smBGC genome mining from Streptomyces.

Strains Genome mining methods Compound name Year Ref.

Streptomyces chromofuscus ATCC 49982 PKS gene search Herboxidiene 2012 [54]
Streptomyces netropsis CGMCC 4.1650 BLAST Pyrroleamides 2014 [55]
Streptomyces sp. T676 antiSMASH Anthracimycin 2015 [42]
Streptomyces paulus NRRL 8115 antiSMASH Paulomycin 2015 [60]
Streptomyces olivaceus strain FXJ7.023 antiSMASH Lobophorin 2016 [56]
Streptomyces sp. MSC090213JE08 antiSMASH Ishigamide 2016 [57]
Streptomyces leeuwenhoekii DSM 42122 antiSMASH Chaxamycin 2016 [58]
Streptomyces sp. CNR-698 BLASTP Ammosamides 2016 [59]
Stretpomyces anulatus 3533-SV4 RiPP gene search Telomestatin 2017 [61]
Streptomyces lydicus A02 BLASTP and antiSMASH Natamycin 2017 [62]
Streptomyces sp. MP131-18 antiSMASH Lynamicins and spiroindimicins 2017 [63]
Streptomyces sp. SD85 antiSMASH Sceliphrolactam 2018 [64]
Streptomyces sp. strain fd1-xmd antiSMASH Streptothricin and tunicamycin 2018 [65]
Streptomyces koyangensis SCSIO 5802 antiSMASH Neoabyssomicin and abyssomicin 2018 [66]
Streptomyces olivaceus FXJ8.012 BLAST Mycemycin 2018 [67]
Streptomyces sp. ATCC 14903 antiSMASH and BLAST Actinonin 2018 [68]
Streptomyces aureofaciens ATCC 31442 antiSMASH Triacsins 2018 [69]
Streptomyces lunaelactis MM109T antiSMASH Ferroverdins and bagremycins 2019 [70]
Streptomyces nigrescens HEK616 BLASTP Streptoaminals 2019 [71]
Streptomyces sp. Tu 4128 antiSMASH Bagremycin 2019 [72]
Streptomyces caniferus CA-271066 antiSMASH Caniferolides 2019 [73]
Streptomyces sp. S816 antiSMASH Pentamycin 2019 [74]
Streptomyces humidus CA-100629 antiSMASH Humidimycin 2020 [75]
Streptomyces cacaoi subsp. cacaoi NBRC 12748 T antiSMASH and NRPSsp Pentaminomycin 2020 [76]
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duct of this smBGC (Table 2). Curacozole is the first sequential
oxazole/methyloxazole/thiazole ring-containing macrocyclic pep-
tide compound identified using a genome mining based approach.
Genome mining of Streptomyces curacoi isolated a new precursor
peptide gene for ribosomally synthesized and post-translationally
modified peptides (RiPPs). Purifying and determining the structure
of the product of this RiPP BGC using ESI-MS and NMR resulted in
the discovery of new cytotoxic compound, curacozole [43]. In the
case of curacozole, the structural prediction of RiPPs from the
genomic data is comparatively easier than that of other secondary
metabolites, because the entire sequence of the core peptides
translated from the nucleotide sequence is generally retained in



Table 2
Selected examples of the forward approach in smBGC genome mining from Streptomyces.

Strains Genome mining methods Compound name Year Ref.

Streptomyces coelicolor M145 NRPS gene search Coelichelin 2005 [77]
Streptomyces coelicolor M145 Type III PKS gene search Germicidin 2006 [78]
Streptomyces venezuelae ATCC 10712 Lanthipeptides gene search Venezuelin 2010 [79]
Streptomyces ambofaciens ATCC 23877 SEARCHPKS and SEARCHGTr Stambomycins 2011 [80]
Streptomyces coeruleorubidus BLASTP Pacidamycin 2011 [81]
Streptomyces sp. W007 BLASTP Angucyclinone antibiotics 2012 [82]
Streptomyces peucetius ATCC 27952 NRPS gene search Siderophore 2013 [83]
Streptomyces sp. SANK 60404 BLASTP Cembrane 2013 [84]
Streptomyces viridochromogenes DSM 40736 RiPPquest Informatipeptin 2014 [85]
Streptomyces collinus Tü 365 antiSMASH Streptocolin 2015 [86]
Streptomyces leeuwenhoekii strain C58 antiSMASH Chaxapeptin 2015 [87]
Streptomyces chartreusis AN1542 BLASTP Complestatin 2016 [88]
Streptomyces venezuelae ATCC 10712 BLASTP Venemycin 2016 [89]
Streptomyces kebangsaanensis antiSMASH Phenazine antibiotic 2017 [90]
Streptomyces atratus SCSIO ZH16 antiSMASH Ilamycins 2017 [91]
Streptomyces argillaceus ATCC 12956 antiSMASH Argimycins P 2017 [92]
Streptomyces lavendulae FRI-5 antiSMASH New diol-containing polyketide 2017 [93]
Streptomyces sp. YIM 130001 antiSMASH Thiopeptide Antibiotic 2018 [94]
Streptomyces avermitilis KA-320 PKS gene search Phthoxazolin A 2018 [95]
Streptomyces actuosus ATCC 25421 antiSMASH Avermipeptin Analogue 2018 [96]
Streptomyces sp. YIM 130001 antiSMASH Geninthiocin B 2018 [94]
Streptomyces sp. DUT11 antiSMASH and BLAST Tunicamycin 2018 [97]
Streptomyces curacoi NBRC 12761 T antiSMASH and BLAST Curacozole (cytotoxic peptide) 2019 [43]
Streptomyces albus subsp. Chlorinus NRRL B-24108 antiSMASH Nybomycin 2018 [98]
Streptomyces isolatess ICC1 and ICC4 antiSMASH 20 ,50–dimethoxyflavone and nordentatin 2019 [99]
Streptomyces hawaiiensis NRRL 15010 antiSMASH and BLAST Acyldepsipeptide (ADEP) 2019 [100]
Streptomyces atratus SCSIO ZH16 antiSMASH Atratumycin 2019 [101]
Streptomyces leeuwenhoekii C34T antiSMASH Leepeptin 2019 [102]
Streptomyces olivaceus SCSIO T05 antiSMASH Lobophorin CR4 2019 [103]
Streptomyces sp. Tu ̈6314 antiSMASH Streptoketides 2020 [104]

N. Lee et al. / Computational and Structural Biotechnology Journal 18 (2020) 1548–1556 1553
the final product. To overcome the low productivity of curacozole
and allow its robust purification, S. curacoi was treated with rifam-
picin to induce mutations, one of which occurred within the RNA
polymerase b subunit, which facilitated an increased production
of secondary metabolites. Thus, successful forward approaches
for smBGC genome mining require two things; (i) there needs to
be a predictable draft structure of the final product and (ii) the
novel smBGCs need to be expressed at a high enough level to pro-
duce detectable quantities of the secondary metabolite.

There are several computational methods to predict the puta-
tive products of smBGCs, which use databases of experimentally
characterized smBGCs as a reference, especially for PKSs and
NRPSs. These methods use the basic rules of structure prediction
which consider the substrate specificity of the catalytic domains
of PKSs and the NRPSs modules to construct the backbone struc-
ture of the product, which is followed by the identification of tai-
loring domains to estimate further modifications or cyclization of
the compounds and these results are mapped back to the database
to give the user an idea of the secondary metabolite produced by
their unknown smBGC. Comprehensive genome mining tools, anti-
SMASH and PRISM, also provide the chemical structure predictions
of putative products from unknown smBGCs [44]. The accuracy of
chemistry prediction is dependent on the algorithm and the data-
base used to predict the catalytic domains of the enzyme and the
substrate specificity of the domains. When PRISM version 1 was
released, it was the unique tool capable of predicting the chemical
structure of type II PKs, and the chemistry prediction accuracy for
NRPs and type I PKs was also much higher than antiSMASH version
3.0 or NP.searcher [45]. After further improvement, PRISM version
3 became available for chemical structure prediction of products
arising from non-modular biosynthetic paradigms, including RiPPs,
aminocoumarins, antimetabolites, bisindoles, and phosphonate-
containing natural product [12]. AntiSMASH also improved chem-
istry prediction when updated to version 4.0, but it provides con-
servative structure prediction compared to PRISM, which
generates a wide range of combinatorial libraries of predicted
structures by considering the uncertainty of tailoring sites [46].
Although the chemistry prediction accuracy of the most recent ver-
sions of PRISM version 4 and antiSMASH version 5.0 has never
been compared, it is appropriate to use both tools according to
the user’s research purposes. Despite the aforementioned advances
in chemistry prediction, lack of information on tailoring enzymes
and frequent assignment of nearby smBGCs as hybrid smBGCs still
require further experimental validation of the chemistry
prediction.

To fulfill the second requirement for forward mapping
approaches, several other technologies were integrated into the
genome mining approach to increase secondary metabolite pro-
duction or activate silent smBGCs. Since, most smBGCs of Strepto-
myces are silent under laboratory-culture condition, altering the
expression level of smBGCs to produce enough amount of sec-
ondary metabolites have to come before linking the secondary
metabolites to the corresponding smBGCs. This method relies on
the treatment of cultures with elicitors or mutagens to increase
the expression of smBGCs as in the case of curacozole discovery.
Genome engineering is also a suitable method for inducing silent
smBGCs, for example, one study used CRISPR-Cas9 to introduce
constitutive promoters to silent novel smBGCs loci forcing the pro-
duction of unique metabolites which were then evaluated by NMR
[47]. Since smBGCs consist of dozens of genes, to efficiently acti-
vate the entire cluster, most of the studies have engineered the
expression level of global or cluster-specific regulatory genes. Gen-
ome engineering of Streptomyces for the characterization of silent
smBGCs has strengthened with the development of synthetic biol-
ogy tools for Streptomyces [48]. However, genome engineering is
not always applicable as a result of the difficulty in manipulating
the genome of these bacteria and their slow growth rates. Heterol-
ogous expression of silent smBGCs in other Streptomyces is also a
suitable alternative [49]. To enable this, there has been a signifi-
cant amount of efforts put into the construction of a Streptomyces
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chassis strain, which has a reduced chemical diversity as a result of
the removal of its endogenous smBGCs, meaning that it can be
used as a heterologous expression host for novel smBGCs charac-
terization with reduced confounding effects [50].

Forward experimentation is significantly more challenging than
the reverse method when it comes to chemical characterization of
secondary metabolites. Notably, the existence of a large number of
completely unknown genes, which may encode enzymes catalyz-
ing the product tailoring steps, prevent the accuracy of predictions
for the forward approach. As the smBGC database constantly
expands along with the accumulation of individual functional
genomics experiments, the forward approach will continue to
evolve and has the most potential for the isolation and identifica-
tion of novel bioactive compounds from Streptomyces.
4. Summary and outlook

In this mini review, we discussed the current status of Strepto-
myces genome sequencing data and in silico genome mining tools
for smBGCs prediction. Technical advances in DNA sequencing
and the rapid development of in silico genome mining tools
demonstrate that the biosynthetic potential of Streptomyces has
been vastly underestimated. We went on to discuss the fact that
mining of smBGCs from the Streptomyces genome and characteri-
zation of their corresponding products using forward and reverse
approaches are feasible and illustrated this with several examples.
Reverse approaches link known secondary metabolites to their cor-
responding smBGCs and expand the current smBGC database pools
enhancing the accuracy and versatility of in silico genome mining
tools. In contrast, forward approaches enable the discovery of
novel bioactive compounds from the Streptomyces, securing new
drug candidates. The important lesson from the genome mining
examples is that major bottlenecks in this process are limitation
on detecting poorly characterized classes of smBGCs and determin-
ing final products of detected smBGCs. Several challenges must be
overcome to enable the efficient discovery of novel secondary
metabolites from Streptomyces. For accurate in silico structure pre-
dictions of putative products from smBGCs, mechanistic under-
standing of secondary metabolite biosynthesis based on
accumulated knowledge is still lacking. Simultaneously, the induc-
tion of silent smBGCs to experimentally validate the structure of
final products remains difficult, which means that there needs to
be a focus on the development of synthetic biology tools for gen-
ome engineering and the construction of a Streptomyces chassis
strain to facilitate heterologous expression.

The final use of Streptomyces smBGC information obtained from
genome mining approaches will be the knowledge-based repur-
posing of smBGCs to produce derivatives of original products or
non-natural compounds to improve human health and industry.
Recently, several groups undertook the construction of a new
assembly line for the production of fuels and synthetic industrial
compounds facilitated by the rearrangement of PKS and NRPs
modules [51,52]. In addition, ClusterCAD, an in silico toolkit for
designing novel PKS assembly lines, has been developed and
applied in several retro-biosynthesis studies [53]. If genome min-
ing and characterization of smBGCs’ products are repeated in a
positive feedback cycle, it could ultimately be used to design and
generate synthetic BGCs for the production of novel bioactive
compounds.
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