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N E U R O S C I E N C E

Integrated proteomics reveals brain-based 
cerebrospinal fluid biomarkers in asymptomatic 
and symptomatic Alzheimer’s disease
Lenora Higginbotham1,2,3*, Lingyan Ping2,3,4*, Eric B. Dammer2,3,4, Duc M. Duong2,3,4, 
Maotian Zhou2,3,4, Marla Gearing1,3,5, Cheyenne Hurst2, Jonathan D. Glass1,2,3,  
Stewart A. Factor1, Erik C. B. Johnson1,2,3, Ihab Hajjar1,3, James J. Lah1,2,3, 
Allan I. Levey1,2,3†, Nicholas T. Seyfried1,2,3,4†

Alzheimer’s disease (AD) lacks protein biomarkers reflective of its diverse underlying pathophysiology, hindering 
diagnostic and therapeutic advancements. Here, we used integrative proteomics to identify cerebrospinal fluid 
(CSF) biomarkers representing a wide spectrum of AD pathophysiology. Multiplex mass spectrometry identi-
fied ~3500 and ~12,000 proteins in AD CSF and brain, respectively. Network analysis of the brain proteome re-
solved 44 biologically diverse modules, 15 of which overlapped with the CSF proteome. CSF AD markers in these 
overlapping modules were collapsed into five protein panels representing distinct pathophysiological processes. 
Synaptic and metabolic panels were decreased in AD brain but increased in CSF, while glial-enriched myelin-
ation and immunity panels were increased in brain and CSF. The consistency and disease specificity of panel 
changes were confirmed in >500 additional CSF samples. These panels also identified biological subpopulations 
within asymptomatic AD. Overall, these results are a promising step toward a network-based biomarker tool for 
AD clinical applications.

INTRODUCTION
Alzheimer’s disease (AD), the most common cause of neurode-
generative dementia worldwide, is characterized by dysfunction in 
a wide range of biological systems, including synaptic transmission, 
glial-mediated immunity, and mitochondrial metabolism (1–3). 
However, its established protein biomarkers remain focused on the 
detection of amyloid and tau pathology and hence fail to reflect this 
diverse pathophysiology. These “core” protein biomarkers, most reli-
ably measured in the cerebrospinal fluid (CSF), include (i) amyloid-
beta peptide 1-42 (A1–42), reflective of cortical amyloid plaque 
formation; (ii) total tau, a marker of axonal degeneration; and (iii) 
phospho-tau (p-tau), representative of pathological tau hyper-
phosphorylation (4–7). While these CSF biomarkers have greatly 
advanced our detection of “hallmark” AD proteinopathy (4–7), 
they represent only a fraction of the intricate biology underlying 
the disease.

This lack of pathophysiological diversity among AD biomarkers 
contributes to numerous challenges, including (i) an inability to 
recognize and quantify biological heterogeneity among patients with 
AD, (ii) inadequate measures of disease severity and progression, 
especially in preclinical stages, and (iii) therapeutic drug development 
that fails to fully address all aspects of neurological deterioration. Our 
reliance on hallmark pathology to delineate AD from related condi-
tions only exacerbates these issues. Increasing evidence suggests that 
most demented elderly individuals harbor more than one hallmark 

pathology of cognitive decline (8). Up to 90% or more of individuals 
with AD pathology feature concurrent vascular disease, TDP-43 in-
clusions, or other degenerative pathologies (9). These high rates of 
overlapping pathologies undermine our current diagnostic frame-
work of dementia and necessitate more pathophysiologically com-
prehensive definitions of disease.

Given this urgent need for diverse AD biomarkers, the field has 
increasingly embraced holistic systems-based “omics” approaches to 
biomarker discovery. Launched in 2014, the Accelerating Medi-
cines Partnership (AMP)–AD consortium is at the forefront of 
this initiative. This multidisciplinary effort among the National 
Institutes of Health, academia, and industry aims to leverage systems-
based strategies to better define AD pathophysiology and develop 
biologically diverse diagnostic assays and therapeutic strategies 
(10). As part of this initiative, network proteomics has emerged as a 
promising tool for systems-based biomarker advancement in AD. 
This unbiased data-driven approach organizes complex proteomic 
datasets into groups or “modules” of coexpressed proteins with links 
to specific cell types, organelles, and biological functions (11–13). 
Nearly a dozen informative network proteomic studies have now 
been performed on the AD brain (13–23). Collectively, these analy-
ses demonstrate that the AD brain network proteome maintains a 
highly conserved module organization across independent cohorts 
and multiple cortical regions. In addition, several of these modules 
demonstrate reproducible AD-associated abundance changes across 
datasets, reflecting a diverse range of disease pathophysiologies. Over-
all, these findings showcase the brain network proteome as a prom-
ising anchor for systems-based biomarker discovery in AD.

To advance the translation of the AD brain network proteome 
into clinically useful systems-based biomarkers, we integrated this 
brain-derived network with proteomic analysis of AD CSF. This 
integrative approach resulted in the identification of five panels of 
promising CSF biomarkers linked to a wide range of brain-based 
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pathophysiology, including dysfunction in synaptic, vascular, my-
elination, inflammatory, and metabolic pathways. We successfully 
validated these biomarker panels across multiple replication analy-
ses, comprising more than 500 CSF samples from a variety of neuro
degenerative conditions. These validation analyses included the 
examination of panel targets in the CSF of individuals with asymp-
tomatic AD (AsymAD), or those displaying evidence of aberrant 
amyloid accumulation in the setting of normal cognition. These 
analyses highlighted notable biological heterogeneity within the 
AsymAD population and identified panel markers potentially capa-
ble of subtyping individuals in the earliest stages of illness. Overall, 
these results represent a critical step toward the development of a 
diverse systems-based protein biomarker tool that could successfully 
address many of the clinical challenges facing AD.

RESULTS
CSF proteome reveals markers significantly altered in AD
The main objective of this study was to identify novel CSF biomarkers 
reflective of the diverse brain-based pathophysiologies that contrib-
ute to AD. Figure S1 provides an overview of our study approach, 
which comprised (i) an initial discovery-driven integrative analysis 
of AD CSF and network brain proteomes to identify a diverse group 
of brain-linked CSF biomarkers of disease and (ii) the subsequent 
replication of these biomarkers in several independent CSF cohorts. 
The discovery-driven investigations began with differential expres-
sion analysis of CSF from 20 cognitively normal individuals and 
20 individuals with AD of the Emory Goizueta Alzheimer’s Disease 
Research Center (ADRC). AD diagnoses were defined by signifi-
cant cognitive impairment [mean Montreal Cognitive Assessment 
(MoCA), 13.8 ± 7.0] in the setting of low A1–42 and elevated total 
tau and p-tau levels in the CSF [enzyme-linked immunosorbent as-
say (ELISA)] (table S1A). Controls (mean MoCA, 26.7 ± 2.2) featured 
normal levels of CSF biomarkers.

Human CSF is characterized by a dynamic range of protein 
abundance, in which albumin and other exceedingly highly abun-
dant proteins can prevent the detection of proteins of interest (24). 
To increase the depth of protein discovery, we depleted the top 14 highly 
abundant proteins from each CSF sample before mass spectrometry 
(MS) analysis (24). In total, MS identified 39,805 peptides mapping 
to 3691 protein groups across the 40 samples. Quantification of pro-
teins was performed via multiplex tandem mass tag (TMT) labeling 
(18, 25). To account for missing data, we included only those 
proteins quantified in at least 50% of samples in subsequent analy-
ses, resulting in the final quantification of 2875 protein groups. Be-
cause of notable differences in total protein abundance levels, one 
control sample was statistically deemed an outlier (13) and not in-
cluded in subsequent analyses. The abundance values of the re-
maining 39 samples were adjusted for age, sex, and batch covariance 
(13–15, 17, 18, 20, 26).

Differential expression was assessed on the post-regressed dataset 
using a statistical t test analysis, which identified proteins with sig-
nificantly altered abundance levels (P < 0.05) between control and 
AD cases (table S2A). As demonstrated in Fig. 1A, there were a total 
of 225 proteins with significantly decreased abundance and 303 pro-
teins with significantly increased abundance in AD. These differen-
tially expressed proteins included several previously identified CSF 
AD markers, such as microtubule-associated protein tau (MAPT; 
P = 3.52 × 10−8), neurofilament light (NEFL; P = 6.56 × 10−3), growth-

associated protein 43 (GAP43; P = 1.46 × 10−5), fatty acid–binding 
protein 3 (FABP3; P = 2.00 × 10−5), chitinase 3 like 1 (CHI3L1; 
P = 4.44 × 10−6), neurogranin (NRGN; P = 3.43 × 10−4), and VGF 
nerve growth factor (VGF; P = 4.83 × 10−3) (4–6). However, we also 
identified other highly significant targets, such as GDP dissociation 
inhibitor 1 (GDI1; P = 1.54 × 10−10) and SPARC-related modular 
calcium binding 1 (SMOC1; P = 6.93 × 10−9). Gene ontology (GO) 
analysis of the 225 significantly decreased proteins revealed strong 
links to humoral processes, such as steroid metabolism, coagula-
tion, and hormone activity (Fig. 1B and table S2B). Conversely, the 
303 significantly increased proteins were strongly associated with cell 
structure and energy metabolism.

Proteomic levels of MAPT correlated strongly to independently 
measured ELISA tau levels (r = 0.78, P = 7.8 × 10−9; Fig. 1C), sup-
porting the validity of our MS measurements. Isoform-specific pep-
tides mapping to the C terminus of A1–40 and A1–42 do not ionize 
efficiently following tryptic digestion of amyloid precursor protein 
(APP) levels (27, 28). Therefore, the APP peptides we identified were 
not correlated to ELISA A1–42 levels. To assess differential expres-
sion across individual cases, we used differentially expressed proteins 
with P < 0.0001 [false discovery rate (FDR)–corrected P < 0.01] to 
perform a supervised cluster analysis across samples (table S2A). As 
shown in Fig. 1D, these 65 highly significant proteins were able to 
correctly cluster samples by disease status except for one AD case with 
a control-like profile. Of these 65 proteins, 63 were increased in 
AD, while only two (CD74 and ISLR) were decreased. Overall, these 
CSF analyses identified hundreds of altered proteins in AD that 
could potentially serve as biomarkers of disease.

Network brain proteome reveals modules linked to  
AD neuropathology
We then performed an independent network analysis of the AD 
brain proteome. This discovery brain cohort comprised dorsolateral 
prefrontal cortex (DLPFC) samples from control (n = 10), Parkinson’s 
disease (PD; n = 10), mixed AD/PD (n = 10), and AD (n = 10) cases 
of the Emory Goizueta ADRC. The demographics of these 40 cases 
have been previously described (25) and are summarized in table S1B. We 
analyzed these 40 brain tissues, as well as a replication cohort of 27 cases, 
using TMT-MS. Collectively, both brain datasets yielded 227,121 
unique peptides mapping to 12,943 protein groups (25). Only those 
proteins quantified in at least 50% of cases were included in subse-
quent investigations. The final discovery dataset comprised 8817 
quantified proteins. Protein abundance levels were adjusted for age, 
sex, and postmortem interval (PMI). Differential expression analysis 
of the post-regressed dataset revealed >2000 proteins with significantly 
altered levels [P < 0.05, analysis of variance (ANOVA)] across two 
or more disease cohorts. We then performed a supervised cluster 
analysis based on differentially expressed proteins with P < 0.0001 
across AD/control and/or AD/PD comparisons (fig. S2, A and B, 
table S2C). These 165 highly altered proteins sharply delineated cases 
harboring AD pathology from control and PD samples, confirming ro-
bust AD-specific changes across the proteome.

We subsequently performed a network analysis of the discovery 
brain proteome using an algorithm called weighted gene coexpres-
sion network analysis (WGCNA), which organizes the dataset into 
modules of proteins with similar expression patterns across cases 
(11–13). This analysis identified 44 modules (M) of coexpressed pro-
teins ranked and numbered according to size from largest (M1, 
n = 1821 proteins) to smallest (M44, n = 34 proteins) (Fig. 2A and 
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Fig. 1. Differential expression of discovery CSF proteome. (A) Volcano plot displaying the log2 fold change (x axis) against the t test–derived −log10 statistical P value 
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table S2D). Representative expression profiles, or eigenproteins, were 
calculated for each module as previously described (13) and correlated 
to disease status and AD pathology, i.e., Consortium to Establish a 
Registry for Alzheimer’s Disease (CERAD) and Braak scores (Fig. 2B). 
Overall, there were 17 modules that correlated significantly to AD 
neuropathology (P < 0.05). Many of these disease-associated modules 
were also strongly enriched with cell type–specific markers (Fig. 2B). 
As previously described (13), cell type enrichment was determined 
by analyzing module overlap with reference lists of cell type–specific 
genes derived from published RNA sequencing (RNA-seq) experi-
ments in isolated murine neuronal, endothelial, and glial cells (29).

A cluster of five closely related astrocyte- and microglia-enriched 
modules (M30, M29, M18, M24, and M5) demonstrated strong posi-
tive correlations to AD neuropathology (Fig. 2B). Ontological analysis 
linked these glial modules to cell growth, proliferation, and immu-
nity (Fig. 2C and table S2E). Two additional glial modules, M8 and 
M22, were also strongly up-regulated in disease. M8 was highly 
associated with the Toll-like receptor pathway, a signaling cascade 
that plays a critical role in the innate immune response (30). Mean-
while, M22 was strongly linked to posttranslational modification. The 
oligodendrocyte-enriched M2 demonstrated strong positive correla-
tions to AD pathology and ontological links to nucleoside synthesis and 
DNA replication, suggesting heightened cell proliferation in disease. 
Overall, these findings supported the glial module elevations we have 
previously observed in the AD network proteome (13, 17). Many of 
the AD-associated glial modules in the current discovery network 
showed lower expression levels in control and PD cases, highlighting 
the disease specificity underlying their elevations in AD (fig. S2C).

There were only four modules (M1, M3, M10, and M32) in our 
network proteome with strong negative correlations to AD pathol-

ogy (P < 0.05) (Fig. 2, B and C). M1 and M3 were both enriched with 
neuronal markers. While M1 was highly associated with synaptic 
signaling, M3 was strongly linked to mitochondrial function. M10 
and M32 featured no evidence of cell type enrichment. M32 mirrored 
M3 in its links to cellular metabolism, while M10 was highly associ-
ated with cell growth and microtubule function. All four of these 
modules were increased in controls and PD compared to AD, con-
ferring disease specificity to their AD changes (fig. S2C). Overall, these 
results supported the decreased abundance of neuronal-enriched 
modules we have previously observed in AD (13, 17). In summary, 
network analysis of our discovery brain proteome yielded modules 
with AD-specific alterations consistent with our prior findings.

Disease-related brain modules are preserved in AsymAD
AD is characterized by an early, asymptomatic phase (AsymAD) in 
which individuals exhibit amyloid accumulation in the absence of 
clinical cognitive decline (5, 31). This asymptomatic stage represents 
a critical window for early detection and intervention. We have pre-
viously demonstrated strong module preservation of AsymAD and 
AD brain network proteomes across independent datasets (13, 17). 
To ensure our current discovery brain network aligned with these 
previous findings, we analyzed the preservation of our 44 modules 
in a replication dataset derived from 27 DLPFC tissues comprising 
control (n = 10), AsymAD (n = 8), and AD (n = 9) cases. The con-
trol and AD samples were among those included in the analysis in 
our discovery brain cohort (table S1B), while the AsymAD cases 
were unique to only the replication cohort. These AsymAD cases, 
also derived from the Emory Goizueta ADRC brain bank, featured 
abnormally high amyloid levels (mean CERAD, 2.8 ± 0.5) despite 
normal cognition at death (table S1B).
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type associations of each protein module were assessed using a hypergeometric Fisher’s exact test (FET) (bottom). The strength of the red shading indicates the degree 
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TMT-MS analysis of these 27 brain tissues resulted in the quan-
tification of 11,244 protein groups. This final count included only 
those proteins quantified in at least 50% of samples. This replication 
dataset comprised 8638 of the 8817 proteins (98.0%) detected in our 
discovery brain analysis and featured nearly 3000 significantly altered 
proteins (P < 0.05, post-ANOVA Tukey pairwise t test) between the 
control and AD cohorts (table S2F). Of these differentially expressed 
proteins, 910 also demonstrated significantly altered levels between 
AD and control cases of the discovery brain proteome (P < 0.05, 
post-ANOVA Tukey pairwise t test). Notably, these 910 markers were 
highly consistent in their direction of change between proteomes 
(r = 0.94, P < 1.0 × 10−200) (fig. S3A). Among increased proteins, 
those featuring the most concordant changes between datasets were 
largely members of the glial-enriched M5 and M18 modules (MDK, 
COL25A1, MAPT, NTN1, SMOC1, and GFAP). Among decreased 
proteins, those with the most concordant changes were almost ex-
clusively members of the synapse-associated M1 module (NPTX2, 
VGF, and RPH3A). We further validated the AD-associated alter-
ations of midkine (MDK), CD44, secreted frizzled related protein 1 
(SFRP1), and VGF by immunoblotting (fig. S3B). Module preserva-
tion analysis demonstrated that approximately 80% of protein 
modules (34/44) in the discovery brain proteome were significantly 
conserved (z-score > 1.96, FDR-corrected P < 0.05) in the replication 
dataset (fig. S3C). Fourteen of these modules were exceptionally pre-
served (z-score > 10, FDR-corrected P < 1.0 × 10−23) between the two 
proteomes. Overall, the high agreement in differential expression and 
module composition between the discovery and replication brain 
proteomes highlighted the reproducibility of protein alterations in 
the AD frontal cortex. In addition, it confirmed that AsymAD and 
more advanced disease share a very similar brain network structure.

A more detailed analysis of differential expression in the brain 
replication dataset highlighted a notable degree of AsymAD protein 
alterations, including a total of 151 significantly altered proteins 
(P < 0.05) between AsymAD and controls (fig. S3D). Concordant 
with amyloid burden, APP was significantly elevated in both the 
AsymAD and AD brain. MAPT was significantly altered only in AD, 
consistent with increased tangle levels and their known correlation 
to cognitive decline (5, 7). Glial-enriched modules (M5 and M18) 
were highly reflected among proteins increased in AsymAD, while 
the neuronal-linked M1 module was most represented among pro-
teins decreased in AsymAD. Many of these AsymAD markers demon-
strated even greater changes in symptomatic disease. Among these 
markers was SMOC1, a glial protein belonging to M18 with links to 
brain tumors and eye and limb development (32). MDK, a heparin-
binding growth factor linked to cell growth and angiogenesis 
(33), was another M18 member that demonstrated significant in-
creases in AsymAD compared to controls, followed by even greater 
increases in AD. In contrast, the synaptic protein neuropentraxin 2 
(NPTX2) was significantly decreased in the AsymAD brain. NPTX2 
has been previously linked to neurodegeneration and has a well-
established role in mediating the excitatory synapse (34). Overall, these 
results revealed a diverse range of preclinical protein changes in AD 
that appear to progress with disease severity.

Overlap between brain protein and RNA networks reveals 
shared and protein-specific module changes in AD
Given the significant depth of protein coverage we achieved in our 
discovery brain proteome, we sought to gain a more comprehensive 
understanding of its overlap with the AD transcriptome at the net-

work level. We thus compared the module overlap between our 
discovery brain proteome and an RNA network we previously gener-
ated from the microarray measurements of 18,204 genes across AD 
(n = 308) and control (n = 157) DLPFC tissues (13). We identified a 
total of 20 distinct RNA modules, many demonstrating enrichment 
for specific cell types, including neurons, oligodendrocytes, astro-
cytes, and microglia (Fig. 3A). The fold change of these modules in 
AD is shown in Fig. 3B. Consistent with a prior protein-RNA over-
lap analysis we performed using a less deep label-free MS proteome 
(~3000 proteins) (13), the majority of the 44 modules in our discovery 
brain proteome network did not significantly overlap in transcrip-
tome network. Even among those 34 protein modules highly pre-
served across our discovery and replication brain proteomes, only 
14 (~40%) demonstrated statistically significant overlap with the 
transcriptome by Fisher’s exact test (FET) (Fig. 3A). Several protein 
modules associated with DNA damage repair (P-M25 and P-M19), 
protein translation (P-M7 and P-M20), RNA binding/splicing (P-M16 
and P-M21), and protein targeting (P-M13 and P-M23) did not 
overlap with modules in the transcriptome. Therefore, despite 
using a much deeper proteomic dataset in the current overlap anal-
ysis (13), the bulk of the AD network proteome did not map to the 
transcriptomic network.

Most of the overlapping protein and RNA modules shared similar 
cell type enrichment profiles and consistent directions of change in 
AD (Fig. 3, B and C). Namely, the synapse-associated M1 module of 
the brain proteome (P-M1) mapped to three neuron-enriched cognate 
RNA modules (R-M1, R-M9, and R-M16), which all demonstrated 
decreased levels in AD. Likewise, the glial-enriched M5 and M18 pro-
tein modules overlapped with RNA modules enriched with astro-
cytic and microglial markers (R-M3, R-M7, and R-M10) and highly 
increased in disease. These shared module characteristics between 
the two datasets further support the cell type enrichment and dis-
ease-associated changes we observed in our brain proteomes. How-
ever, we observed many notable differences between the RNA and 
protein levels of individual markers within these shared modules. A 
correlation analysis of the proteomic and transcriptomic differential 
expression of molecules within these overlapping modules (Fig. 3D) 
highlighted this discordance. For example, APP and several other 
glial module proteins (NTN1, MDK, COL25A1, ICAM1, and SFRP1) 
demonstrated substantial increases in the AD proteome, but little to 
no change in the AD transcriptome. These protein-specific changes, 
likely a result of strong associations with amyloid plaques (23, 35), 
highlight the proteome as a source of pathological alterations that 
may not be reflected in the transcriptome.

Integration of AD brain and CSF proteomes yields fluid 
biomarker panels reflective of brain network pathology
After independently analyzing our discovery brain and CSF pro-
teomes, we then applied an integrative analysis to the two datasets 
to identify AD CSF biomarkers linked to brain network patho-
physiology. It was first essential that we define the overlap of the 
two proteomes. While it is well accepted that the CSF mirrors neuro
chemical changes in the AD brain (4), the precise degree of overlap 
between the AD brain and CSF proteomes is unclear. By comparing 
the number of shared gene products detected among our two pro-
teomes, we found that nearly 70% (n = 1936) of proteins identified 
in the CSF were also quantified in the brain (Fig. 4A). The bulk of these 
overlapping proteins (n = 1721) mapped to one of the 44 coexpression 
modules derived from the discovery brain dataset (Fig. 4B). As 
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expected, the six largest brain modules (M1 to M6) demonstrated 
the greatest amount of CSF overlap. However, there were smaller 
brain modules (e.g., M15 and M29) that achieved an unexpectedly 
high degree of overlap, greater than brain modules twice their size. 
This prompted us to take a more detailed, statistically driven ap-
proach to calculating overlap between the brain and CSF.

Using a one-tailed FET, we assessed the significance of protein 
overlap between the CSF proteome and individual brain modules. This 
analysis revealed a total of 14 brain modules with statistically signifi-
cant overlap in the discovery CSF dataset (FDR-corrected P < 0.05), 
as well as one additional module (M18) whose extent of overlap ap-
proached significance (FDR-corrected P = 0.06) (Fig. 4C, top row). 
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We were also interested in modules that overlapped strongly with 
differentially expressed CSF proteins. Therefore, we applied two 
additional FET analyses to determine those brain modules with 
meaningful overlap among (i) CSF proteins significantly increased 
in AD and (ii) CSF proteins significantly decreased in AD (P < 0.05, 
pairwise t test AD/control). As shown in the middle and bottom 
rows of Fig. 4C, these additional analyses revealed that 8 of the 
44 brain modules significantly overlapped with proteins increased 
in AD CSF (M12, M1, M2, M18, M5, M44, M33, and M38), while 

only two modules (M6 and M15) demonstrated meaningful overlap 
with proteins decreased in AD CSF. As expected, all 10 of these mod-
ules were among the 15 modules with the highest degree of overlap 
with the CSF proteome. We therefore hypothesized that these 
15 modules were collectively high-yield sources of brain-derived 
CSF biomarkers of AD.

We collapsed these 15 overlapping modules into five large pro-
tein panels based on their adjacency in the WGCNA dendrogram and 
associations with cell types and gene ontologies (Fig. 4D). The first 
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panel comprised modules strongly enriched with neuronal markers 
and synapse-associated proteins (M1 and M12). This synaptic panel 
contained a total of 94 proteins with significantly altered levels in the 
CSF proteome, making it the largest source of brain-linked CSF 
markers among the five panels. The second panel (M6 and M15) 
demonstrated strong links to endothelial cell markers and vascular on-
tologies, such as “wound healing” (M6) and “regulation of humoral 
immune response” (M15). M15 was also highly linked to lipoprotein 
metabolism, a process intimately associated with the endothelium 
(36). This vascular panel harbored 34 brain-linked CSF markers. The 
third panel comprised modules (M2 and M4) significantly linked to 
oligodendrocyte markers and cellular proliferation. For example, 
the top ontological terms for M2 included “positive regulation of 
DNA replication” and “purine biosynthetic process.” Meanwhile, 
those of M4 included “glial cell differentiation” and “chromosome 
segregation.” This myelination panel harbored 49 brain-linked 
CSF markers.

The fourth panel comprised the largest number of modules (M30, 
M29, M18, M24, and M5), nearly all of which were significantly 
enriched with microglia and astrocyte markers. Similar to the my-
elination panel, this fourth panel also contained modules strongly 
associated with cell proliferation (M30, M29, and M18). Other 
modules in this group were highly associated with immunological 
terms, such as “immune effector process” (M5) and “regulation of 
immune response” (M24). This glial immunity panel contained 
42 brain-linked CSF markers. Finally, the last panel included 52 
brain-linked markers over four modules (M44, M3, M33, and M38), 
all of which were ontologically linked to energy storage and metab-
olism. The largest of these modules (M3) was strongly associated with 
mitochondria and enriched with neuronal-specific markers. M38, one 
of the smaller module members of this metabolic panel, also demon-
strated modest neuronal specificity.

Overall, these five panels reflected a wide range of cell types and 
functions in the AD cortex and collectively harbored 271 brain-
linked CSF markers (table S2G). To assess the validity of these MS 
results, we reanalyzed a subset of these 271 biomarkers (n = 36) in 
our discovery CSF samples using a proximity extension assay 
(PEA), an orthogonal antibody-based technique with multiplexing 
capacity and high sensitivity and specificity. These 36 targets demon-
strated AD fold changes by PEA that strongly correlated with our 
MS-based findings (r = 0.87, P = 5.6 × 10−12), strongly validating the 
results of our integrative MS analysis (fig. S4).

Synaptic, vascular, and metabolic panels demonstrate 
divergent expression trends in the brain and CSF
The biological themes highlighted by our five panels, from synaptic 
signaling to energy metabolism, have all been implicated in the 
pathogenesis of AD (1–3). Accordingly, all 15 modules comprising 
these panels correlated to AD pathology in our discovery brain pro-
teome (Fig. 2B). Most notable were the highly positive pathological 
correlations among our glial modules and the strongly negative patho-
logical correlations of our largest neuronal modules (M1 and M3). 
The differential expression analysis of our replication brain proteome 
(fig. S3D) also highlighted M5- and M18-derived glial proteins 
among those most increased and M1-associated synaptic proteins 
among those most decreased in both AsymAD and symptomatic 
AD. These observations indicated that the 271 CSF markers we had 
identified among the five panels were linked to disease processes in 
the AD cortex, including those occurring in early asymptomatic stages.

To better resolve the direction of change of panel proteins in the 
brain and spinal fluid, we plotted the following for each of the 15 
overlapping modules: (i) module abundance levels in the discovery 
brain dataset and (ii) the differential expression of module proteins 
in the CSF (fig. S5). Module abundances, or eigenprotein values, in 
the brain were determined using WGCNA as previously described 
(13). Volcano plots were used to depict the differential expression 
(AD/control) of module proteins in the CSF. These plots revealed 
that three of the five panels demonstrated divergent expression 
trends in the brain and spinal fluid. Both modules of the synaptic 
panel (M1 and M12) demonstrated decreased abundance levels in 
the AD brain but overlapped significantly with proteins increased 
in AD CSF (fig. S5A). The neuronal-associated modules comprising 
the metabolic panel (M3 and M38) demonstrated similarly dis-
cordant brain and CSF expression patterns (fig. S5E). The vascular 
panel also displayed divergent expression trends, although its modules 
(M6 and M15) were modestly increased in the AD brain and decreased 
in diseased CSF (fig. S5B). The two remaining panels comprised large 
glial networks whose proteins were concordantly up-regulated in both 
compartments (fig. S5, C and D).

Note that these trends were not universal for all markers within 
these panels. For instance, the synaptic panel included several pro-
teins significantly decreased in the AD brain and CSF (fig. S5A). 
Among these down-regulated CSF markers were NPTX2 and VGF 
of M1, as well as chromogranin B of M12. However, despite these 
few exceptions, most of our synaptic markers were elevated in the 
AD spinal fluid. Overall, these analyses were able to distinguish sta-
tistically meaningful trends in both the brain and CSF levels for 
each of our five panels. These trends highlighted complex and often 
divergent relationships between brain and CSF protein expression 
in AD.

CSF biomarker panels demonstrate reproducibility 
and disease specificity
We then narrowed our 271 panel biomarkers to the most promising 
and reproducible targets using a high-throughput MS replication 
analysis (CSF replication 1) (Fig. 5A). CSF replication 1 comprised 
a total of 96 samples derived from the Emory Goizueta ADRC, in-
cluding control, AsymAD, and AD cohorts (table S1A). These AD 
cases featured mild cognitive decline (mean MoCA, 20.0 ± 3.8), as 
well as CSF-confirmed AD biomarker changes (table S1A). In con-
trast to our discovery CSF analysis, this replication was performed 
using a more efficient, high-throughput, “single-shot” MS method 
(no off-line fractionation), comprising a simplified sample preparation 
protocol without immunodepletion of individual samples. Instead, 
a single immunodepleted “boost channel” was used to amplify the 
signals of less abundant proteins (37). Although it reduced total 
proteomic coverage, this single-shot approach markedly decreased 
machine time and increased the number of TMT-labeled samples 
that could be feasibly analyzed (17, 38). Overall, this analysis resulted 
in the identification of 6487 peptides mapping to 1183 protein 
groups across the 96 cases. As in our discovery CSF analysis, only 
those proteins quantified in at least 50% of samples were included 
in subsequent calculations, and the data were regressed for effects of 
age and sex. This resulted in the final quantification of 792 protein 
groups, 95% of which were also identified in the discovery CSF 
dataset.

Since we were specifically interested in validating our 271 brain-
linked CSF targets from our integrative analysis, we limited further 
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examination of this replication proteome to only these markers. Of 
these 271 proteins, 100 were detected in CSF replication 1. Figure 
S6A demonstrates the differential expression of these 100 overlap-
ping markers between the control and AD replication samples. 
Synaptic and metabolic panel proteins were most increased in AD, 
while vascular proteins comprised those most decreased in disease. 
The majority (n = 70) of these 100 overlapping markers maintained 
the same directionality of change in the two datasets (fig. S6B). These 
70 validated brain-linked CSF markers (table S2H) largely reflected 
previously observed panel expression trends, i.e., down-regulation 
of vascular proteins and up-regulation of all other panels. Only 10 
of these 70 validated proteins demonstrated abundance changes in 
AD that contradicted these panel trends. To generate panels best 
reflective of overarching trends in brain and CSF, we excluded these 
10 proteins from our final validated panels of interest (Fig. 5A). 
Therefore, our panels ultimately included a total of 60 proteins vali-
dated across two independent CSF AD cohorts analyzed using dif-
ferent sample preparations and MS platforms. z-score expression 
plots of these final panels across the control and AD cases of CSF rep-
lication 1 confirmed the panel trends observed in our discovery CSF 
cohort (Fig. 5B).

Among these 60 panel proteins were molecules with known con-
nections to AD such as osteopontin (SPP1), a proinflammatory 
cytokine that has been linked to AD across several studies (39–41), 
and GAP43, a synaptic protein with well-characterized links to 
neurodegeneration (42). Among our most strongly validated proteins 
were markers associated with other neurodegenerative diseases, 
such as the amyotrophic lateral sclerosis (ALS)–linked superoxide 
dismutase 1 (SOD1) and parkinsonism associated deglycase (PARK7). 
We also validated many other markers, such as SMOC1 and brain 
abundant membrane attached signal protein 1 (BASP1), with lim-
ited previous connections to neurodegeneration. Notably, we had 
difficulty reliably detecting MAPT and certain other AD-associated 
proteins (e.g., NEFL and NRGN) using this high-throughput single-
shot method due to their low overall abundances in the CSF pro-
teome (43, 44).

We then examined these 60 prioritized panel markers in three 
additional replication analyses. In CSF replication 2, we used single-
shot TMT-MS to analyze an independent cohort of 297 control and 
AD samples from the Emory Goizueta ADRC (17). CSF replication 3 
comprised a reanalysis of available TMT-MS data from 120 control 
and patients with AD in Lausanne, Switzerland (45). We detected 
more than two-thirds of our 60 prioritized markers in each of these 
datasets. Although the Swiss study used a different MS platform and 
TMT quantification approach (45, 46), we strongly reproduced our 
panel trends across both replication analyses (Fig. 5, C and D, and 
table S2, I and J). To assess the disease specificity of our panels, we 
used TMT-MS to analyze a fourth replication dataset (CSF replica-
tion 4) composed of not only control (n = 18) and AD (n = 17) 
cases but also PD (n = 14), ALS (n = 18), and frontotemporal 
dementia (FTD) samples (n = 11) (table S1A). We successfully quanti-
fied nearly two-thirds of panel proteins (38 of 60) in this cohort. 
These results highlighted AD-specific changes across all five biomarker 
panels (Fig. 5E and table S2K). Elevations in the metabolic panel 
demonstrated the strongest AD specificity, followed closely by the 
myelination and glial panels. To a lesser degree, FTD demonstrated 
increases among these panels as well, perhaps reflecting similar un-
derlying network alterations (17). In contrast, ALS and PD demon-
strated myelination, glial, and metabolic panel profiles nearly identical 

to those of controls. Overall, despite differences in sample prepara-
tion, MS platforms, and TMT quantification approaches, these rep-
lication analyses demonstrated highly consistent, AD-specific changes 
in our prioritized panel markers across >500 unique CSF samples.

CSF biomarker panels reveal heterogeneity among 
AsymAD cases
The widespread recognition that AD neurodegeneration begins years 
before the onset of cognitive symptoms has created an urgent need 
for biomarkers of AsymAD (5, 31). However, increasing evidence 
suggests that the biology of AsymAD is far from homogeneous and 
that a complex interplay of risk and resilience contributes to con-
siderable individual variability in the subsequent progression of dis-
ease (47). While used to identify AsymAD cases, the levels of core 
CSF biomarkers (A1–42, total tau, and p-tau) have still not demon-
strated the ability to reliably predict which individuals will progress 
to dementia (4, 7), indicating that more holistic biomarker tools en-
compassing multiple aspects of brain-based physiology will likely be 
required to accurately risk-stratify this population. Thus, we sub-
sequently analyzed our AD-validated biomarker panels in the AsymAD 
population of CSF replication 1. These 31 AsymAD cases demon-
strated abnormal core biomarker levels (A1–42/total tau ELISA 
ratio, <5.5) with intact cognition (mean MoCA, 27.1 ± 2.2) (table S1A). 
In addition, all individuals with AsymAD had clinical dementia rat-
ings of 0, indicating no evidence of decline in everyday cognitive or 
functional performance.

We first analyzed the levels of our validated panels across all 
96 cases of CSF replication 1, including the AsymAD cohort. We 
found that several panels featured notable AD-like abundance changes 
in the AsymAD group, with the vascular panel trending down in 
AsymAD and all other panels trending upward (Fig. 6A). Accord-
ingly, all panels demonstrated highly significant correlations to ELISA 
A1–42 and total tau levels (Fig. 6B). In contrast, panel correlations 
to MoCA scores were comparatively less robust. One of the more 
notable findings of these analyses was the large range of panel abun-
dances within the AsymAD cohort. As shown in Fig. 6A, the panel 
levels of the AsymAD group often spanned those of both the con-
trol and AD cohorts, demonstrating a relatively high degree of 
variability. To further explore this AsymAD heterogeneity, we ap-
plied a multidimensional scaling (MDS) analysis to the 96 cases of 
CSF replication 1. MDS analysis allows for the visualization of 
similarities among cases based on certain variables in a dataset. For 
this clustering analysis, we used the levels of only those validated 
panel markers with statistically significant alterations (P < 0.05, 
AD/control) in both the CSF discovery and replication 1 proteomes 
(n = 29) (table S2L). This analysis generated clear spatial clusters 
between our control and AD cases (Fig. 6C). In contrast, certain 
AsymAD cases clustered unequivocally among the controls, while 
others were situated among AD cases. To further explore this AsymAD 
heterogeneity, we used our MDS plot to define two groups among 
these AsymAD cases. The first group comprised AsymAD cases 
that clustered closer to controls (n = 19), while the second featured 
AsymAD cases with marker profiles closer to AD (n = 12).

We examined the differential protein expression between these 
control-like and AD-like AsymAD cases (Fig. 6D and table S2L). 
The resulting volcano plot revealed 14 panel markers significantly 
altered between these two groups. Most of these markers were 
members of the synaptic and metabolic panels. However, SOD1 and 
myristoylated alanine rich protein kinase C substrate (MARCKS), 
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Fig. 6. CSF biomarker panels identify subgroups within AsymAD. (A) Expression levels (z-score) of CSF biomarker panels across all 96 samples of the CSF replication 1 
cohort, including AsymAD. ANOVA with Tukey post hoc correction was used to assess the statistical significance of panel abundance changes. (B) Correlation analyses of 
panel protein abundance levels (z-score) to MoCA scores and ELISA A1–42 and total tau levels across the CSF replication 1 samples. Pearson correlation coefficients with 
associated P values are shown. (C) MDS of the 96 CSF replication 1 cases based on the abundance levels of the 29 validated panel markers that were significantly altered 
[P < 0.05 AD/control (CT)] in both the discovery and CSF replication 1 datasets. This analysis was used to divide the AsymAD group into control-like (n = 19) and AD-like 
(n = 12) subgroups. (D) Volcano plot displaying the log2 fold change (x axis) against the −log10 statistical P value for all CSF replication 1 proteins differentially expressed 
between the two AsymAD subgroups. Panel biomarkers are colored. (E) CSF replication 1 abundance levels of select panel biomarkers differentially expressed between 
AsymAD subgroups. ANOVA with Tukey post hoc correction was used to assess statistical significance.
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members of the myelin and glial immunity panels, respectively, 
were also among this group (Fig. 6, D and E). The vascular panel 
also contributed two markers notably decreased in the AD-like 
AsymAD group, including AE binding protein 1 (AEBP1) and 
complement family member C9. The control-like and AD-like 
AsymAD subgroups demonstrated no significant differences in 
ELISA AB1-42 (P = 0.38) and p-tau (P = 0.28) levels, but did signifi-
cantly differ in total tau levels (P = 0.0031) (fig. S7). There were 
several panel markers that demonstrated alterations between the 
two AsymAD subgroups of much greater significance than total tau 
levels (e.g., YWHAZ, SOD1, and MDH1) (Fig. 6E). Overall, these 
results indicated that our validated panels may harbor biomarkers 
capable of subtyping and potentially risk-stratifying individuals 
with asymptomatic disease.

DISCUSSION
Systems-based biomarker tools are urgently needed to better measure 
and target the diverse pathophysiology underlying AD. These tools 
promise to not only transform our diagnostic framework of AD but 
also propel us toward effective, patient-tailored therapeutic strate-
gies (1, 2). To this end, we applied an unbiased integrative proteomics 
approach to AD brain and CSF to identify network-based CSF bio-
markers reflective of a wide range of brain-based pathophysiology. 
Our analyses yielded five CSF biomarker panels that (i) reflect syn-
aptic, vascular, myelin, immunological, and metabolic dysfunction; 
(ii) demonstrate robust reproducibility across varied MS platforms; 
and (iii) exhibit progressive disease-specific changes throughout early 
and late AD. Overall, these findings represent a promising step 
toward the development of a diverse, reliable, network-oriented 
biomarker tool for AD research and clinical applications.

Our results showcase the highly conserved organization of the 
AD brain network proteome and support its use as an anchor for 
systems-based biomarker development. Our analyses demonstrated 
strong module conservation across two independent TMT-MS data-
sets comprising both AD and AsymAD brains. These findings ex-
pand on our prior work demonstrating strong module preservation 
across >2000 brain tissues derived from the frontal, parietal, and 
temporal cortex of multiple independent cohorts (17). This consensus 
network mirrored a variety of the disease-associated changes observed 
in the current study, including increases in glial-enriched inflam-
matory modules and decreases in neuronal-enriched modules. As 
in the current study, this large-scale network also featured significant 
module changes in AsymAD, showcasing a diverse range of preclinical 
pathophysiology (17).

Nevertheless, within this highly conserved systems-based frame-
work exists more granular biological heterogeneity, particularly 
among individuals in the earliest stages of AD. Our biomarker panels 
were able to delineate two subgroups within AsymAD that demon-
strated notable differential expression of multiple CSF markers. Our 
panels were able to highlight biological distinctions among these 
two subgroups that were not readily apparent among core AD bio-
marker levels. These AsymAD individuals all featured abnormally 
low A1–42/total tau ratios compared to controls. However, only total 
tau levels differed significantly between the two AsymAD subgroups, 
while A1–42 and p-tau levels remained relatively comparable. Since 
high CSF tau appears to predict cognitive symptoms better than 
A1–42 levels (7), we suspect that these two AsymAD cohorts may 
carry different risks of disease progression. Given our limited AsymAD 

sample size and lack of longitudinal data, further studies are needed 
to confidently draw these conclusions. However, these results 
suggest that systems-based CSF panels could enhance our ability to 
effectively risk-stratify individuals in the asymptomatic stages of 
disease.

Overall, our findings support a role for a variety of biological 
functions in AD pathogenesis. However, dysregulated energy metab-
olism emerged as a prominent theme across all five of our validated 
marker panels. Metabolic proteins, such as hypoxanthine-guanine 
phosphoribosyltransferase 1 (HPRT1) and lactate dehydrogenase A 
(LDHA), were among the most strongly validated synaptic bio-
markers, demonstrating highly reproducible increases in AD CSF. 
Our vascular and glial panels also featured several markers involved 
in the metabolism of oxidative species. These findings align with the 
critical role that metabolic processes play throughout the brain to 
meet the high energy demands of not only neurons but also astro-
cytes and other glial cells (17, 48). Our results support the growing 
evidence that altered redox potential and disrupted energy pathways 
may comprise the central link between several key processes impli-
cated in AD pathogenesis, including mitochondrial dysregulation, 
glial-mediated inflammation, and vascular damage (49). Furthermore, 
metabolic CSF biomarkers comprised the bulk of differentially 
abundant proteins between our control-like and AD-like AsymAD 
subgroups, suggesting that these disruptions of energy and redox 
pathways may be critical during preclinical stages of disease.

The divergent brain and CSF panel trends we observed also have 
intriguing biological implications. The neuron-enriched synaptic 
and metabolic panels demonstrated decreased levels in the AD brain 
and increased abundance in CSF. Given that neurons are enriched 
with energy-generating mitochondria at synapses to fuel their 
numerous specialized signals (50), the similarities in the expression 
profiles of these two neuronal panels are expected. Neuronal loss 
and the extrusion of damaged cells could account for these brain 
and CSF panel trends in later disease but do not explain the early 
panel changes we observed (13). One possible explanation for these 
findings in early, asymptomatic disease is aberrant synaptic pruning. 
Emerging evidence in mouse models has suggested that microglial-
mediated synaptic phagocytosis may be aberrantly activated in AD 
and account for early synaptic loss in the brain (51). This discarded 
synaptic material may then accumulate in CSF, accounting for the 
CSF increases we observed in our neuronal panels. Immune-mediated 
synaptic pruning may also partially account for the elevations of glial 
proteins we observed in both the brain and CSF throughout the 
course of disease. Aside from synaptic pruning, global abnormal-
ities in exocytic pathways may also result in the divergent brain and 
CSF expression of neuronal markers. Multiple studies have demon-
strated altered exosome content in AD brain pathogenesis (52). 
Exocytic pathways have also been linked to A propagation (53, 54). 
Notably, the inhibition of exosome secretion may reduce AD-like 
pathology in a transgenic mouse model of AD (55).

Meanwhile, proteins in the vascular panel demonstrated modest 
increases in the AD brain but stark decreases in CSF. Blood-brain 
barrier (BBB) dysfunction could partially explain these findings. 
BBB breakdown in AD has been demonstrated by numerous inde-
pendent postmortem human studies (56, 57). These investigations 
have confirmed a variety of aberrant activity surrounding this tightly 
sealed layer of endothelial cells, including brain capillary leakages 
and the perivascular accumulation of blood-derived proteins (57). 
This could provide a simple explanation for elevated vascular 
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proteins in the brain but fails to entirely account for depletion of these 
same proteins in CSF. One possibility is that the central nervous 
system is actively sequestering these molecules to address heightened 
levels of inflammation and oxidative stress. Several of the most de-
creased CSF proteins within this panel, particularly those involved 
in lipoprotein regulation, have been implicated in neuroprotective 
processes that suppress harmful levels of inflammation and reactive 
oxygen species. This is certainly true of paroxonase 1 (PON1), a 
lipoprotein-binding enzyme responsible for reducing oxidative 
stress levels in the circulation (58, 59). Alpha-1-microglobulin/
bikunin precursor (AMBP), another significantly down-regulated 
vascular panel marker, serves as a precursor for the lipid transporter, 
bikunin, which has also been implicated in inflammation suppres-
sion and neuroprotection (60, 61).

Despite fueling a variety of interesting hypotheses, the inability 
to directly probe biochemical disease mechanisms is a well-known 
limitation of discovery-driven proteomic analysis. Thus, further 
studies are necessary to confidently define the mechanisms under-
lying these biomarker panels. To progress toward clinical MS-based 
assay development, future directions will also require large-scale 
biomarker validation using targeted quantitation methods, such as 
selective or parallel reaction monitoring (62). We recently validated 
many of the CSF protein changes described here using parallel reac-
tion monitoring (63). Several prioritized panel targets were quantified 
with marked precision, including YWHAZ, ALDOA, and SMOC1, 
which map to our synaptic, metabolic, and inflammatory panels, 
respectively (63). Data-independent acquisition (DIA) and other 
MS-based strategies may also prove useful for target validation. 
Bader et al. (64) recently demonstrated significant overlap between 
the AD biomarkers identified in our CSF discovery dataset and an 
independent DIA-MS dataset composed of nearly 200 CSF samples 
across three different European cohorts. These recent studies sup-
port the translational potential of our panels into reliable MS-based 
assays. Traditional antibody- and aptamer-based assays will also be 
important to further develop key AD biomarkers that, due to low CSF 
abundance, are more difficult to detect using high-throughput MS 
methods. NEFL and NRGN are two such examples of low-abundant 
CSF biomarkers that mapped to panels in our integrative analysis 
but could not be reliably detected using our single-shot MS strategy. 
Multiplex antibody-based targeting strategies, such as PEA, may 
facilitate clinical translation of these markers.

Overall, this study offers a unique proteomic approach for the 
identification and validation of diverse systems-based CSF AD bio-
markers. The optimization of these marker panels across additional 
AD cohorts and MS platforms could prove promising for the ad-
vancement of AD risk stratification and therapeutics. Studies assess-
ing the longitudinal levels of these panels over time will also be critical 
to determine which combination of markers best stratify risk in early 
disease and change in accordance to disease severity.

MATERIALS AND METHODS
CSF samples
Except for the CSF replication 3 samples, all CSF samples used in 
this study were collected under the auspices of the Emory ADRC 
or closely affiliated research institutions. In total, there were four 
cohorts of Emory CSF samples used in these proteomics studies. The 
discovery CSF cohort contained samples from 20 healthy controls and 
20 patients with AD. CSF replication 1 included samples from 32 

healthy controls, 31 individuals with AsymAD, and 33 individuals 
with AD. CSF replication 2 contained 147 control and 150 AD samples. 
The multidisease CSF replication 4 cohort comprised 18 control, 
17 AD, 19 ALS, 13 PD, and 11 FTD samples. All Emory research 
participants were provided informed consent under protocols ap-
proved by the Institutional Review Board at Emory University. CSF 
was collected by lumbar puncture and banked according to the 
2014 National Institute on Aging best practice guidelines for Alzheimer’s 
Disease Centers (https://alz.washington.edu/BiospecimenTaskForce.
html). Control and patients with AsymAD and AD received stan-
dardized cognitive assessments in the Emory Cognitive Neurology 
Clinic or Goizueta ADRC and their CSF samples subjected to ELISA 
A1–42, total tau, and p-tau analysis by the INNO-BIA AlzBio3 Luminex 
Assay (65). The ELISA values were used to support subject diagnostic 
classifications based on established AD biomarker cutoff criteria (66, 67). 
Basic demographic and diagnostic data for other CSF diagnoses 
(FTD, ALS, and PD) were also obtained from the Emory ADRC or 
affiliated research institutions. Summarized case metadata for these 
Emory CSF cases can be found in table S1A. Characteristics of the 
Swiss CSF replication 3 cohort were previously published (45).

Protein digestion of CSF
CSF discovery samples
To increase the depth of our discovery CSF dataset, immunodepletion 
of highly abundant proteins was performed before trypsin digestion. 
Briefly, 130 l of CSF from each of the 40 individual CSF samples 
was incubated with equal volume (130 l) of High Select Top14 
Abundant Protein Depletion Resin (Thermo Fisher Scientific, A36372) 
at room temperature in centrifuge columns (Thermo Fisher Scien-
tific, A89868). After 15 min of rotation, the samples were centrifuged 
at 1000g for 2 min. Sample flow-through was concentrated with a 
3K Ultra Centrifugal Filter Device (Millipore, UFC500396) by cen-
trifugation at 14,000g for 30 min. All sample volumes were diluted 
to 75 l with phosphate-buffered saline. Protein concentration was 
assessed by bicinchoninic acid (BCA) method according to the 
manufacturer’s protocol (Thermo Fisher Scientific). Immunodepleted 
CSF (60 l) from all 40 samples was digested with lysyl endopeptidase 
(LysC) and trypsin. Briefly, the samples were reduced and alkylated 
with 1.2 l of 0.5 M tris-2(-carboxyethyl)-phosphine and 3 l of 
0.8 M chloroacetamide at 90°C for 10 min, followed by water bath 
sonication for 15 min. Samples were diluted with 193 l of 8 M urea 
buffer [8 M urea and 100 mM NaHPO4 (pH 8.5)] to a final concen-
tration of 6 M urea. LysC (4.5 g; Wako) was used for overnight 
digestion at room temperature. Samples were then diluted to 1 M 
urea with 50 mM ammonium bicarbonate (ABC) (68). An equal 
amount (4.5 g) of trypsin (Promega) was added, and the samples 
were subsequently incubated for 12 hours. The digested peptide 
solutions were acidified to a final concentration of 1% formic acid 
(FA) and 0.1% trifluoroacetic acid (TFA) (66), followed by desalting 
with 50 mg of Sep-Pak C18 columns (Waters) as described previously 
(25). The peptides were subsequently eluted in 1 ml of 50% acetonitrile 
(ACN). To normalize protein quantification across batches (25), 
100 l of aliquots from all 40 CSF samples were combined to generate 
a pooled sample, which was then divided into five global internal 
standard (GIS) (48) samples. All individual samples and the pooled 
standards were dried by speed vacuum (Labconco).
CSF replication samples
Immunodepletion and digestion of CSF replication 3 samples have 
been previously described by Dayon and colleagues (45, 46). The 
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remaining replication samples were not individually immunodepleted. 
These nondepleted samples were digested in trypsin as previously 
described (17). For each replication analysis, 120 l of aliquots of 
eluted peptides from each sample were pooled together and split 
into equal volume aliquots for use as the global internal standard 
(48) for TMT labeling. All individual samples and the pooled stan-
dard were dried by speed vacuum (Labconco). To boost the signal 
of low abundance CSF proteins, a “boost” sample [i.e., a biological 
sample mimicking study samples but accessible in a much larger 
quantity (37, 69)] was prepared for each replication analysis by com-
bining 125 l from each sample into one pooled CSF sample (17). 
This pooled sample was subsequently immunodepleted using 12 ml 
of High Select Top14 Abundant Protein Depletion Resin (Thermo 
Fisher Scientific, A36372), digested as described above, and included 
in subsequent multiplex TMT labeling.

TMT labeling of CSF
CSF discovery samples
All 40 samples and 5 GIS samples were divided into five batches, 
labeled using an 11-plex TMT kit (Thermo Fisher Scientific, A34808, 
lot no. for TMT 10-plex: SI258088, 131C channel SJ258847), and 
derivatized as previously described (25). See the “Data and materials 
availability” section for sample to batch arrangement. Nine of the 
11 TMT channels were used for labeling: 127N, 128N, 128C, 129N, 
129C, 130N, 130C, 131N, and 131C. Briefly, 5 mg of each TMT re-
agent was dissolved in 256 l of anhydrous ACN. Each CSF peptide 
digest was resuspended in 50 l of 100 mM triethylammonium 
bicarbonate (TEAB) buffer, and 20.5 l of TMT reagent solution 
was subsequently added. After 1 hour, the reaction was quenched 
with 4 l of 5% hydroxylamine (Thermo Fisher Scientific, 90115) 
for 15 min. After labeling, the peptide solutions were combined 
according to the batch arrangement. Each TMT batch was desalted 
with 100 mg of Sep-Pak C18 columns (Waters) and dried by speed 
vacuum (Labconco).
CSF replication samples
TMT labeling of CSF replication 3 samples has been previously de-
scribed by Dayon and colleagues (45, 46). Multiplex TMT labeling 
of the remaining replication samples was performed as previously 
described (17). For each replication analysis, all CSF samples, in-
cluding the GIS and boost samples, were labeled using an 11-plex 
(CSF replications 1 and 2) or 16-plex (CSF replication 4) TMT kit 
(Thermo Fisher Scientific) (70). See the “Data and materials avail-
ability” section for sample to batch arrangement. One channel was 
dedicated to the boost sample in each plex. The immunodepleted 
boost sample was dissolved in 1.25 ml of 100 mM TEAB and labeled 
with 2 × 5 mg of reagent. In each batch, the pooled boost channel 
was equivalent to 50-fold volume of each of the CSF samples. 
After labeling, the peptide solutions were combined according to 
the batch arrangement. Each TMT batch was then desalted with 
100 mg of Sep-Pak C18 columns (Waters) and dried by speed 
vacuum (Labconco).

High-pH fractionation of CSF
To enhance the depth of the discovery CSF proteome, these samples 
were subjected to high-pH fractionation as previously described 
(71). TMT-labeled peptides (160 g) from each discovery sample 
were dissolved in 100 l of loading buffer [1 mM ammonium for-
mate in 2% (v/v) ACN], injected completely with an autosampler, 
and fractionated using a ZORBAX 300Extend-C18 column (2.1 mm 

by 150 mm, 3.5 m; Agilent Technologies) on an Agilent 1100 HPLC 
(high-performance liquid chromatography) system monitored at 
280 nm. A total of 96 fractions were collected over a 60-min gradient 
of 100% mobile phase A [4.5 mM ammonium formate (pH 10) in 
2% (v/v) ACN] from 0 to 2 min, 0 to 12% mobile phase B [4.5 mM 
ammonium formate (pH 10) in 90% (v/v) ACN] from 2 to 8 min, 12 to 
40% mobile phase B from 8 to 36 min, 40 to 44% mobile phase B 
from 36 to 40 min, 44 to 60% mobile phase B from 40 to 45 min, and 
60% mobile phase B until completion with a flow rate of 0.4 ml/min. 
The 96 fractions were collected with an even time distribution and 
pooled into 30 fractions.

MS analysis and data acquisition of CSF
CSF discovery samples
Discovery CSF samples were analyzed by MS/MS and the data ac-
quired from MS2 scans. An equal volume of each high-pH peptide 
fraction was first resuspended in loading buffer (0.1% FA, 0.03% 
TFA, and 1% ACN). Using an EASY-nanoLC system, peptide elu-
ents were separated on a C18 25-cm-long 75-M internal diameter 
(ID) fused silica column (New Objective, Woburn, MA) packed in-
house with a 1.9-m ReproSil-Pur C18-AQ resin (Maisch, Germany). 
Elution was performed over a 120-min gradient at a rate of 225 nl/min 
with buffer B ranging from 1 to 90% (buffer A, 0.1% FA in water; 
buffer B, 0.1% FA in ACN). An Orbitrap HF-X mass spectrometer 
(Thermo Fisher Scientific) was set to acquire data in positive ion 
mode using data-dependent acquisition. Each cycle consisted of one 
full MS scan, followed by a maximum of 10 MS/MS scans. Full MS 
scans were collected at a resolution of 120,000 [400 to 1600 mass/
charge ratio (m/z) range, 3 × 106 automatic gain control (AGC) tar-
get, and 100-ms maximum ion injection time]. All higher-energy 
collision-induced dissociation (HCD) MS/MS spectra were acquired 
at a resolution of 45,000 (1.6 m/z isolation width, 35% collision energy, 
1 × 105 AGC target, and 86-ms maximum ion time). Dynamic exclusion 
was set to exclude previously sequenced peaks for 20 s within a 10-ppm 
(parts per million) isolation window. See the “Data and materials 
availability” section for all raw MS files and matched peptides.
CSF replication samples
MS analysis of CSF replication 3 samples has been previously de-
scribed by Dayon and colleagues (45, 46). The remaining CSF replica-
tion samples were analyzed by single-shot TMT-MS with MS3-based 
data acquisition on an Orbitrap Fusion Lumos mass spectrometer 
(Thermo Fisher Scientific) interfaced with high-field asymmetric 
waveform ion mobility spectrometry (FAIMS), as previously de-
scribed (17). When combined with synchronous precursor selection 
MS3-based quantitation (SPS-MS3), this FAIMS-based strategy is 
especially useful for enhancing accuracy of protein quantification in 
samples with high dynamic ranges of protein abundance, such as 
albumin- and immunoglobulin-rich CSF (38). Accordingly, we 
found that the use of FAIMS Pro with SPS-MS3 reduced the interfer-
ence of peptide co-isolation and, in turn, increased the number 
of proteins identified in our CSF dataset by approximately 30% (fig. 
S8, A to E). Independent of FAIMS, the use of an immunodepleted 
boost channel in our single-shot TMT-MS approach also increased 
CSF protein detection by nearly 40%, directly promoting the identi-
fication of several key AD biomarkers (fig. S8F). See the “Data and 
materials availability” section for all raw MS files. TMT-MS analysis 
of the Swiss CSF replication 3 cohort has been described (45, 46), 
and raw files were downloaded from ProteomeXchange, resource 
PXD009589.
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Postmortem brain tissues
All brain tissues used in this study were derived from the DLPFC 
and processed in the Emory Goizueta ADRC. Postmortem neuro-
pathological evaluation of amyloid plaque distribution was performed 
according to CERAD criteria (72), while the extent of neurofibrillary 
tangle pathology was assessed in accordance with the Braak staging 
system (73). All AD cases met NIA-Reagan criteria for the diagnosis 
of AD (high likelihood) (74). PD cases also met established criteria 
and guidelines for diagnosis (75). Cases were classified as comorbid 
AD and PD (AD/PD) when they met pathological criteria for amyloid 
plaque, neurofibrillary tangle, and Lewy body burden. Pathological 
and clinical evaluations for the AsymAD brain tissues have been 
previously described (13). Two cohorts of brain tissues were used in 
the proteomic studies. The discovery brain cohort included tissues 
from 10 healthy control, 10 PD, 10 AD/PD, and 10 AD cases. The 
replication brain cohort included 19 cases identical to the discovery 
cohort (10 control and 9 AD cases), as well as 8 AsymAD cases unique 
to this cohort. Summarized case metadata, including disease state, 
gender, race, apolipoprotein genotype, age of death, Mini-Mental 
State Examination and PMI, are provided in table S1B.

Protein digestion of brain tissue
Tissue homogenization for both the discovery and replication brain 
samples was performed as previously reported (25). BCA was then 
used to determine the protein concentration for each sample before 
subsequent digestion. Approximately 100 g of protein was digested 
for each discovery brain sample, while 500 g of protein was digested 
for each replication sample. Just before digestion, all samples were 
reduced with 1 mM dithiothreitol at room temperature for 30 min 
and alkylated with 5 mM iodoacetamide in the dark for another 
30 min. LysC (Wako) at 1:100 (w/w) was then added to each sample, 
and digestion was performed overnight. Samples were then diluted 
sevenfold with 50 mM ABC. Trypsin (Promega) was then added at 
1:50 (w/w), and digestion was continued for another 12 to 16 hours. 
Each peptide solution was acidified to a final concentration of 1% (v/v) 
FA and 0.1% (v/v) TFA. The discovery brain samples were desalted 
with 100 mg of Sep-Pak C18 columns (Waters) and eluted in 1 ml of 
50% (v/v) ACN as described previously (25). A 200-l aliquot was 
removed from each discovery sample and combined to generate a 
pooled sample, which was subsequently divided into 10 GIS sam-
ples. Because a greater amount of protein was digested in the repli-
cation analysis, each sample was desalted with a 200-g Sep-Pak 
column and eluted in 3 ml of 50% (v/v) ACN. A 600-l aliquot was 
removed from each replication sample and combined to generate a 
pooled sample, which was then divided into six GIS samples. All 
digested peptide solutions from both the discovery and replication 
brain cohorts were dried by speed vacuum.

TMT labeling of brain tissue
TMT labeling of discovery brain tissues was performed using 10-plex 
reagents as previously described (25). In similar fashion, the 27 indi-
vidual and 6 GIS samples of the replication brain cohort were random-
ized into three batches and labeled using 11-plex TMT reagents. See 
the “Data and materials availability” section for sample to batch 
arrangement. All 11 TMT channels were used for labeling. TMT 
reagent (5 mg) was dissolved in 56 l of anhydrous ACN. Each 
peptide solution was then reconstituted in 400 l of 100 mM TEAB 
buffer, and 164 l (3.2 mg) of labeling reagent was subsequently 
added. After 1 hour, the reaction was quenched with 32 l of 5% 

hydroxylamine. After labeling, the peptide solutions were combined 
according to the batch arrangement. Each TMT batch was then 
desalted with 500 mg of Sep-Pak C18 columns (Waters), and eluted 
peptides were dried by speed vacuum (Labconco).

Fractionation of brain tissue
All TMT-labeled samples of the discovery brain cohort were subjected 
to electrostatic repulsion-hydrophilic interaction chromatography 
fractionation before proteomic analysis as previously reported (25). 
In contrast, the replication brain samples were separated via high-
pH fractionation. For each replication sample, approximately 4 mg 
of TMT-labeled peptides were resuspended in 850 l of loading buffer 
[1 mM ammonium formate in 2% (v/v) ACN], injected completely with 
an autosampler, and fractionated using a ZORBAX 300Extend-C18 
column (4.6 mm by 250 mm, 5 m; Agilent Technologies) on an 
Agilent 1100 HPLC system monitored at 280 nm. A total of 96 frac-
tions were collected over a 96-min gradient of 100% mobile phase A 
[4.5 mM ammonium formate (pH 10) in 2% (v/v) ACN] from 0 to 
7 min, 0 to 16% mobile phase B [4.5 mM ammonium formate (pH 10) 
in 90% (v/v) ACN] from 7 to 13 min, 16 to 40% mobile phase B from 
13 to 73 min, 40 to 44% mobile phase B from 73 to 77 min, 44 to 60% 
mobile phase B from 77 to 82 min, and 60% mobile phase B until 
completion with a flow rate of 0.8 ml/min. The 96 fractions were col-
lected with an even time distribution and pooled into 24 fractions.

MS analysis and data acquisition of brain tissue
MS procedures and MS3-based data acquisition of the discovery 
brain samples have been previously reported (25). In contrast to the 
discovery brain tissues, replication samples were analyzed by MS/
MS and the data acquired from MS2 scans. Briefly, an equal vol-
ume of each high-pH peptide replication fraction was first resus-
pended in loading buffer (0.1% FA, 0.03% TFA, and 1% ACN). 
Using an EASY-nanoLC system, peptide eluents were then separated 
on a C18 25-cm-long 75 M ID fused silica column (New Objective, 
Woburn, MA) packed in-house with a 1.9-m Reprosil-Pur C18-AQ 
resin (Maisch, Germany). Elution was performed over a 140-min 
gradient at a rate of 225 nl/min with buffer B ranging from 1 to 90% 
(buffer A, 0.1% FA in water; buffer B, 80% ACN in water and 0.1% FA). 
An Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific) 
was set to acquire data in top speed mode with 3-s cycles. Full MS 
scans were collected at a resolution of 120,000 (375 to 1500 m/z 
range, 4 × 105 AGC target, and 50-ms maximum ion time). All 
HCD MS/MS spectra were acquired at a resolution of 50,000 
(0.7 m/z isolation width, 38% collision energy, 1 × 105 AGC target, 
and 105-ms maximum ion time). Dynamic exclusion was set to ex-
clude previously sequenced peaks for 20 s within a 10-ppm isolation 
window. Only charge states from 2+ to 7+ were chosen for MS/MS. 
See the “Data and materials availability” section for all raw MS files 
and matched peptides.

Database search and protein quantification
All raw brain and CSF files were analyzed using the Proteome Dis-
coverer Suite version 2.1 (Thermo Fisher Scientific), with the exception 
of the CSF replication datasets, which were analyzed using version 2.3 
(17). MS/MS spectra were searched against the UniProtKB human 
proteome database (downloaded April 2015 with 90,411 total se-
quences). The SEQUEST HT search engine was used with the follow-
ing parameters: fully tryptic specificity; maximum of two missed 
cleavages; minimum peptide length of 6; fixed modifications for 
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TMT tags on lysine residues and peptide N termini (+229.162932 Da) 
and carbamidomethylation of cysteine residues (+57.02146 Da); 
variable modifications for oxidation of methionine residues 
(+15.99492 Da) and deamidation of asparagine and glutamine 
(+0.984 Da); precursor mass tolerance of 20 ppm; and fragment 
mass tolerance of either 0.05 Da (MS2 data) or 0.6 Da (MS3 data). 
The Percolator node was used to filter peptide spectral matches to 
an FDR of less than 1% using a target decoy strategy. Following 
spectral assignment, peptides were assembled into proteins and were 
further filtered on the basis of the combined probabilities of their 
constituent peptides to a final FDR of 1%. In cases of redundancy, 
shared peptides were assigned to the protein sequence in adherence 
with the principles of parsimony. Reporter ions were quantified from 
MS3 or MS2 scans using an integration tolerance of 20 ppm with 
the most confident centroid setting, as previously described (17, 25).

Adjustment for batch and other sources of variance
For all datasets, only those proteins quantified in ≥50% of samples 
were included in subsequent analyses. All data were also subjected 
to iterative outlier removal, as previously described (13, 17). In the 
discovery CSF analysis, one severe outlier was detected and there-
fore removed from all subsequent analyses. In contrast, no outliers 
were found among the replication CSF cohorts. This algorithm also 
failed to detect outliers among the brain datasets, even with the fold 
SD cutoff set more stringently to 2.5. For the CSF cohorts, batch 
correction was performed using a median polish algorithm for re-
moving technical variance, as previously described (17). The brain 
datasets were not subjected to this batch correction, although their 
protein abundance values were normalized by the GIS within each 
batch. Bootstrap regression for age at death, sex, and PMI (in the 
case of brain tissues) was performed on the protein log2 abundance 
ratios of all cohorts, excepting CSF replication 3 for which age and 
sex were not provided because of European confidentiality guide-
lines (45). A principal components analysis of the expression data 
confirmed appropriate regression of selected traits.

Differential expression analysis
Pairwise differentially expressed proteins were identified using 
Student’s t test, followed by Benjamini-Hochberg (BH) FDR correc-
tion. Differential expression across three or more groups was per-
formed using a one-way ANOVA, followed by Tukey’s post hoc test. 
Differential expression was presented in volcano plots, which were 
generated with the ggplot2 package in R v3.5.2.

Weighted gene correlation network analysis
Discovery brain proteome
As previously described (13), a weighted protein coexpression 
network of the discovery brain dataset was derived from the post-
regressed protein abundance values using the blockwiseModules 
WGCNA function (WGCNA 1.66 R package) with the follow-
ing settings: soft threshold power beta = 7.5, deepSplit = 4, mini-
mum module size = 25, merge cut height = 0.12, signed network 
with partitioning about medoids respecting the dendrogram, 
TOMDenominator = “mean,” and a reassignment threshold of 
P < 0.05. Module eigenproteins were defined as previously described 
(13), each representing the largest principle component of all 
proteins within the module. Pearson correlations between module 
eigenproteins and each quantified protein in the dataset were used 
to assign a measure of intramodule membership (i.e., kME) to each 

protein. Module eigenproteins were also correlated with AD diag-
nosis and levels of amyloid and tau burden using biweight midcor-
relation analysis.
Transcriptome
The R package WGCNA was used to construct a coexpression network 
on transcriptomic data downloaded from Gene Expression Omnibus 
(#GSE33000) (76). The WGCNA algorithm settings for this analysis 
have been previously described (13). The resulting 20 modules were 
used to calculate module eigengenes, which were subsequently cor-
related with different disease traits.

GO and cell type enrichment analyses
To characterize modules of proteins based on GO annotation, we 
used GO Elite v1.2.5 (77) with pruned output Fisher’s exact over-
representation z-scores visualized using an in-house R script, as pre-
viously described (13). The background proteome consisted of all 
proteins in each specific dataset. As outlined previously (13), cell 
type enrichment for each of the modules was performed by cross-
referencing the corresponding gene symbols of each module with cell 
type–specific gene lists derived from previously published RNA-seq 
data (29). Significance of cell type enrichment within each module 
was then determined using a one-tailed FET and corrected for mul-
tiple comparisons by the BH FDR method.

Module preservation analysis
To assess preservation of the discovery brain modules in the repli-
cation brain proteome, a coexpression network was built for the 
replication dataset using similar WGCNA parameters with only 
slight modifications: soft threshold beta = 15, deepSplit = 3, and 
merge cut height = 0.25. Preservation of the discovery brain 
modules in this replication network was then tested using the 
R WGCNA::modulePreservation function with 500 permutations, 
as previously described (13).

Overrepresentation analysis of RNA and protein networks
Gene set enrichment for the overrepresentation analysis of the brain 
proteome and transcriptome networks was performed using a 
one-sided FET with 95% confidence intervals. To reduce false posi-
tives, FDR-adjusted P values were used for multiple hypergeometric 
test comparisons, and those corrected P < 0.05 were considered sig-
nificant. The background for this overrepresentation analysis com-
prised frontal cortex expression levels from array data.

Integrative analysis of brain and CSF proteomic datasets
Quantified proteins of the discovery CSF dataset were assessed for 
overrepresentation in discovery brain modules using a hypergeometric 
FET, and those modules with BH-corrected P < 0.05 were considered 
significant. In similar fashion, separate FET analyses were performed 
to identify modules with significant overlap among differentially 
expressed CSF proteins, including those significantly up-regulated 
or down-regulated in AD compared to controls [P(AD/control) < 
0.05]. The 15 modules with meaningful levels of CSF overlap from 
these three FET analyses were included in the five biomarker panels 
that were subsequently validated in the CSF replication experiments. 
The expression trends of the validated panels of interest were exam-
ined in each replication cohort by calculating composite z-scores of 
protein levels across disease states. Kruskal-Wallis nonparametric 
ANOVA or pairwise t-test was performed on these z-scores to assess 
for significant differences.
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Olink proteomic analysis
CSF aliquots from a subset of cases in our discovery CSF cohort 
were sent to Olink Proteomics (Uppsala, Sweden) for analysis using 
all human assays available at the time of this study (1196 proteins). 
All samples passed quality control measures, were randomized per 
Olink protocol, and run on a single plate. Results were reported as 
Normalized Protein eXpression (NPX) values in log2 scale for rela-
tive quantification of protein levels across samples. We then median-
centered these NPX data in R v3.5.2. Outliers were detected using 
WGCNA-based Z.K connectivity (>3 SD), resulting in the removal 
of one sample. The relative abundance data were regressed for age 
and sex covariance. These post-regressed data were then used to 
calculate protein fold changes between control and AD samples, 
which were subsequently correlated to the discovery TMT-MS data.

MDS analysis
The MDS analysis of CSF replication 1 was performed using the 
limma package of R statistical software. A linear equation was selected 
to elicit a line across that the MDS plot separating control cases from 
those with AD. This line also divided the AsymAD cases into 
control-like and AD-like subgroups. All proteins measured in these 
AsymAD samples were then subjected to a t test comparing their 
abundance levels in these subclasses of AsymAD.

Western blotting
Equal amounts of each sample (10 or 20 g) were boiled in Laemmli 
sample buffer [8% glycerol, 2% SDS, 50 mM tris (pH 6.8), and 3.25% 
-mercaptoethanol] for 10 min and resolved by SDS–polyacrylamide 
gel electrophoresis on Bolt 4 to 12% bis-tris gels (Thermo Fisher 
Scientific). Gels were then transferred onto nitrocellulose membranes, 
which were blocked in SuperBlock blocking buffer (Thermo Fisher 
Scientific) for 30 min at room temperature and probed with primary 
antibody overnight at 4°C. Membranes were then incubated with 
fluorophore-conjugated secondary antibodies (1:10,000) for 1 hour 
at room temperature. Images were captured using an Odyssey 
Infrared Imaging System (LI-COR Biosciences). Primary antibodies 
used in this study included glyceraldehyde-3-phosphate dehydro-
genase (1:2000; mouse monoclonal, Abcam, ab8245), SFRP1 (1:500; 
rabbit monoclonal, Abcam, ab126613), MDK (1:1000: rabbit mono-
clonal, Abcam, ab52637), CD44 (1:1000; rabbit polyclonal, ab157107), 
and VGF (1:500; rabbit polyclonal, ab69989).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/43/eaaz9360/DC1

View/request a protocol for this paper from Bio-protocol.
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