
Detectable clonal mosaicism and its relationship to aging and 
cancer

A full list of authors and affiliations appears at the end of the article.

Abstract

In an analysis of 31,717 cancer cases and 26,136 cancer-free controls drawn from 13 genome-wide 

association studies (GWAS), we observed large chromosomal abnormalities in a subset of clones 

from DNA obtained from blood or buccal samples. Mosaic chromosomal abnormalities, either 

aneuploidy or copy-neutral loss of heterozygosity, of size >2 Mb were observed in autosomes of 

517 individuals (0.89%) with abnormal cell proportions between 7% and 95%. In cancer-free 

individuals, the frequency increased with age; 0.23% under 50 and 1.91% between 75 and 79 

(p=4.8×10−8). Mosaic abnormalities were more frequent in individuals with solid-tumors (0.97% 

versus 0.74% in cancer-free individuals, OR=1.25, p=0.016), with a stronger association for cases 

who had DNA collected prior to diagnosis or treatment (OR=1.45, p=0.0005). Detectable clonal 

mosaicism was common in individuals for whom DNA was collected at least one year prior to 

diagnosis of leukemia compared to cancer-free individuals (OR=35.4, p=3.8×10−11). These 

findings underscore the importance of the role and time-dependent nature of somatic events in the 

etiology of cancer and other late-onset diseases.
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Classically, genetic mosaicism is defined as the co-existence of cells with two or more 

distinct karyotypes within an individual that results from a post-zygotic event during 

development and can occur in both somatic and germline cells1,2. Errors in chromosomal 

duplication and subsequent transmission to daughter cells may lead to aneuploidy, the gain 

or loss of chromosomes or segments of chromosomes, and reciprocal gain and loss events 

manifesting in copy-neutral loss of heterozygosity (cnloh) or acquired uniparental disomy. 

Somatic mosaicism has been established as a cause of miscarriage, birth defects, 

developmental delay, and cancer3-9. Because mosaicism can be benign or may manifest with 

diverse clinical phenotypes, there are no accurate estimates of its frequency in the general 

population3,6. On rare occasions the propensity to develop chromosomal abnormalities is 

inherited and leads to multiple phenotypic abnormalities including cancer predisposition as 

reported in families with mutations in BUB1B and CEP57 10,11. Recently, two groups have 

identified somatic mosaic mutations in IDH1 and IDH2 in tumors of individuals with Ollier 

disease and Maffucci syndrome12,13 while another group has characterized somatic 

mosaicism of a HRAS mutation in an individual with urothelial cancer and epidermal 

nevus14. Recent work in a population of twins has suggested that the detection of somatic 

structural variants in blood increases with aging and may be related to reduction in blood 

cell clonality15. In this report, we define mosaic chromosomal abnormalities broadly: the 

presence of both normal karyotypes and those with large structural genomic events resulting 

in alteration of copy number or loss of heterozygosity in distinct and detectable 

subpopulations of cells regardless of the clonal or developmental origin of the 

subpopulations.

Recently, we reported on 1,991 individuals from the Spanish Bladder Cancer/EPICURO 

population-based case-control study in which we had performed a GWAS of adult-onset 

bladder cancer using DNA obtained from blood or buccal samples16. The SNP array data 

generated for the GWAS was subsequently used to detect clonal mosaic abnormalities in the 

autosomes of 1.7% of study subjects, suggesting a higher frequency in adults than 

previously suspected. Even though somatic mosaicism has been implicated in several 

cancers, this study did not reveal a significant difference in frequency between cases and 

controls. A computational algorithm was used to detect 42 large mosaic events involving 

two or more distinct clones in DNA extracted from blood or buccal samples and we 

experimentally validated the findings using multiplex ligation-dependent probe 

amplification (MLPA) and microsatellite analysis (as well as fluorescent in situ 

hybridization in a subset), establishing the robustness of the software detection method. A 

similar proportion of cells carrying each event was found in 5 of 6 events (in four 

individuals with bladder cancer in whom three had one event and one individual with three 

separate events) in which it was possible to examine more than one tissue (whole blood and 

bladder mucosa), suggesting an early embryonic origin of the somatic mutation leading to 

the observed mosaic chromosomal abnormalities16.

Results

In this report, we extend our analysis of clonal mosaic abnormalities in the autosomes to 

57,853 individuals (including those previously published16). We tested 31,717 cancer cases 

and 26,136 cancer free controls for evidence of mosaic abnormalities using genome-wide 
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SNP array data generated as part of 13 distinct cancer GWAS drawn from 48 

epidemiological case-control and case-cohort studies (Supplementary Table 1). DNA 

samples were extracted from blood or buccal samples using a variety of collection and 

extraction techniques and genotyped using one or more Infinium Human SNP arrays from 

Illumina Inc. (including versions of Hap300, Hap240, Hap550, Hap610, Hap660, Hap1, 

Omni Express, and Omni1). Genotype clusters were empirically estimated in 45 batches to 

optimize accuracy while minimizing potential batch effects (Online Methods).

Detection of clonal mosaic events was based on assessment of allelic imbalance and copy 

number changes. We used the B-allele frequency (BAF) measurement, derived from the 

ratio of probe values relative to the locations of the estimated genotype-specific clusters, for 

initial segmentation using the Mosaic Alteration Detection (MAD) algorithm implemented 

in GADA-R with modifications17,18. The BAF and log2 relative probe intensity ratio (LRR), 

which provides data on copy number, were used to classify each event as copy-altering (gain 

or loss) or neutral (reciprocal gain and loss resulting in loss of heterozygosity, LOH) and to 

assign the proportions of abnormal (p) and normal (1-p) cells. Mosaic proportions were 

required to deviate from levels expected from constitutional (non-mosaic) changes in order 

to exclude homozygous chromosomal segments inherited identical by descent and non-

mosaic instances of trisomy, monosomy and uniparental disomy. A minimum event size 

threshold was set to detect only clonal mosaic events greater than 2 Mbps to minimize the 

false discovery of constitutional copy number variants. Copy-neutral LOH and copy-loss 

events could be detected for mosaic proportions between 7% and 95% (Figure 1) with 

sensitivity that was affected by the signal-to-noise ratio characteristic of each microarray 

assay and sample quality. There was reduced sensitivity to distinguish between copy-neutral 

LOH and copy-loss events for mosaic proportions less than 15% across the autosomes. The 

magnitude of BAF differences for single-copy gain events was 1/3 of the magnitude of 

copy-neutral LOH or copy-loss events, reducing the sensitivity for calling copy-gain events. 

As a result, single copy gain events could only be reliably detected for mosaic proportions 

between 22% and 88%, with ambiguity in distinguishing copy-gain from copy-neutral LOH 

for mosaic proportions of less than 20%. Since DNA was obtained for the purpose of 

performing a GWAS, it was not possible to further explore the developmental and clonal 

characteristics of mosaic events detected in these individuals (e.g. by studying DNA from 

fractionated blood and other tissue types, determining cell composition of buccal samples, or 

effect of DNA collection and extraction methods on detection and accuracy of the estimation 

of mosaic proportions). We report only autosomal chromosomal abnormalities, as the 

analysis of the sex chromosomes presents distinct technical and interpretative challenges.

We observed 681 mosaic segments of size greater than 2 Mb on 641 autosomal 

chromosomes in 517 individuals for an overall frequency of individuals with mosaicism of 

0.87% (Tables 1 and 2). The most frequent type of event observed was copy-neutral LOH 

(48.2%), while copy-gains and copy-losses were observed for 15.1% and 34.8% of mosaic 

events, respectively (Table 1). A small proportion (1.9%) of mosaic chromosomes were 

complex, harboring more than one type of event. 18.7% of mosaic chromosomal events 

spanned the entire chromosome, including 62 complete trisomies, predominantly in 

chromosomes 8, 12 and 15. 47.9% of mosaic chromosomal events began at a telomere and 

extended across some portion of the chromosomal arm (Table 1 and Figure 2). The majority 
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of telomeric events were mosaic copy-neutral LOH (85.7%), most frequently on 9p (Table 

3). The remaining mosaic chromosomal events were interstitial (31.5%) spanning neither 

telomere nor centromere, while an additional small proportion (1.8%) spanned the 

centromere or had more complex structure (e.g. distinct events involving both telomeres, but 

not the whole chromosome). The majority of interstitial events were mosaic copy-loss 

(91.6%), which was most frequently observed within specific regions of chromosomes 13q 

and 20q (Figure 2). We observed 69 individuals (46 cancer cases and 23 cancer-free 

individuals) with clonal mosaic events on multiple chromosomes. The distribution of the 

number of clonal mosaic chromosomal events per individual is shown in Supplementary 

Table 3. Among cancer-free individuals, the greatest number observed was 5 mosaic 

chromosomal events, whereas six individuals with cancer had greater than 5 events, 

including two individuals with gastric cancer who each had 20. A list of mosaic events with 

phenotype data is available as Supplementary Data.

The strongest predictor of mosaic autosomal abnormalities was age at DNA collection. We 

examined the effect of aging on the frequency of mosaicism across all studies, which were 

predominantly individuals over the age of 50. The frequency of cancer-free individuals with 

detectable clonal mosaic events increased with age, from 0.23% for those under 50 to 1.91% 

(p=4.8×10−8) for those between the ages of 75 and 79, and with slightly higher frequencies 

for individuals with cancer (Figure 3). In the early onset cancers (under age 40), which 

constituted less than 5% of analyzed cases (e.g., testicular cancer and osteogenic sarcoma), 

we did not observe an increase in mosaic abnormalities. Further studies are needed to 

investigate the relationship between mosaic abnormalities and cancer in children and young 

adults, particularly because of the strong association between mosaicism and many 

developmental disorders. There was no apparent relationship between age at DNA collection 

and the number, size of mosaic events, or the proportion of abnormal cells (Supplementary 

Figures 1 and 2).

We regressed the presence of detectable clonal mosaicism in 26,136 cancer-free individuals 

on age at DNA collection (in 5 year intervals), sex (male versus female), DNA source 

(buccal cells versus blood), smoking (ever versus never) and admixture coefficients for 

African and East Asian ancestry in a logistic model to determine the additional factors that 

influenced frequency of detectable clonal mosaicism. The source of DNA was known for 

87% of individuals, of whom 19% were derived from buccal cells and the remainder from 

blood. DNA source was not significantly associated with mosaicism (OR=0.83, 0.55-1.26 

95% confidence interval (CI), p=0.39). By admixture analysis, 75% of subjects were 

determined to be of European ancestry, 9% of African ancestry and 16% of East Asian 

ancestry. Although power was limited, we observed that cancer-free individuals with 

African admixture were at a lower risk of being mosaic (OR=0.43, 0.20-0.92 95% CI, 

p=0.03), but not in those with East Asian admixture (OR=0.60, 0.32-1.15 95% CI, p=0.12). 

We did not observe an association between smoking (ever/never) and frequency of mosaic 

abnormalities (OR=1.04, 0.75-1.44 95% CI, p=0.81).

In 26,136 cancer-free controls and 23,093 cancer cases drawn from non-sex specific and 

non-hematological cancer sites (i.e. excluding 8,470 individuals with leukemia, lymphoma, 

multiple myeloma and cancers of the breast, endometrium, ovary, testis, and prostate), we 
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observed a higher frequency of males with mosaic abnormalities than females. In cancer-

free individuals, we observed mosaic events in 0.56% of females and 0.87% males 

(OR=1.35, 0.98-1.88 95% CI, p=0.07); for individuals with cancer we observed mosaic 

events in 0.79% of females and 1.21% of males (OR=1.48, 1.08-2.03 95% CI, p=0.015); and 

overall, 0.65% of females and 1.04% of males (OR=1.42, 1.14-1.80 95% CI, p=0.002) in 

logistic models adjusted for cancer diagnosis (if applicable), age at DNA collection, 

ancestry, DNA source and smoking. These differences could be due to a true sex-specific 

effect akin to sex-differential mutation and recombination rates19; however the complex and 

heterogeneous nature of the inclusion of individual studies and the differences in their entry 

and selection criteria could result in spurious associations. Although this observation was 

consistent across cancer types, it should be confirmed in additional studies better designed to 

address this question.

To determine the relationship between detectable mosaic autosomal abnormalities and non-

hematological cancers, we regressed the presence of detectable clonal mosaicism on cancer 

diagnosis, age, sex, DNA source, smoking and ancestry in a logistic model. We observed a 

modest increase in cancer risk for mosaic individuals (OR=1.27, 1.05-1.52 95% CI, 

p=0.012) (Tables 2 & Supplementary Table 2). Notable associations were observed in 

stratified analyses of lung (OR=1.56, 1.18-2.08 95% CI, p=0.002) and kidney (OR=1.98, 

1.27-3.06 95% CI, p=0.002) cancers, both tobacco-associated malignancies. However no 

cancer site-specific associations were observed for bladder, esophagus, stomach and 

pancreas cancers, which are also typically associated with tobacco use. There was no 

significant association in non-hematological cancer cases overall between smoking (ever/

never) and frequency of mosaicism (OR=1.19, 0.92-1.54 95% CI, p=0.19) or when stratified 

by cancer site (results not shown).

In an analysis of the subset of 14,050 individuals with cancer for whom it was possible to 

determine that DNA was likely obtained before or at the time of diagnosis and prior to 

treatment with radiation or chemotherapy for a primary tumor (designated as “likely 

untreated”), we observed a stronger association between mosaic abnormalities and non-

hematological cancer diagnosis (OR=1.45, 1.18-1.80 95% CI, p=0.0005). The associations 

for lung and kidney also increased in significance (Table 3). It is notable that the evidence 

for association with non-hematological cancer diminished in individuals who were 

potentially treated (OR=1.03, 0.81-1.30 95% CI, p=0.80). We had approached this analysis 

with the hypothesis that there could be an increased frequency in detectable clonal 

mosaicism in non-hematological cancers induced by chemotherapy or radiotherapy but were 

surprised to observe the frequency was reduced to virtually the same as in the cancer-free 

population. Although this attenuated effect could have many explanations (e.g., related to 

the diagnosis and treatment of a solid tumor leading to a decrease in populations of cells 

with mosaic alteration), we had a limited capacity to model and control for treatment-effects 

since many of the studies did not provide any treatment information or only provided 

incomplete, retrospective ascertainment of the specifics. Although many of the participating 

studies were prospectively ascertained cohorts, DNA collection often occurred after cancer 

diagnosis. Additional studies are needed in prospectively ascertained cohorts and 

longitudinal studies in which multiple DNA samples were collected prior to and after 

diagnosis in order to explore treatment and disease effects.
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For the 43 individuals with hematological cancers for whom DNA was obtained at least a 

year prior to diagnosis, the frequency of detectable clonal mosaicism was 20% for myeloid 

leukemia and 22% for lymphocytic leukemia (predominantly chronic lymphocytic leukemia, 

Table 2) compared to 0.74% in 26,136 cancer free controls (overall OR=35.4, 14.7-76.6 

95% CI, Fisher exact p=3.8×10−11). Of the 8 mosaic individuals with leukemia for whom 

DNA samples were collected at least a year prior to diagnosis, 4 were diagnosed with 

chronic lymphocytic leukemia (CLL) of which 2 had a mosaic deletion in a region of 

chromosome 13q14 previously described to be deleted in CLL20. DNA was obtained more 

than 5 years prior to diagnosis for 6 mosaic individuals, with the longest interval being 14 

years, suggesting that detectable clonal mosaicism could be a marker of hematological 

cancer or its precursors, i.e., monoclonal B cell lymphocytosis (MBL) for CLL and 

myelodysplastic syndrome for acute myelogenous leukemia. Recent work shows that the 

majority of MBL have mono- or biallelic 13q14 abnormalities21. However, further studies 

will be needed, preferably with serial pre- and post- diagnosis sampling to investigate the 

predictive nature of detectable clonal mosaicism, especially involving regions of 

chromosome 13 and 20 with respect to leukemia risk20.

We further explored the 4 most recurrent altered regions (>20), which also harbor well 

known cancer genes (as noted in the COSMIC22 and Mitelman databases: http://

cgap.nci.nih.gov/Chromosomes/Mitelman); these were on chromosomes 9p (cnloh), 13q 

(del), 14 (cnloh) and 20q (del) (Table 4). Notably, the most recurrent mosaic events were 

observed in cancer-free individuals as well as across multiple solid tumors. We observed a 

comparable frequency in non-hematologic cancer cases and cancer-free controls for three of 

the regions, whereas the chromosome 14 cnloh abnormalities were more frequent in non-

hematological cancer cases (OR=3.32, 1.42-9.00 95% CI, Fisher’s exact p=0.003), 

particularly in individuals with bladder or kidney cancer. Copy-neutral loh in this region of 

chromosome 14 has been associated with increased susceptibility to sporadic cancers and 

harbors imprinted genes, such as the tumor suppressing non-coding RNA, Maternally 

expressed gene 3 (MEG3)8,23. The recurrent segmental deletion of 13q14 was observed in 5 

leukemia cases, but also in 18 individuals with solid tumors (9 with lung cancer and 4 with 

prostate cancer), and in 10 cancer-free individuals. This region includes the tumor 

suppressor gene DLEU7 (Deleted In Leukemia 7) and related genes, DLEU1 and DLEU2, 

the latter harboring two microRNAs within one of its introns (miR-15a and miR-16-1)24-26. 

The retinoblastoma gene, RB1 was also included within a subset harboring a mosaic deletion 

of 13q14. It cannot be ruled out that these individuals have either undiagnosed CLL or 

MBL. The 20q- was seen in two individuals with myeloid leukemia as has been described 

previously27 but also in cancer-free and individuals with solid tumors.

The accuracy of our software methods to detect clonal mosaic abnormalities was previously 

addressed and we were able to validate 100% of 42 events in 34 individuals from the 

Spanish Bladder Cancer Study using confirmatory cytogenetic assays16 (Supplementary 

Figure 3). We have also performed a comparison of mosaic events in samples from the 

EAGLE and PLCO lung cancer studies which were independently analyzed as part of the 

Gene, Environment Association studies consortium (GENEVA) report on mosaic events28. 

A total of 83 mosaic events in individuals from the EAGLE and PLCO lung cancer studies 
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were detected in common, 20 additional events of size less than 2 Mb and 8 events greater 

than 2 Mb were detected by GENEVA and not by our study, while we detected 20 additional 

events (size > 2 Mb) that were not detected by GENEVA. Although additional cytogenetic 

or molecular validation was not performed, neither method detected notable false-positive 

events based on manual review of the data. The concordance rate is 75% if considering 

events > 2 Mb (the cut-off for this analysis) or 63% if considering all events, both of which 

are considerably better than the 25-50% concordance rates observed across CNV detection 

methods29-31. Our method is more conservative in the size of events detected, while the 

GENEVA method is more conservative with respect to sample quality, but provides calls for 

smaller events when assay quality is sufficient. Better approaches are needed to characterize 

smaller size events accurately as either mosaic or constitutional and to estimate their 

frequency. Further improvements to data normalization, segmentation and event 

classification methods will also likely reduce false-negative rates.

Discussion

Our study has important implications for the design and analysis of molecular epidemiology 

studies in cancer as well as the somatic characterization of cancer genomes, like The Cancer 

Genome Atlas32 and International Cancer Genome Consortium33. Investigators will need to 

carefully analyze samples used as exemplars of germline DNA for somatic alterations, such 

as detectable clonal mosaicism. Otherwise, comparisons between “grmline” and tumor DNA 

may result in implausible somatic changes (e.g. large gains of heterozygosity) and it may be 

impossible to determine whether somatic events pre-date changes secondary to driver 

mutations. Since how to detect mosaic events with next generation sequencing technologies 

is neither routine nor well understood, for the near future it may be prudent to continue to 

utilize SNP microarrays for such analyses. Due to the increased frequency of detectable 

clonal mosaicism with age, this will be particularly important for the analysis of epithelial 

cancers, which characteristically occur in the older population. For future large-scale GWAS 

in prospective studies, it may be wise to consider analyzing the earliest, pre-diagnosis DNA 

samples and to consider time from collection to diagnosis in the analysis of longitudinally 

collected biospecimens.

We have extended our initial observation that detectable clonal mosaicism of the autosomes 

is present in the population with surprising frequency and particularly in the aging genome. 

A recent study of detectable clonal mosaicism in twins reported an increase in frequency 

with age and suggested that this reduction could lead to a less diverse blood cell population 

and immune system15. These emerging data raise a number of critical issues in mechanisms 

underlying the possible shift in the repertoire of clones with large structural abnormalities. 

Thus cells with abnormal karyotypes could have an early developmental origin in which a 

somatic event in a single stem cell progenitor during embryogenesis could become apparent 

when cellular diversity decreases with age and cell populations become increasingly 

oligoclonal. Higher rates of detectable clonal mosaicism in older cancer-free individuals 

could also be due to increased rates of somatic mutation or diminished capacity for genomic 

maintenance, such as with telomere attrition34 leading to proliferation of somatically altered 

cell populations. A survival bottleneck of cellular progenitors could also lead to observable 

mosaic alterations that were previously below the threshold of detection but subsequently 

Jacobs et al. Page 7

Nat Genet. Author manuscript; available in PMC 2012 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expanded due to positive selection. Further work is required to begin to unravel the 

underlying mechanisms that result in mosaic abnormalities, particularly as it relates to how 

and when altered clones are created, tissue-specificity, and the timing and expansion of 

distinct populations of cells with age. Finally, these findings underscore the importance of 

considering the role and time-dependent nature of somatic events in the etiology of cancer as 

well as other late-onset diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Characteristics of detectable clonal mosaic events
Detectable clonal mosaic events plotted by proportion of abnormal cells (p) and Log R Ratio 

(LRR) for 681 events in 517 individuals.
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Figure 2. Circular genomic plot of detectable clonal mosaic events
Genomic location of detectable clonal mosaic events. Outer rings are the autosomes 1 to 22. 

Yellow region denotes events of copy neutral loss of heterozygosity. Blue region denotes 

copy gain events. Red region denotes copy loss events. Panel A includes events in cancer 

free controls. Panel B includes events in cancer cases.
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Figure 3. Frequency of detectable clonal mosaic events by age and cancer status
Analysis excluded 1,000 individuals with unknown age at DNA collection. 95% confidence 

intervals are shown.
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