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The toxic guardians — multiple toxin- ® e
antitoxin systems provide stability, avoid
deletions and maintain virulence genes of
Pseudomonas syringae virulence plasmids
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Abstract

Background: Pseudomonas syringae is a y-proteobacterium causing economically relevant diseases in practically all
cultivated plants. Most isolates of this pathogen contain native plasmids collectively carrying many pathogenicity
and virulence genes. However, P. syringae is generally an opportunistic pathogen primarily inhabiting environmental
reservoirs, which could exert a low selective pressure for virulence plasmids. Additionally, these plasmids usually
contain a large proportion of repeated sequences, which could compromise plasmid integrity. Therefore, the
identification of plasmid stability determinants and mechanisms to preserve virulence genes is essential to
understand the evolution of this pathogen and its adaptability to agroecosystems.

Results: The three virulence plasmids of P. syringae pv. savastanoi NCPPB 3335 contain from one to seven
functional stability determinants, including three highly active toxin-antitoxin systems (TA) in both pPsv48A and
pPsv48C. The TA systems reduced loss frequency of pPsv48A by two orders of magnitude, whereas one of the two
replicons of pPsv48C likely confers stable inheritance by itself. Notably, inactivation of the TA systems from pPsv48C
exposed the plasmid to high-frequency deletions promoted by mobile genetic elements. Thus, recombination
between two copies of MITEPsy2 caused the deletion of an 8.3 kb fragment, with a frequency of 3.8+0.3x 107>,
Likewise, one-ended transposition of IS807 generated plasmids containing deletions of variable size, with a
frequency of 5.5+ 2.1 x 10~ %, of which 80% had lost virulence gene idi. These deletion derivatives were stably
maintained in the population by replication mediated by repJ, which is adjacent to I1S801. 1S801 also promoted
deletions in plasmid pPsv48A, either by recombination or one-ended transposition. In all cases, functional TA
systems contributed significantly to reduce the occurrence of plasmid deletions in vivo.

Conclusions: Virulence plasmids from P. syringae harbour a diverse array of stability determinants with a variable
contribution to plasmid persistence. Importantly, we showed that multiple plasmid-borne TA systems have a
prominent role in preserving plasmid integrity and ensuring the maintenance of virulence genes in free-living
conditions. This strategy is likely widespread amongst native plasmids of P. syringae and other bacteria.
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Background
Plasmids are dispensable extrachromosomal elements
widely distributed in bacteria, facilitating their survival
and the colonization of eukaryotic hosts [1-4]. The
plasticity and transmissibility of plasmids contribute to
a rapid dissemination of resistance and virulence genes,
thus promoting the emergence of uncontrollable bac-
terial diseases, both in clinical and agricultural settings
[5-8]. However, plasmids are usually large and exist in
several copies per cell, potentially imposing a signifi-
cant metabolic burden to the cell, which might facilitate
the emergence of plasmid-free derivatives in the ab-
sence of selection for plasmid-borne characters [7, 9].
This metabolic cost can be lowered by diverse
plasmid-host adaptations, such as deletions, mutations
in the plasmid replication machinery, or chromosomal
mutations [7, 9]. Additionally, plasmids can increase
their stability by conjugal transfer and/or by carrying a
battery of specifically dedicated genetic determinants,
classified into three main categories [9-11]. Partition
determinants, in the first category, direct the active seg-
regation of plasmid molecules during cell division. All
low-copy plasmids appear to contain a partition system,
which usually consists of an operon of two genes plus a
specific DNA sequence for recognition. Multimer reso-
lution systems comprise the second category and include
recombinases that resolve plasmid cointegrates and
maximize the number of plasmid copies available at cell
division. The third category, postsegregational killing sys-
tems, include toxin-antitoxin (TA) systems and, less
prominently, restriction modification loci; these systems
ensure plasmid maintenance by inhibiting cell growth.
The Pseudomonas syringae complex is considered the
most important bacterial plant pathogen in the world [12].
Most strains contain plasmids with an array of adaptive
genes that increase aggressiveness, expand their host
range, and confer resistance to antibacterials or to UV
light [1, 6, 13—15]. Most of these plasmids belong to the
so-called pPT23A-family plasmids (PFP) group, character-
ized by sharing the highly conserved RepA-PEP replicon.
These replicons are highly plastic and adaptable, and
strains often contain two or more stably co-existing PFP
plasmids [6, 16—18]. Insertion sequences, transposons and
miniature inverted-repeat transposable elements (MITEs)
can account for at least a third of a PFP plasmid, actively
participating in the acquisition and exchange of adaptive
characters [17-21]. Insertion sequence 1S801 (1.5 kb), and
its isoforms, is particularly significant because of its rela-
tively high transposition frequency, its common associ-
ation with virulence genes and its ability to undergo
one-ended transposition, whereby the element can
mobilize adjacent DNA [19, 21, 22]. Additionally, plasmids
of P. syringae have a mosaic structure and often share ex-
tensive regions of similarity, suggesting their evolution
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through the acquisition and loss of large DNA regions in a
multistep process [14—17, 20, 23]. Despite this, plasmid
profiles of individual strains appear to be characteristic
and stable, although certain plasmids can be lost with high
frequency under certain culture conditions [1, 24-27].
Agricultural settings exert a strong selection pressure on
P. syringae populations, generally towards highly virulent
clones adapted to single hosts, which can be accomplished
both by gain and loss of certain virulence genes [23, 28].
However, P. syringae is an opportunistic pathogen whose
life cycle primarily occurs in a variety of outside-host envi-
ronments, including living on the surface of plants with-
out causing disease [29]. It is not clear what mechanisms
are driving the maintenance of virulence genes in
free-living populations, where selection pressure for
pathogenicity should be predictably low. Although diverse
potential stability determinants were identified among
PFP plasmids [15-18, 30-32], it is not yet clear whether
or not they are functional and what their role in the bac-
terial life cycle is.

P. syringae pv. savastanoi NCPPB 3335 causes tumours
in olive (Olea europaea) and is a prominent model for the
study of the molecular basis of pathogenicity on woody
hosts [33, 34]. This strain contains three PFP virulence
plasmids pPsv48A (80 kb), pPsv48B (45 kb) and pPsv48C
(42 kb) [18]. Plasmid pPsv48A carries the virulence gene
ptz, involved in the biosynthesis of cytokinins, and the
Type III effector gene hopAFI; pPsv48B carries the Type
III effector gene hopAOI and, in turn, plasmid pPsv48C
carries the virulence gene idi, potentially involved in cyto-
kinin biosynthesis. Both pPsv48A and pPsv48C are essen-
tial for the production of tumours in olive plants [18, 35],
whereas pPsv48B contributes to fitness and virulence in
planta [36]. Although pPsv48A and pPsv48B can be
cured, pPsv48C is remarkably stable and could not be
evicted from strain NCPPB 3335 [18], perhaps because it
carries two different replicons [37]. We were interested in
the identification and characterization of the stability de-
terminants of the plasmid complement of strain NCPPB
3335, to gain insights into the mechanisms allowing the
long-term maintenance of PFP plasmids and the dynamics
of virulence genes.

Here, we determined that the three virulence plas-
mids from P. syringae pv. savastanoi NCPPB 3335 carry
from one to seven functional stability determinants of
different types, including three highly active TA systems
in both pPsv48A and pPsv48C, although the two repli-
cons in pPsv48C are likely sufficient for full stability.
We serendipitously discovered that the mobile genetic
elements 1S801 and MITEPsy2 promote plasmid dele-
tions and reorganizations with very high frequency.
These derivatives are, however, efficiently excluded
from the bacterial populations thanks to multiple plas-
midic TA systems, which simultaneously favour the
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maintenance of virulence genes ptz and idi when out-
side the plant.

Results

Identification of putative stability determinants in the
three native plasmids

We identified a total of 15 putative stability determi-
nants, each consisting of one to three coding sequences
(CDSs), from the complete sequence of pPsv48A,
pPsv48B and pPsv48C (Table 1 and Fig. la; see Materials
and Methods). These were annotated as four partition
systems (SD1, SD4, SD6 and SD7), a multimer reso-
lution system (SD2), a CopG plasmid copy-number
regulator (SD3), a plasmid killer protein (SD5), and eight
TA systems (TA1 to TAS).

The deduced products of the putative TA systems had
typical protein signatures (Table 1), except the antitoxins
of systems TA4, TA6 and TA8. Moreover, the eight re-
spective toxin genes, except that from TA5, lead to cell
growth arrest when highly expressed in E. coli NEB10p
(Fig. 1b). Together, these results indicate that systems
TA1-TA8 are indeed toxin-antitoxin systems, although
TA5 might be non-functional or E. coli NEB10p might
be resistant to the TA5 toxin.

Plasmids pPsv48A, pPsv48B and pPsv48C contain diverse

functional stability determinants

The 15 putative stability determinants from plasmids
pPsv48A, pPsv48B and pPsv48C were cloned into
pKMAG-C, and the stability conferred to the vector was
assayed in the plasmidless strain P. syringae pv. syringae
B728a (Fig. 1c). pPKMAG-C is able to replicate in both E.
coli and pseudomonads [37], and is highly unstable in P.
syringae.

All seven determinants tested from pPsv48A (Table 1),
significantly increased stability of pKMAG-C to varying
degrees (Fig. 1c). Four are TA systems, although only
three of them conferred very high levels of stability. As
expected, these TA systems were functional only when
cloned completely, but not when the putative antitoxin
was cloned by itself (Fig. 1c), although the antitoxin
from system TA2 on its own conferred moderate levels
of stability. System TA3 is widespread in pseudomonads
e.g. [32, 38, 39] and it is an operon of the TA genes
stbCB plus the putative resolvase sthA (Table 1). Con-
structs containing either stbCBA or only genes stbCB
conferred equal high levels of stability (not shown);
therefore, we evaluated the possible contribution of stbA
to stability by cloning it separately. sthA is the last CDS
in the stbCBA operon and predictably lacks a promoter;
thus, we tested functionality of the sthA allele
PSPSV_A0042, which is the first CDS of another puta-
tive operon (SD2 in Fig. 1) and shows 90% nt identity to
the allele in operon stbCBA. Operon SD2 also
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significantly increased stability of pKMAG-C, likely
through resolution of plasmid multimers by the StbA
resolvase [11], suggesting that operon sthCBA might
contribute to stability through different mechanisms.

Only one of the four determinants from pPsv48B
evaluated here (Table 1) appeared to contribute, albeit
modestly, to plasmid stability (Fig. 1c). This was un-
expected because low-copy number plasmids usually
carry diverse maintenance determinants [40]. The four
determinants from pPsv48B showed similar retention
values in UPN912 than in strain B728a (not shown),
suggesting that lack of activity of three of them (TAS5,
SD5 and SD6) is not strain-related. Nevertheless, it is
possible that pPsv48B contains stability genes that
were not included or whose activity was not detected
in our assays, and/or that its stability is increased by
conjugation [10].

Three TA systems, out of the four determinants tested
from pPsv48C, contributed to plasmid stability (Table 1);
again, the putative antitoxins did not confer any stability
by themselves (Fig. 1c). Remarkably, the eight different
TA systems showed distinct behaviours in our assays
(Fig. 1c), which varied from no apparent contribution to
stability (TA5) to conferring moderate (TA4) to very
high stability levels (e.g. TA3 or TA8).

The two replicons from pPsv48C confer distinct stability
To explore the basis of the very high stability of pPsv48C,
we evaluated the contribution of the RepA-PFP and Rep]
replicons to its maintenance. Therefore, we cloned them
into the E. coli vector pKMAG and, as before, evaluated
stability in the plasmidless strain P. syringae pv. syringae
B728a (Fig. 2). However, plasmid replicons are often
adapted to increase their persistence in their bacterial
host e.g. [41, 42]. Therefore, we also tested stability in the
plasmidless strain P. syringae pv. savastanoi UPN912
(Fig. 2), which derives from the original host strain
NCPPB 3335 (Table 2).

Construct pKMAG-C, containing the RepA-PFP repli-
con cloned outside the polylinker of the vector, was
highly unstable and was nearly completely lost after only
one night of growth (Figs. 1c and 2). This was probably
due to a destabilization of the replication control system
from an increase in transcription by read-through from
the constitutive kanamycin promoter, a phenomenon
previously described for replicon Rep] [37]. In fact, its
cloning after the transcription terminator of pKMAG
significantly increased stability (2 in Fig. 2). Gene ssb,
which is frequently found downstream of the repA gene
[17, 18, 31] only showed a marginal contribution to sta-
bility (compare 2 and 3, Fig. 2). In turn, the Rep] repli-
con conferred a significantly higher stability than the
RepA-PFP replicon (compare 2 and 4, Fig. 2). Notice-
ably, all the constructs were significantly more stable in
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Table 1 Putative stability determinants identified in the three
native plasmids of P. syringae pv. savastanoi NCPPB 3335

Plasmid and  Locus Tag®
determinant®

Deduced product (InterPro family or
signature matches)

pPsv48A

SD1 PSPSV_A0016  Putative partition protein A (IPR027417,
IPRO25669)

PSPSV_A0015  Ribbon-helix-helix protein, CopG family

(none predicted)

TA1 PSPSV_A0020 Putative addiction module antitoxin,
RelB/DinJ family protein (IPR0O07337)

PSPSV_A0019  Putative toxin of the YafQ-DinJ toxin-
antitoxin system (IPR004386), addiction
module toxin, RelE/StbE family
(IPRO07712)

TA2 PSPSV_A0032  Predicted transcriptional regulator,
ribbon-helix-helix protein, CopG

(IPRO10985)

PSPSV_A0031  Putative plasmid stabilization system
protein; RelE/Park toxin family

(IPRO07712)

SD2¢ PSPSV_A0042  StbA, putative stability/partitioning
determinant, resolvase (IPR036162)

PSPSV_A0041  MvaT-like transcriptional regulator
(IPRO35616)
TA3 PSPSV_A0043°  StbC, Arc-type ribbon-helix-helix

protein, putative antitoxin (IPR0O13321)

PSPSV_A0044%  StbB, putative ribonuclease of the
VapC family (IPR022907)

PSPSV_A0045%  StbA, resolvase (IPR036162)

TA4 PSPSV_A0051  Putative RelB/DinJ family addiction

module antitoxin (none predicted)

PSPSV_A0050  Putative RelE/StbE family addiction
module toxin (IPRO07712)

SD3 PSPSV_AQ067  Putative transcriptional regulator;
CopG/Arc/Met) DNA-binding domain-
containing protein, possibly responsible
for the regulation of plasmid copy
number (IPR002145)

pPsv48B

TAS PSPSV_B0012  Hypothetical protein, putative plasmid
maintenance component (IPR021558,
DUF3018)

PSPSV_B0011  Putative Mazf-like toxin, ccdB family
(IPR003477)

SD4 PSPSV_B0013  ParA/YafB type stability/partitioning
protein, cobyrinic acid ac-diamide
synthase (IPR027417)

PSPSV_B0014  Stability/partitioning protein (none
predicted)

SD5 PSPSV_B0038  IncN plasmid killer protein (IPR009989)

SDé PSPSV_B0042  Putative stability/partitioning
determinant (IPR027417)

PSPSV_B0043  Hypothetical protein (none predicted)
pPsv48C

TA6 PSPSV_C0003  Putative RelE/StbE family antitoxin,

stability determinant (none predicted)
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Table 1 Putative stability determinants identified in the three
native plasmids of P. syringae pv. savastanoi NCPPB 3335
(Continued)

Plasmid and  Locus Tag®
determinant®

Deduced product (InterPro family or
signature matches)

PSPSV_C0004  Putative RelE/StbE family toxin, stability

determinant (IPR007712)

TA7 PSPSV_C0008  Putative CopG family transcriptional

regulator (IPRO10985; IPR013321)

PSPSV_C0007  Putative addiction module toxin,

plasmid stabilization protein
(IPRO07712)
SD7¢ PSPSV_C0017  Putative ParA family protein (IPR027417)
not annotated Hypothetical protein (none predicted)
TA8 PSPSV_C0050

PSPSV_C0051

Putative antitoxin (none predicted)

Putative addiction module toxin,
RelE/StbE family (IPRO07712)

2TA toxin-antitoxin system, SD generic stability determinant

PThe listing order indicates direction of transcription

“Gene PSPSV_A0042 shows 90% nt identity to gene PSPSV_A0045 in
determinant TA3

dGenes PSPSV_A0043/44/45 are 100% identical to genes

PSPSV_A0007/8/9, respectively

€SD7 was cloned containing an unannotated CDS 3' of PSPSV_C0017
(fragment containing positions 9861-11,121 of FR820587), which could be part
of a par operon

strain UPN912 than in B728a (Fig. 2), suggesting that
these replicons are adapted to the bacterial host in
which they occur naturally, to maximize their survival.

The RepA-PFP and Rep] replicons consist of two sep-
arable functional fragments: a control region, containing
the promoter, a putative antisense RNA and a leader
peptide, and a replication region, containing the replica-
tion initiator protein (rep) gene [37]. The approx. 0.3 kb
control region determines the transcription rate of the
rep gene. The RepA-PFP and Rep] replicons share very
similar, but not identical control regions preceding the
rep gene [37], and we hypothesized that this could po-
tentially influence replicon stability. We therefore evalu-
ated the stability of constructs containing chimeric
replicons, with the replication control region (Rex-C
module) reciprocally swapped [37]. The highest stability
in UPN912, but not in strain B728a, was reached with
the chimera RepA-PFP:Rep] (control:replication mod-
ules; construct 5, Fig. 2), indicating that replicon stability
is mostly dependent on the activity of the replication
module, but it can be modulated by the control module
(Fig. 2).

The significant values of plasmid loss observed for
Rep] (Fig. 2) conflicted with the high stability observed
for pPsv48C deletion derivatives (not shown), suggesting
that we did not clone all the replicon sequences needed
for stable replication. We therefore tested the stability of
a spontaneous 5.5kb deletion derivative of pPsv48C
(clone pPsv48CA25; Table 2), containing the minimal
Rep] replicon [37] plus additional DNA that did not
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Fig. 1 Functional analysis of putative stability determinants from the three native plasmids of P. syringae pv. savastanoi NCPPB 3335. a Maps of
the native plasmids showing the relative position of the stability determinants analysed (red; Table 1), replication initiator protein genes (black),
copies of the 1S807 isoform CRR1 (orange), MITEs (green) and virulence genes (purple). b Growth patterns of E. coli NEB10B containing the toxin
gene from the indicated TA systems cloned behind a Pgap promoter, or the empty vector (pBAD24). The vertical dashed line indicates the time
when cultures received glucose (black lines), which repressed expression, or arabinose (grey lines), which induced expression. Values of ODgng
(OD) versus time (t) are the average of three replicates; graphs are representative of at least 4 independent clones. ¢ Bars indicate the percentage
(mean + sd) of P. syringae pv. syringae B728a cells retaining pKMAG-C alone (pK) or the cloned stability determinants tested in this study (panel a;
Table 1). For TA systems leading to > 50% of plasmid retention, we show to their right retention values given by their corresponding antitoxins
cloned alone. Experiments were repeated three times, each with three replicates. Means with different letters are significantly different (one-way
ANOVA and Duncan’s multiple range test; p < 0.05)

include any other potential plasmid maintenance genes.
Plasmid pPsv48CA25 was maintained in 100% of the
cells obtained from starting cultures and after seven se-
quential culture transfers (1622 and 2804 colonies
tested, respectively). In contrast, the Rep] construct in
pKMAG (construct 4 in Fig. 2) was retained by 94 + 2%
of UPN912 cells from starting cultures and by only 63 +
2% of the cells after seven transfers (2366 and 2666 col-
onies tested, respectively). These results indicate that the
native Rep] replicon is larger than the minimal replicon
[37] and underscore its high stability in its genetic
context.

A toxin-antitoxin system prevents a deletion in pPsv48C
mediated by MITEs

We sought to obtain derivatives of NCPPB 3335 cured
of plasmid pPsv48C, and to evaluate the contribution of

its three TA systems to stability. We thus constructed
strain UPN827, containing a transposon carrying the
sacB gene (Tn5-GDYNI1) inserted into pPsv48C (Fig. 3a;
Table 2); this allowed us to easily select for plasmid loss
by growth in the presence of sucrose [43]. To inactivate
functionally the TA systems [44] and facilitate plasmid
loss, we constructed pRK3C, containing the three anti-
toxin genes from pPsv48C cloned in pRK415 (Table 2),
and introduced it into UPN827 to neutralise the three
corresponding toxins.

We routinely obtained 50 times more sucrose-resistant
(suc®) colonies with strain UPN827(pRK3C) (38 +3x 10™*
suc® colonies) than with its parental strain UPN827(pRK415)
(0.8+04x 10™* suc® colonies), and this difference was sta-
tistically significant. All suc® colonies examined contained an
8.3 kb deletion in pPsv48C caused by the recombination of
two direct copies of MITEPsy2, as assessed by sequencing,
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(black) or RepJ (white) replicons, and their chimeras, were cloned at the indicated positions into pKMAG; small and large arrows represent the
putative leader peptide and the replication initiator genes, respectively. TT, T4 transcription terminator; MCS, multiple cloning site; kan, kanamycin
resistance gene. b Percentage (mean + sd) of P. syringae pv. syringae B728a cells (dark grey) or of P. syringae pv. savastanoi UPN912 cells (light
grey) retaining each of the constructs of panel a means with different letters are significantly different (two-way ANOVA and Duncan’s multiple
range test; p < 0.05). Experiments were repeated three times, each with three replicates
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eliminating the sacB transposon Tn5-GDYNI1 (Fig. 3a). One
of these plasmids was retained and designated pPsv48CA1
(Fig. 3a). These results indicate that, despite its small size
(228 nt), MITEPsy2 is a hot spot for recombination.

In plasmid profile gels of the wild type strain NCPPB
3335, pPsv48C routinely appears with lower intensity
than the other two native plasmid bands (Fig. 3b) [18].
Remarkably, bands of plasmid pPsv48CA1l were repeti-
tively more intense than those of the wild type plasmid
or of pPsv48C:Tn5-GDYNI1 (Fig. 3b), suggesting that
the 8.3 kb deletion caused a higher copy number. We es-
timated a moderate copy number for plasmids pPsv48A
(8.0+1.0), pPsv48B (8.6 +1.6) and pPsv48C (6.6 +1.2),
with no significant differences among them. These are
as expected for medium-size native plasmids [45] and
similar to the five copies reported for the native plasmid
pEKN from P. syringae pv. maculicola [20]. Unexpectedly,
the estimated copy number of pPsv48CAl (6.9 + 0.8) was
not significantly different from that of pPsv48C. These re-
sults indicate that each of the three native plasmids from
strain NCPPB 3335 exist in 6-9 copies per cell, and that
the 8.3 kb fragment from pPsv48C does not carry any de-
terminant involved in copy number control. This also

suggests that structural differences among plasmids could
differentially impact their purification by alkaline lysis and
questions the use of agarose gel electrophoresis to esti-
mate relative plasmid DNA quantities.

Toxin-antitoxin systems from pPsv48C prevent
accumulation of plasmid deletions mediated by 15801
Our preliminary experiments soon indicated that the in-
activation of the three TA systems of pPsv48C did not
facilitate the isolation of plasmid-cured strains but, in-
stead, led to the recovery of deletion derivatives gener-
ated by one-ended transposition of the 1S801 isoform
CRR1 (Fig. 4) [18]; for clarity, we will henceforth refer to
this isoform as 1S801. Therefore, strain UPN1007 was
used to better estimate the causes and frequency of the
different deletions. This strain carries plasmid
pPsv48C::sacB, containing a Km"-sacB cassette immedi-
ately adjacent to the only IS801 copy of pPsv48C (Fig. 5);
thus, the selection of suc® colonies would allow for the
identification and quantification of all types of deletions
mediated by one-ended transposition of IS801.

The frequency of suc® colonies was 1.8 + 0.7 x 10~ * for
UPN1007 containing the empty vector but significantly
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Table 2 Bacterial strains and plasmids used in this study
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Strain/plasmid

Main features®

Source or reference

Escherichia coli

NEB10B

S17-1

P. syringae pv. savastanoi
NCPPB 3335

Psv48AAB
UPN25.1

UPN508
UPN827
UPN864
UPN912

UPN1007

P. syringae pv. syringae
B728a

Plasmids

pBlueScript Il SK
pBAD24

pDR1

pGEM-T Easy
pJET1.2
pK18mobsacB
pKMAG

PKMAG-C

pME6041
pPsv48A
pPsv48A:Tn5-GDYNI1
pPsv48B
pPsv48C

pPsv48C:sacB

pPsv48C:Tn5>-GDYN1
pPsv48CA1

pPsv48CA25

PRK3A

Almrr-hsdRMS-mcrB) deoR recAl endAT araD139 Alara, leu)7697 galU galK A~ rpsL. nupG
Strain used to transfer pDR1 plasmid

Pathotype strain, isolated from a diseased olive tree; contains three native plasmids
(pPsv48A, pPsv48B and pPsv48Q)

NCPPB 3335 derivative, cured of pPsv48A and pPsv48B

UPN827 derivative containing pPsv48CA25, a 5.5 kb spontaneous deletion derivative
of pPsv48C that spans the RepJ replicon, with no TA systems.

Derivative of NCPPB 3335 containing pPsv48A:Tn5-GDYNI1
Derivative of Psv48AAB containing plasmid pPsv48C:Tn5-GDYN1
UPN827 derivative, which contains plasmid pPsv48CA1

Plasmidless derivative of strain NCPPB3335; was obtained by curing pPsv48C:sacB
from strain UPN1007

Derivative of Psv48AAB containing plasmid pPsv48C:sacB

Plasmidless bean pathogen Cuf, Rif, Sm”*

E. coli cloning vector; 2.96 kb, Amp®
E. coli expression vector, contains a Pgap promoter inducible with arabinose; 4.5 kb, /-\mpR

Delivery vector for Tn5-GDYN1, based on pSUP2021; Km®, GmF, SmF, Sp®; confers
sucrose-dependent lethality

E. coli cloning vector; 3 kb, AmpR
E. coli cloning vector 2.9 kb, Amp"
Mobilizable cloning vector, confers sucrose-dependent lethality; Km®, Suc®

E. coli vector derived from pK184, devoid of the Plac promoter and containing the
transcriptional terminator and polylinker from pME6041; 2.6 kb, Km®; accession
no. KX714576

PKMAG containing the minimal RepA-PFP replicon from pPsv48C, replicates in E. coli
and in Pseudomonas; 4.3 kb, Km"; accession no. KX714577

Broad host range cloning vector; 5.6 kb, Km®

Virulence plasmid of NCPPB 3335 (accession n° FR820585); with RepA-PFP replicon; 80.1 kb
Plasmid pPsv48A tagged with Tn5-GDYNT1 at position 1469

Native plasmid of NCPPB 3335 (accession no. FR820586); with RepA-PFP replicon; 45.2 kb

Virulence plasmid of NCPPB 3335 (accession no. FR820587); with RepA-PFP and Rep)
replicons; 42.1 kb

pPsv48C derivative containing the Km®-sacB cassette from pK18mobsacB inserted at
position 26,916; KmF, Suc®

pPsv48C containing Tn5-GDYN1 inserted at position 37,036; Km®, Gm"®, Suc®

Derives from pPsv48C:Tn5GDYN1 by the spontaneous deletion of 8.3 kb
(positions 32,807-41,121 of FR820587) mediated by recombination between
two copies of MITEPsy2

Spontaneous sucrose-resistant deletion derivative from pPsv48C:sacB, generated
by a one-ended transposition of 1S807; this plasmid is 5.5 kb long, spanning
positions 27,019-32,557 of FR820587

pRK415 derivative containing genes PSPSV_A0043, PSPSV_A0032 and PSPSV_A0020
cloned in tandem in this order, each with their own promoter and under the control
of the P, promoter from the vector; Tt

New England Biolabs
(43]

This work
[35]

This work

[79]

Stratagene
[76]
[43]

Promega

Thermo Fisher Scientific
[71]

(37]

(18]
(18]

This work

This work
This work

This work
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Table 2 Bacterial strains and plasmids used in this study (Continued)
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Strain/plasmid Main features®

Source or reference

PRK3C

pRK415 derivative containing genes PSPSV_C0050, PSPSV_C0008 and PSPSV_C0003

This work

cloned in tandem in this order, each with their own promoter and under the control

of the P, promoter from the vector; Tt

pRK415 Broad host range cloning vector; 10.5 kb, Tc"

[81]

?Abbreviations: Amp ampicillin, Cu copper, Km kanamycin, Gm gentamicin, Rif rifampicin, Sm streptomycin, Sp spectinomycin, Suc sucrose, Tc tetracyclin.

Superscripts R and S denote resistance or susceptibility, respectively

higher (5.5 +2.1 x 10~ %) for strain UPN1007(pRK3C), in
which the three TA systems are functionally inactivated
(Fig. 5). The plasmid profile and PCR analyses of >700
independent clones, plus sequencing of 13 of them, indi-
cated that none had lost pPsv48C but showed a plasmid
band of ca. 4 to 42 kb resulting from deletions of vari-
able size in this plasmid. All deletion derivatives con-
tained IS801 and repJ (Fig. 5), and sequencing showed
that all had a common left border corresponding to the
3" end of 1S801 (position 27,019 of pPsv48C; Fig. 5a),
containing the 0ri80I1 where transposition of this elem-
ent initiates [46]. The right border of the different plas-
mid derivatives was GAAC (5 clones) or CAAG (8
clones), which were described as consensus tetramers
immediately adjacent to insertions of IS801 and places
for one-ended transposition events to finish [19, 47].
The extent and frequency of deletions generated in
pPsv48C, both in UPN1007(pRK415) and in UPN1007

(pRK3C), was evaluated in clones growing in SNA by a
multiplex PCR analysis (Fig. 5b). Additionally, loss of
kanamycin resistance indicated the loss of the
Km®-sacB cassette in the largest deletion derivatives
(notice that transpositions ending closer from 1S801 re-
sult in the deletion of larger DNA fragments from
pPsv48C). The 310 suc® clones examined from strain
UPN1007(pRK415) retained plasmids of at least 22 kb,
all spanning the three TA operons (TA6-8; Fig. 5a).
This was expected because the three TA systems are
functional in UPN1007 and their loss would predictably
result in growth inhibition. However, around half of the
clones had lost gene idi, indicating the spontaneous
loss of this gene in routine culture conditions with a
frequency of 0.9+0.3x10"% The types of deletions
were more varied in the 323 suc® clones of
UPN1007(pRK3C), containing functionally inactivated
TA systems, with nearly half of the clones losing the

A 8.3 kb

IS801 repJ

B+

IS801 repJ

T B -

Fig. 3 Recombination between two directly repeated copies of MITEPsy2 causes a deletion on pPsv48C. a Partial map of pPsv48C:Tn5-GDYNI1
(pC:Tn5) showing the relative positions of its only copy of the I1S807 isoform, its two replication initiation protein genes (rep) and repA), and toxin-
antitoxin system 8 (TA8). Green block arrows, MITEPsy2; inverted black triangle, Tn5-GDYNT1 (Tn). pCA1 is pPsv48CA1, containing an 8.3 kb deletion
resulting from MITEPsy2 recombination. b Electrophoresed uncut plasmid preparations from: (1) P. syringae pv. savastanoi NCPPB 3335; (2)
Psv48AAB; (3) UPN827, and (4) UPN864. pA, pPsv48A; pB; pPsv48B; pC, pPsv48C; pCAT, pPsv48CAT; clp, chromosomal DNA and linearized
plasmids. Lanes were loaded with equivalent amounts of cell lysates; results are representative of at least 20 independent plasmid preparations

TA8 repA

-9 I/ pC::Tn5

pCA1
repA

3 4
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0ri801

ter801

1S801

CRR1

IS801 transposase

IS801 transposase

transposition

ctgttc

Fig. 4 Comparison of the wild type 1S807 with its isoform CRR1. Blastn alignment of 1S807 (X57269; 1512 nt) and CRR1 (from FR820587; 1765 nt);
the red bands connecting the two elements indicate collinear regions of identity. CRR1 contains an insertion of 365 nt, causing a deletion of 112
nt that removes the predicted transposase start codon and trims the ter807 terminus to the endmost 26 nt (expanded sequence). This 26 nt
region contains a conserved motif (capital letters) with an inverted repeat sequence (horizontal arrows), probably involved in recognition and

interaction with the transposase [46]. HP, hypothetical protein

RepA-PFP replicon and around 80% (4.4+1.9x10™%
of them lacking gene idi (Fig. 5). Notably, IS801 was
able to transpose the complete length of pPsv48C in
both strains (plasmid group f in Fig. 5), although at a
low frequency of around 10~ °, suggesting that IS801 is
capable of mobilizing more than 40kb of adjacent
DNA. Incidentally, the generation of circular deletion
variants of pPsv48C mediated by IS801 also indicates

that, as predicted [47], this element transposes by a
rolling circle mechanism.

Toxin-antitoxin systems also contribute to the
maintenance of plasmid pPsv48A and to reducing the
occurrence of deletions

Because 1S801 is pervasive in P. syringae genomes, we
wanted to know if deletions mediated by this element

A 1S801repJ C43 repA idi km/sacB Amplicon or resistance % deletion group
<:F"‘DR“‘;ZE‘?:g#;;“““““‘ij;;“" Group|repJ C43 repA TA7 idi KmR pRK415 pRK3C
= _ iy a [+ - - - - - 0 22.9
S b |+ + - - - - 0 18.6
2 ¢ c |+ + + - - - 0 7.7
Sl q— 00000 - d [+ + + + - - 48.4 30.3
g e == — e |+ + + + + - 455 186
al f fl+ + + + + + 6.1 1.9
B C Deletion group
1 2 3 a b ¢ d e f M
1 c43 :
TA7 g
repd H
0.3 ropA 8.3
0 idi 54

Fig. 5 Types of deletions of pPsv48C:sacB as influenced by functional toxin-antitoxin systems. a Left: Map of pPsv48C:sacB; TA6, TA7 and TAS,
toxin-antitoxin systems; C43, locus PSPSV_C0043; inverted triangle, KmP-sacB cassette cloned 0.1 kb 3' of the 15807 isoform. Lines under the map
indicate the minimum (black line) and maximum (dotted line) extent of DNA transposed by 15807 on each group of suc” plasmids. Right:
Presence (+) or absence (—) of specific amplicons for each of the genes shown, or of resistance (+) and sensitivity (—) to kanamycin. Last two
columns indicate the percentage of suc® colonies containing each plasmid group in UPN1007 containing the empty vector pRK415 (310 colonies
analysed) or pRK3C, leading to functional inactivation of the TA systems (323 colonies analysed). Gels showing typical patterns of multiplex PCR
amplifications (panel b) and uncut plasmids (panel ¢) of example clones from each plasmid group. M, molecular weight markers, in kb; clp,
chromosomal DNA and linearized plasmids. Lanes: (1) P. syringae pv. savastanoi NCPPB 3335; (2) Psv48AAB, containing only pPsv48C; and (3)
UPN864, containing only pPsv48C:sacB
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also occurred in other plasmids, and whether or not TA
systems are contributing to decrease their frequency. For
this, we used strain UPN508, a derivative of strain
NCPPB 3335 containing plasmid pPsv48A with an inser-
tion of Tn5-GDYNI located at 1.9kb 3" of gene repA
(Fig. 6) [18]. pPsv48A contains only one replicon and
Tn5-GDYN1 is inserted between two of the five copies
of IS801 in the plasmid, limiting the types and size of
deletions that we can detect, although the experimental
setting still allowed us to evaluate the possible occur-
rence of deletions.

Strain UPN508(pRK415) generated suc® clones with a
frequency of 1.1+0.8x 10" % From 282 of these suc®
clones, plasmid pPsv48A:Tn5-GDYN1 was lost in two
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clones, it contained spontaneous mutations inactivating
sacB in nine clones, and was reorganized or contained
deletions in the remaining ones (Table 3). The majority
of the suc® clones, around 90% of the total, contained
derivatives of ca. 76 kb; sequencing of three of these
clones suggests that they resulted from recombination
between the two isoforms of IS801 flanking the insertion
point of Tn5-GDYNI (Table 3), causing its deletion.
Functional inactivation of the three TA systems, in
strain UPN508(pRK3A), lead to only a modest, but sig-
nificant increase of the frequency of suc® clones to 3.6 +
15x10"% and to a dramatic change on the plasmid
content of these clones (Table 3). The first major differ-
ence was that the frequency of loss of pPsv48A was

pPsv48A (80.1 kb)

XxopAD ptz
1448A large plasmid (131.2 kb)

-«

hopAF1

Tn5-GDYN1

a1 2 X 2o SIS (Y e

XopAD XopAD

p9853_B (32.9 kb)

T3SE T3SE

hopW1-1  hopQ1 hopAU1 hopAV1  hopW1-2 avrRps4 avrB2  hopAB1
hopD1 hopAW1
p58T1 (101.3 kb)
—//—ﬂ—//—i—.—//—ﬂm”—‘—//—p/ﬂ—Q—“—.—//—
avrRps4 shcO1 T3SE
pDC3000A (73.6 kb)
¢ ¢—It——H —
hopAM1-2  hopX1 schO1 hopT1-1
hopO1-1
p58T2 (70.6 kb) N
» Wy p— D
hopD1 T3SE T3SE hopR1
p58T5 (61.8 kb)
t—A4t——H { -
shcF
pPNCPPB880-40 (41.7 kb) LEGEND
—v— ' . a'4q . Replication initiator protein gene
®  Virulence related gene
PPMA43268 (40.1 kb) B TAsystem
MH— /— P Putative active 1S807
T3SE  hopPmaA P wmTE
pFKN (39.6 kb) = Orientation of MITE
l! ! g " e /” Non continuou.s sequence
hopX1 avrRom1 - T3SE Type lll secretion system effector

Fig. 6 Schematic representation of relevant features found in closed plasmid sequences of Pseudomonas syringae. The diagram shows the

Site of insertion of the transposon in
pPsv48A::Tn5-GDYN1

T

replication initiator protein genes, virulence genes, TA systems, putative active 1S807 elements and MITEs found in closed plasmid sequences of
the P. syringae complex. Features are drawn to scale but, for clarity, only pertinent plasmid fragments are shown. The direction of transposition of
IS801 fragments and isoforms is indicated with orange arrows. Harbouring organism and accession numbers for the plasmids are P. syringae pv.
savastanoi NCPPB 3335, NC_019265 (pPsv48A); P. syringae pv. phaseolicola 1448A, NC_007274 (p1448A); P. syringae pv. tomato DC3000,
NC_004633 (pDC3000A); P. cerasi 58T, NZ_LT222313 (p58T1), NZ_LT222314 (p58T2), NZ_LT222317 (p58T5); P. syringae pv. tomato NCPPB 880,
NC_019341 (pNCPPB880-40); P. cannabina pv. alisalensis ES4326, NC_005919 (pPMA43268B); P. syringae pv. maculicola M6, NC_002759 (pFKN); P.
syringae pv. actinidiae ICMP 9853, NZ_CP018204 (p9853_B)
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Table 3 Type and proportion of sucrose-resistant derivatives of pPsv48A:Tn5-GDYNT in the presence or absence of functional toxin-

antitoxin systems

Number (%) of suc® clones®

Plasmid size® UPN508(pRK415) UPN508(pRK3A) ptz Type of event d

- 2(0.7) 110 (41.4) -

(cured)

57 1(04) 38 (14.3) + Recombination®

70 16 (5.7) 4(15) + Reorganizations’

76 251 (89.0) 111 (41.7) + Recombination?9

89 932 2 (08) + Spontaneous mutation in sacB
> 90 3(1.1) 1(04) + Reorgamzationsh

Total 282 266

2Approximate size (kb) of the deletion derivative. Total size of pPsv48A:Tn5-GDYN1 is around 89 kb
BStrain UPN508 contains pPsv48A:Tn5-GDYN1, with functional TA systems. The three TA systems of this plasmid are functionally inactivated in the presence of

pRK3A, containing the three cloned antitoxins from pPsv48A

“Presence (+) or absence (=) of the virulence gene ptz, for cytokinin biosynthesis, in the resulting deletion derivatives
9dAll events resulted in deletion of Tn5-GDYNT, except the spontaneous mutation in sacB

*Recombination between 1S807-1 and 1S807-4

fDiverse group of clones with different, uncharacterized intramolecular reorganizations
9The sequence of five clones confirmed that they resulted from recombination between IS807-1 and 1S807-2, but we cannot discard the possibility that some or

all of the remaining clones resulted from a transposition of 1S807-2

"These plasmids appeared to result from a transposition of 158072, terminating precisely at the end of 1S807-1 as determined by sequencing, that eliminate Tn5-
GDYN1. According to their relative size on plasmid profile gels, these plasmids must contain an uncharacterized insertion

around 1.5+ 0.2 x 10~ %, two orders of magnitude higher
than that in UPN508(pRK415) (Table 3). The second
major difference was that deletion derivatives of approx.
57 kb, all of which had lost system TAl, appeared
around 40 times more frequently than in strain
UPN508(pRK415) (Table 3). The frequency of occur-
rence of the other reorganizations (Table 3) varied no
more than four times between both strains. Noticeably,
and contrasting with pPsv48C, most of the deletions af-
fecting pPsv48A are likely due to recombination between
IS801 elements instead to one-ended transpositions of
IS801. This indicates that IS801 promotes plasmid dele-
tions with high frequency by diverse mechanisms.

Are multiple toxin-antitoxin systems commonly

safeguarding virulence plasmids of P. syringae?

Many plasmids of P. syringae contain virulence genes and a
large amount of mobile genetic elements [1, 2, 6, 17, 18], of
which MITEs and IS80! transpose most frequently [19].
Here we showed that these mobile elements also mediate
frequent deletions and reorganizations in two virulence
plasmids of P. syringae pv. savastanoi NCPPB 3335, and
that their carriage of multiple toxin-antitoxin systems al-
lows avoiding these deletions and maintain plasmid integ-
rity. We therefore questioned if this could be a common
strategy among virulence plasmids of P. syringae.

We found sequences homologous to IS801 in 53 out of
the 78 available closed plasmid sequences from strains of
the P. syringae group (including P. cerasi; December,
2018), with around two thirds of them containing at least
one complete or truncated copy of CRR1. This indicates a
frequent occurrence of this mobile element in the P.

syringae pangenome. The sequence of nine of these plas-
mids, chosen as examples, contained one to eight copies
of 0ri801 potentially capable of initiating one-ended trans-
position (Fig. 6); four of them also contained one to four
copies of MITEPsyl. Likewise, eight of the nine plasmids
harboured at least one putative TA system; an extreme
case is p1448A-A (131.2kb), containing eight 0ri801 and
seven putative TA systems (Fig. 6). These TA systems are
also likely limiting the occurrence of deletions, which
could potentially eliminate one or more of the virulence
genes included in these plasmids (Fig. 6).

Discussion

Native plasmids of P. syringae and other phytopathogenic
bacteria often carry genes contributing to virulence and
resistance to bactericides, sometimes being essential for
pathogenicity [2, 6, 14, 15, 17, 18, 48]. Although they are
generally considered moderately to highly stable in the
few tested P. syringae strains [18, 27], there is a general
lack of knowledge of the molecular mechanisms involved
in long-term plasmid survival. Here we show that the
virulence plasmids from P. syringae pv. savastanoi NCPPB
3335 use diverse mechanisms to persist in the cell and
maintain their physical integrity.

We identified 11 functional stability determinants
among the 15 determinants examined from the three na-
tive plasmids of strain NCPPB 3335. These included seven
TA systems, two putative partition systems, one putative
multimer resolution system and one putative CopG-type
copy number control regulator. The four remaining deter-
minants evaluated (TA5, SD5, SD6 and SD7) appeared to
be non-functional. It is nevertheless possible that the high



Bardaiji et al. Mobile DNA (2019) 10:7

instability of the vector used for testing, pKMAG-C, did
not allow us to detect their activity as stability determi-
nants, although TA5 is probably non-functional since it
did not show activity in P. syringae strains B728a and
UPNO912, and in E. coli. We showed that the TA systems
are a major stability determinant only for plasmid
pPsv48A, increasing its stability by two orders of magni-
tude. The TA systems do not appear to contribute to the
stability of pPsv48C because this plasmid carries two repli-
cons [37] conferring a very high stability level by them-
selves. In particular, Rep] can be maintained with no
apparent plasmid loss for seven sequential culture trans-
fers in the absence of any identifiable maintenance deter-
minants. Notably, these two replicons appear to be
adapted to its native host to maximize their stability (Fig.
2). The carriage of several strong stability determinants
clearly favours the maintenance of virulence genes but
also likely the acquisition of new plasmids and adaptive
characters. Virulence genes are frequently found on PFP
plasmids [1, 6], which are often exchanged horizontally [2,
49, 50]. This, however, appears to not disturb the previous
plasmid complements, because strains of P. syringae usu-
ally harbour two to six different PFP plasmids [16]. Thus,
strong stability determinants likely contribute to the re-
tention of newly acquired PFP plasmids until they accu-
mulate changes allowing their full compatibility with
other resident plasmids. Indeed, we have shown that as lit-
tle as five nt changes in the replication control region are
sufficient to overcome incompatibility between PFP plas-
mid replicons [37].

The virulence plasmids pPsv48A and pPsv48C are
structurally very fragile, experiencing high frequency
intramolecular deletions and reorganizations promoted
by the mobile genetic elements MITEPsy2 and I1S801.
The TA systems carried by these plasmids, however, sig-
nificantly reduce the accumulation of structural variants
by selectively excluding them from the bacterial popula-
tion. TA systems are bicistronic operons coding for a
stable toxin and an unstable antitoxin that neutralises
the activity of the toxin [51]. If the operon is lost, for
instance due to a deletion, the antitoxin is rapidly
degraded and bacterial growth is arrested due to the
action of the stable toxin; thus, only cells that did not
suffer the deletion and still contain the TA system can
grow.

Our functional inactivation of the TA systems signifi-
cantly increased the frequency of the pPsv48C deletions
mediated by MITEPsy2 by 50 times and by three times
those mediated by IS801. This would indicate that the
TA systems might be only moderately successful in pre-
venting deletions mediated by IS801. However, we
should consider that inactivation of the TA systems lead
to a fivefold increase in the loss rate of gene idi, which is
essential for tumour formation in the plant host [35].
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Noticeably, it appears that the loss of gene idi was re-
duced even in those cases where deletion of this gene
would not determine loss of any TA system (Fig. 5a).
This could be a general feature, because a TA system
from a virulence plasmid of Shigella spp. favoured the
retention of nearby sequences, maintaining plasmid in-
tegrity [52].

Likewise, the occurrence of intramolecular dele-
tions and reorganizations of pPsv48A increased three
times upon functional inactivation of its TA systems
(Table 3). This phenomenon has been termed post-
recombinational killing [52], whereby the occurrence
of insertion sequence-mediated rearrangements in-
volving the deletion of TA systems lead to bacterial
growth arrest and the consequent exclusion of the
reorganized variants from the bacterial population.
The modest protection offered by TA systems of
pPsv48A is predictably an underestimate because of
the limited number and types of events that we
could detect with the pPsv48A:Tn5-GDYNI1 con-
struct used. Nevertheless, the TA systems of
pPsv48A are contributing to the maintenance of
virulence gene ptz (Table 3), which is essential for
the induction of full-size tumours and the develop-
ment of mature xylem vessels within them [18]. The
occurrence of multiple, apparently redundant, TA
systems in plasmids is intriguing. However, plasmids
are highly dynamic entities undergoing a continuous
trade of genetic material [2, 4]; as such it is feasible
that multiple TA systems are selected to ensure the
survival of different plasmid fragments. This is
clearly exemplified by the 8.3kb fragment that is
“protected” by TAS8 (Fig. 3).

In this work, we concentrated on examining the plas-
mids of strain NCPPB 3335. However, we would expect
that the structural fragility of native plasmids and the
protective role of TA systems are common phenomena
in the P. syringae complex, and likely in other plant
pathogens, for three main reasons. First, repetitive mo-
bile genetic elements, and particularly IS801, are wide-
spread in the P. syringae complex, can represent at least
one third of diverse native plasmids, and are often asso-
ciated to virulence genes [18, 19, 22, 27, 53]. IS801 is
remarkable, because it can efficiently transpose with
a transposase provided in trans and because it fol-
lows a rolling circle replicative mechanism, leading
to permanent insertions [19, 46, 47]. This implies
that any fragment of IS801 containing ori801 is
potentially mobilizable, that every transposition gen-
erates a potentially recombining site, and that
one-ended transposition events can immediately lead
to the generation of small to very large plasmid
deletions. Additionally, other highly repetitive genes,
such as the rulAB operon for resistance to UV light
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and many other DNA repair genes, are also com-
monly associated to virulence and other adaptive
genes in P. syringae and many other bacteria [54—
56]. All these repetitive genetic elements favour the
mobility of virulence genes, promoting the high plas-
ticity and adaptability of native plasmids [6, 16—18];
however, at the same time, represent recombination
hotspots that can mediate deletion of key virulence
genes [57], as highlighted by our results, and of many
other adaptive genes. Second, the frequencies of re-
combination between MITEs and of transposition of
IS801 were very high, suggesting that they could be
very active in promoting genomic changes. Third, and
although largely ignored, TA systems are increasingly
being found associated to native plasmids in many di-
verse plant pathogens, including P. syringae (see also
Fig. 6) [17, 58, 59]. It is also noteworthy that most of
these plasmids possess several TA systems, as occurs
with plasmids from other bacteria [4, 57, 58].

Conclusions

Here we show that TA systems are frequently found in
plasmids of P. syringae and that they significantly con-
tribute to plasmid stability, to preserve plasmid integrity
and to maintain virulence genes in free living conditions.
TA systems have been involved in a disparity of func-
tions including, among others, the stabilization of plas-
mids and other mobile genetic elements, biofilm
formation, modulation of bacterial persistence, resist-
ance to antibacterial compounds, and prevention of large
scale deletions in the chromosome, plasmids and epi-
somes [51, 52, 60-62]. Our results show that genes
found in plasmids of the plant pathogen P. syringae can
be eliminated with high frequency because of plasmid
loss and rearrangements mediated by mobile genetic ele-
ments. The occurrence of multiple toxin-antitoxin sys-
tems in plasmids effectively increase the survival of
virulence genes and virulence plasmids in bacterial pop-
ulations, facilitating their preservation in a diversity of
environments lacking the strong selective pressure
exerted by the plant host.

Methods

Bacterial strains, plasmids and growth conditions

Table 2 summarizes strains, native plasmids and construc-
tions used in this study. LB medium [63] was routinely
used for growing both E. coli (at 37 °C) and Pseudomonas
strains (at 25 °C). Counter selection of cells carrying the
sacB gene, which confers lethality in the presence of su-
crose, was carried out in nutrient agar medium (Oxoid,
Basingstoke, UK) supplemented with 5% sucrose (medium
SNA). When necessary, media were supplemented with
(final concentrations, in pg ml'): ampicillin, 100;
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gentamicin, 12.5; kanamycin, 7 for P. syringae and 50 for
E. coli; tetracycline, 12.5.

General molecular procedures and bioinformatics

DNA was amplified using a high fidelity enzyme (PrimeStar
HS, Takara Bio Inc., Japan), or a standard enzyme (BIOTagq,
Bioline, UK), and primers detailed in Additional file 1 Table
S1. Amplicons were cloned using the CloneJET PCR Clon-
ing Kit (Thermo Scientific) or the pGEM-T Easy Vector
System (Promega). Purification of plasmids from E. coli was
carried out following a boiling method [64] or using a com-
mercial kit (Illustra plasmidPrep Mini Spin Kit, GE Health-
care). For plasmid profile gels, DNA was purified by
alkaline lysis and separated by electrophoresis in 0.8% agar-
ose gels with 1XTAE as described [25]. Plasmids were trans-
ferred to P. syringae by electroporation [65].

DNA sequences were compared and aligned using the
BLAST algorithms [66], as well as the on-line MULTA-
LIN [67] and EMBL-EBI server tools (http://www.ebi.a-
c.uk/Tools/msa/). The InterPro interface [68] (http://
www.ebi.ac.uk/interpro/) was used to search for protein
motifs. Nucleotide sequence visualization and manipula-
tion was performed using the Artemis genome browser
and ACT [69]. Primers were designed using the Pri-
mer3plus software [70].

Manipulation of native plasmids of P. syringae pv.
savastanoi

Native plasmids of P. syringae pv. savastanoi were
tagged with Tn5-GDYN1 by conjugation using E. coli
S17.1 as a donor; this transposon carries the levansu-
crase gene sacB, which allows for the identification of
derivatives cured of plasmids by selection in medium
with sucrose [18, 43]. Sites of Tn5-GDYNI1 insertion
were determined by sequencing of cloned EcoRI frag-
ments containing the Gm® end of the transposon and
the adjacent sequences using primer IS50_F (Additional
file 1 Table S1).

We constructed a derivative of pPsv48C containing a
Km®-sacB cassette, immediately 5 of the IS801 isoform
(100 nt upstream), as a tool to analyse the diverse dele-
tions generated by the activity of this mobile element.
The Km"-sacB cassette was amplified from pK18mob-
sacB [71] by PCR with specific primers (Additional file 1
Table S1), and introduced into an EcoRV site of pPsv48C
(position 26,919 in accession no. FR820587) by allelic
exchange recombination.

Estimation of plasmid copy number

Plasmid copy number was estimated by quantitative
PCR (qPCR) using as template total DNA purified with
the JET flex Genomic DNA Purification Kit (Genomed,
Germany). qPCR was performed using the CX96™
Real-Time System and analysed using CFX Manager
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software version 3.0 (BioRad, CA, USA), essentially as
described [72] . A ten-fold serial dilution series of DNA
was used to construct the standard curve for the
single-copy chromosomal gene gyrA, used as reference
[72], and the plasmids genes ptz (PSPSV_A0024;
pPsv48A), hopAO1 (PSPSV_B0010, pPsv48B) and idi
(PSPSV_C0024, pPsv48C), using the primers indicated
in Additional file 1 Table S1. Plasmid copy numbers
were estimated using the AACt method [73, 74].

Identification of putative plasmid stability determinants
For identification of putative stability determinants from
plasmids pPsv48A (FR820585), pPsv48B (FR820586) and
pPsv48C (FR820587), we manually inspected the annota-
tion of the three plasmids and searched for those CDSs
containing terms (stability, partition and related forms),
or whose products contained typical domains associated
to plasmid maintenance. Additionally, we selected puta-
tive toxin-antitoxin operons with a significant score
(higher than 70) in the web tool RASTA-bacteria [75].
The complete set of loci identified and tested is summa-
rized in Table 1.

The functionality of toxin genes from the putative TA
systems was tested using the expression vector pPBAD24
[76]. Toxin genes were amplified by high-fidelity PCR
using primers with adapters for Kpnl and Pstl
(Additional file 1 Table S1), cloned in the same sites of
pBAD?24, generating translational fusions with the first
or second codon of the toxin gene, and transformed into
E. coli NEB10OP. Single colonies of appropriate clones
grown overnight on LB + Amp were resuspended in LB,
and two wells per clone of a microtiter plate were inocu-
lated with 5 pl of the bacterial suspension and 150 pl of
LB + Amp. Plates were incubated in a BioTek Gen5 (Bio-
Tek Instruments, VT, USA) microplate reader at 37 °C
with 3 min of shaking every 15 min; after 3—4'h, one of
the wells for each clone received 0.5% arabinose (final
concentration, to induce the Pgsp promoter) and the
other well received 0.2% glucose (final concentration, to
further repress the Pgap promoter). The ODgg of each
well was recorded every 15 min, for a total of 20 h. The
fidelity of clones was confirmed by sequencing, and at
least four independent clones were tested for each toxin
gene.

Replication and stability assays

For functional analyses, the putative stability determi-
nants from the three native plasmids of NCPPB 3335
(Table 1) were amplified by PCR with their own pro-
moters, using specific primers, and cloned as BamHI
fragments into the polylinker of vector pKMAG-C
(construct 1 in Fig. 2). pKMAG-C replicates in E. coli
through a pl5a replicon and in pseudomonads through
the cloned RepA-PFP replicon from pPsv48C [37]. The
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stability of these constructions, as well as that of the
RepA-PFP and Rep] replicons from the pPsv48C plasmid
and previously constructed chimeras [37], was tested
after transformation into the plasmidless strain P. syrin-
gae pv. syringae B728a, essentially as described [77].
Briefly, transformants were grown overnight on LB
plates with kanamycin, and twenty colonies per clone
were collected and resuspended together in 500 pul of
Ringer’s solution (1/4 strength; Oxoid, Basingstoke, UK).
Serial dilutions were then plated on LB agar to get iso-
lated colonies and, once developed, 100 colonies were
picked to LB plates with and without kanamycin to de-
termine the percentage of plasmid-containing colonies
(Km®). The same procedure was followed to test these
constructs in strain UPN912. The unstable cloning vec-
tor pPKMAG-C was also included in the analyses as the
baseline reference.

The stability of the minimal Rep] replicon [37], cloned
into pKMAG (construct 4 in Fig. 2), was compared to
that of plasmid pPsv48CA25, a naturally occurring 5.5
kb deletion derivate of pPsv48C that contains the Rep]
replicon plus around 2 kb of downstream DNA, but no
other maintenance systems. Both plasmids were main-
tained in strains derived from NCPPB 3335 and with no
other native plasmids. Short-term stability was evaluated
as stated above for strain B728a. For long-term stability,
three independent LB cultures of each strain were
started from single colonies and incubated at 25 °C with
shaking and, after overnight growth, 10 pul of each cul-
ture were transferred to 3 ml of LB and incubated in the
same conditions. We obtained LB plates containing
200-300 colonies both from the starting culture, imme-
diately after single-colony inoculation, and after seven
serial transfers in LB. These colonies were transferred to
nylon membranes and analysed by colony hybridization
[63], using an internal probe for repJ. The number of hy-
bridizing colonies out of the total was scored to assess
the prevalence of the Rep] replicon in both populations.

Inactivation of TA systems

To evaluate the role of TA systems on plasmid maintenance,
we proceeded to their functional inactivation, by supplying
in trans the cognate antitoxins cloned in the broad-host
range vector pRK415; resulting in the neutralization of the
toxin by the cloned antitoxin, as described [44]. Antitoxin
genes PSPSV_A0043, PSPSV_A0032 and PSPSV_A0020
from pPsv48A were amplified by PCR with their own pro-
moters, cloned into pGEM-T Easy, excised as BamHI or
Ncol-Sacl (for PSPSV_A0032) fragments, and sequentially
cloned into the BamHI, Ncol-Sacl and BglII sites of vector
PME6041, respectively. Primers A1_R and TA3_F were used
to amplify these three elements as a single fragment, which
was cloned into pJET 2.1 (CloneJET PCR Cloning Kit,
Thermo Scientific), excised as a BglIl fragment and cloned
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into the BamHI site of pRK415, downstream of the constitu-
tive Py, promoter in the vector, resulting in pRK3A. Essen-
tially the same procedure was followed to clone in tandem
and in this order, using primers A6_R and TA8_F, antitoxin
genes PSPSV_C0050, PSPSV_C0008 and PSPSV_C0003
from pPsv48C into the vector pRK415, resulting in pRK3C.
The integrity and fidelity of all clones was confirmed by nu-
cleotide sequencing.

Statistical procedures

All data are given as the mean + standard deviation (sd).
Each experiment was repeated from three to six times,
with three technical replicates for each of the conditions
tested. Means were compared using an analysis of vari-
ance (ANOVA) followed, when needed, by Duncan’s
multiple range test (p <0.05). We used software R
Project 3.3.3 (R Core Team (2017); Vienna, Austria) to
perform the statistics.

Additional file

Additional file 1: Table S1. List and application of primers used in this
work. (PDF 186 kb)
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