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Airway remodeling is a frequent pathological feature of severe asthma leading to

permanent airway obstruction in up to 50% of cases and to respiratory disability. Although

structural changes related to airway remodeling are well-characterized, immunological

processes triggering and maintaining this phenomenon are still poorly understood.

As a consequence, no biotherapy targeting cytokines are currently efficient to treat

airway remodeling and only bronchial thermoplasty may have an effect on bronchial

nerves and smooth muscles with uncertain clinical relevance. Th17 cytokines, including

interleukin (IL)-17 and IL-22, play a role in neutrophilic inflammation in severe asthma

and may be involved in airway remodeling. Indeed, IL-17 is increased in sputum

from severe asthmatic patients, induces the expression of “profibrotic” cytokines by

epithelial, endothelial cells and fibroblasts, and provokes human airway smooth muscle

cell migration in in vitro studies. IL-22 is also increased in asthmatic samples, promotes

myofibroblast differentiation, epithelial-mesenchymal transition and proliferation and

migration of smooth muscle cells in vitro. Accordingly, we also found high levels of

IL-17 and IL-22 in a mouse model of dog-allergen induced asthma characterized by

a strong airway remodeling. Clinical trials found no effect of therapy targeting IL-17

in an unselected population of asthmatic patients but showed a potential benefit in a

sub-population of patients exhibiting a high level of airway reversibility, suggesting a

potential role on airway remodeling. Anti-IL-22 therapies have not been evaluated in

asthma yet but were demonstrated efficient in severe atopic dermatitis including an

effect on skin remodeling. In this review, we will address the role of Th17 cytokines

in airway remodeling through data from in vitro, in vivo and translational studies, and

examine the potential place of Th17-targeting therapies in the treatment of asthma with

airway remodeling.
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INTRODUCTION

Asthma is a chronic respiratory disease characterized by lower
airway inflammation, leading to airway hyperresponsiveness
(AHR) and airway obstruction, resulting in recurrent symptoms
(chest wheezing, cough, dyspnea), exacerbations (flare-up) and
altered quality of life. As one of the most frequent chronic
respiratory disease, asthma is estimated to affect around 5–10%
of adults (up to 20% in high-income countries) and from 5 to
20% of children. As a consequence, asthma is a major public
health issue (1–4). The cornerstone of the treatment of asthma
is inhaled steroids (ICS). Severe asthma is defined as asthma
requiring at least high doses of ICS in association with another
controller (generally long-acting beta-agonist bronchodilators)
and/or oral steroids more than half a year to be controlled,
or that remains uncontrolled despite these therapies (5–7). The
burden of asthma is particularly heavy in patients with severe
asthma who experience a severely impaired quality of life,
respiratory disability, frequent and severe exacerbations, poorer
control of symptoms, and hospitalisations. Severe asthma is also
associated with lower respiratory function with persistent airway
obstruction, representing about 50% of severe asthmatic patients,
and sometimes loss of reversibility of airway obstruction (6–
8). These patients account for the major part of asthma-related
healthcare cost (6, 7).

From a pathophysiological point of view, persistent airway
obstruction and loss of reversibility are the clinical hallmark of
airway remodeling. Airway remodeling is a complex biological
process, found in most chronic inflammatory airway diseases,
which contributes to airway obstruction (9). In asthma,
airway remodeling is characterized by several elementary
structural changes in bronchial mucosa: loss of epithelial
integrity, epithelial-mesenchymal transition (EMT), goblet cell
hyperplasia, mucus hypersecretion, subepithelial fibrosis with
thickening of epithelial basement membrane, smooth muscle cell
proliferation, and hypertrophy. Inflammatory cell infiltration in
bronchial mucosa can also be associated with airway remodeling
and contribute to this process (10–12). These changes lead to
increased lower airway resistances and reduced bronchial lumen,
thus contributing to persistent airway obstruction. Although
airway remodeling is present in asthma in all degrees of severity,
airway remodeling intensity correlates with asthma severity (11,
13–17).

Asthma has long been considered as an allergic Th2-
driven inflammatory disease, involving the “canonical” Th2
cytokines [interleukines (IL)-4, IL-5, IL-13], eosinophilic
inflammation, and mediators of allergic inflammation
(mainly immunoglobulins E and mast cells) (18). Over
the last 20 years, major advances have been made in the
understanding of asthma immunobiology and heterogeneity.
Cluster analyses of large cohorts of patients allowed to identify
several homogeneous subpopulations of asthmatic patients
according to clinical characteristics (phenotypes), and their
correlates in inflammatory and immunobiological processes
(endotypes) (18–20). Hence, asthmatic patients are currently
categorized according to the dominant inflammatory pathway
driving bronchial inflammation, and particularly the degree

of involvement of T2 inflammation: T2high asthma (typically
allergic and non-allergic eosinophilic asthma) vs. T2low asthma
(21). T2low asthma refers to a heterogeneous group of patients
with distinct endotypes, currently poorly characterized, like
neutrophilic or paucigranulocytic inflammation.

Both patients with T2high or T2low asthma can present severe
asthma. However, the neutrophilic endotype, characterized by
a predominance of neutrophils in airway inflammation, has
been particularly associated with severe asthma and resistance
to ICS and oral steroids (22–25). In contrast, T2high asthma
is more commonly associated with response to steroids.
Additionally, patients with T2high severe asthma have now
access to effective biotherapies that have emerged over the last
decade, based on monoclonal antibodies targeting Th2 cytokines
and immunoglobulins E (26). Although involvement of non-
T2 pathways in asthma remains not fully understood, recent
works have highlighted the role of Th17-driven inflammation
in T2low asthma (27–29). Th17 CD4+ cells produce IL-17 and
IL-22, two key cytokines involved in neutrophilic inflammation
in the context of antimicrobial host defense, and in the
regulation of epithelial function and repairing. These cytokines
are both also implicated in inflammatory disease pathogeny
such as rheumatoid arthritis or psoriasis (30). As neutrophilic
inflammation has been associated with T2low asthma and severe
asthma (22, 23), a role for Th17-type cytokines in asthma and
airway remodeling has been rapidly postulated and gradually
investigated over the past few years.

In this review, after going over the molecular and cellular
mechanisms of the Th17 pathway, we will further scrutinize the
existing evidences of the involvement of the Th17-type cytokines
in asthma and airway remodeling. We will also comprehensively
focus on the biological clues involving IL-17 and IL-22 in each
of the elementary pathological component of airway remodeling.
Eventually, an updated overview of the perspectives of Th-17
targeted therapies in asthma will be provided.

TH17-CYTOKINE PRODUCING CELLS AND
TH17 DIFFERENTIATION

In the 2000’s, a subpopulation of CD4+ T cells, distinct from
Th1 et Th2 cells, and characterized by the production of IL-17A
(also named IL-17), IL-17F and IL-22 was identified and named
accordingly to these cytokines “Th17 cells” (31–35). Their role
in general inflammatory pathophysiology and more specifically
in respiratory diseases and asthma has rapidly been investigated
and led to the concept of a “Th17 pathway” and Th17-type
cytokines (IL-17, IL-17F, and IL-22). Alongside Th17 cells, other
cell types were subsequently found to be sources of Th17-type
cytokines. Moreover, a subtype of CD4+ T cells producing
only IL-22 but not IL-17 (Th22 cells), was later discovered
(36, 37). More recently, a specific subset of innate lymphoid
cells (ILC), named ILC3, has emerged as another important local
cellular source of IL-17 and IL-22, especially in asthma (38, 39).
Eosinophils were also found to produce IL-17 in asthma (40).
Other cell types have been shown to produce Th17-type cytokines
but their contribution to asthma pathophysiology is not fully

Frontiers in Allergy | www.frontiersin.org 2 February 2022 | Volume 3 | Article 806391

https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org
https://www.frontiersin.org/journals/allergy#articles


Margelidon-Cozzolino et al. Th17 Cytokines and Airway Remodeling in Asthma

FIGURE 1 | Th17 pathway. (Left) acquisition of Th17 differentiation. 1-IL-6 and TGFβ, and IL-1β promote RORγ t expression and Th17 differentiation. 2-IL-6 and

TGFβ induce IL-23R expression which allows IL-23 to stabilize Th17 differentiation. 3-Th17 differentiation also includes secretion of IL-21 which in turn enhances Th17

differentiation, acting as a positive feedback loop. 4- Secretion of IL-17 and IL-22 by Th17 cell. (Right) action of IL-17 and IL-22 on their respective receptors and

activation of corresponding downstream pathways in an epithelial cell. 5- IL-22 binding protein (IL-22BP) regulates action of IL-22. 6-IL-22R activation induce Janus

Kinase 1 (JAK) and Tyk2 associated kinases which lead to activation of transcription factor STAT3 by phosphorylation. 7-IL-17R binding by IL-17 activates SEFIR

intracellular domain which activates ERK, MAPK, C-Jun N-terminal pathways, and transcription factor NF-κB.

elucidated: γ1 T cells, CD8+ T cells, B cells, Natural Killer T
cells (41–46). Of note, mixed cytokine phenotypes have been
identified in asthmatic patients such as Th2/Th17 (co-expressing
IL-4 and IL-17) and Th1/Th22 [co-expressing Interferon (IFN)
and IL-22] profiles (47, 48). This might be of interest as in
vitro data seem to indicate that IL-4 and IFN-g play a role in
Th1/Th2 polarization of human bronchial epithelial cells and
may contribute to airway remodeling particularly through IL-4-
induced expression of RUNX2 in epithelial cells which stimulates
TGFβ production (49).

Th17 differentiation is dependent on the high expression
of the master transcription factor Retinoic acid receptor-
related Orphan Receptor-γt (RORγt) (and to a lesser extent
RORα), leading to Th17-type cytokine production (50, 51).
Th17 differentiation is initially promoted either synergistically
by IL-6 and TGF-β, or by IL-1ß, respectively through STAT3,
SMADs, and AKT/mTOR and p38 pathway activations (52–
61) (Figure 1). Aryl hydrocarbon receptor transcription factor
ligands can also promote Th17 differentiation by binding
their cytosolic receptor (62, 63). Amplifying auto-feedback
loops involving IL-21 and IL-23 ensure stabilization of Th17
differentiation and proliferation of Th17 cells (44, 52). Of note,
type 1 and 2 interferons, IL-27, and IL-4 cytokines have the
ability to inhibit Th17 differentiation (64–67). Triggers of Th17
differentiation are multiple, including microbial environment (of
which microbiome composition), sodium homeostasis, allergy,

complement activation and inorganic particle exposure (61).
Interestingly, in mice, the exposure to microbiota promotes the
expansion of Th17 cells, ILC3, and regulatory T cells exhibiting
characteristics of Th17 differentiation (expression of RORγt),
which negatively regulates Th2 response, in intestinal mucosa
(68). Th17 regular function is currently thought to promote tissue
inflammation in order to ensure early clearance of extracellular
pathogens for which Th1 and Th2 responses are insufficient
(61, 69, 70). Th22 differentiation requires IL-6 and TNFa co-
stimulation (Figure 1). IL-22 can also be co-secreted by Th1 and
Th2 cells. Aryl hydrocarbon receptor has been suggested as the
master transcriptional factor of Th22 cells but is not the only
Th22 differentiation determinant (71).

TH17 CYTOKINES AND PATHWAYS

IL-17A, initially known as CTLA-8, belongs to a family
of cytokines including IL-17A, IL-17B, IL-17C, IL-17D, IL-
17E (IL-25), and IL-17F. Among them, IL-17A (also known
as IL-17) and IL-17F have been the most comprehensively
studied members, and have been shown to play a physiological
and pathophysiological role in humans (61). IL-17A mainly
exists under a homodimeric form (72). IL-17A promotes
inflammation through stimulation of granulopoiesis, induction
of neutrophil-attractant and neutrophil-activating cytokines
and chemokines (CXCL1, CXCL2, CXCL5, CXCL8, CXCL9,
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CXCL10, IL-6, G-CSF, and GM-CSF) (73–77). IL-17 effects are
driven through its dimeric receptor IL-17R. In humans, IL-
17R exists under several forms, of which IL-17RA and IL-
17RC are respectively homodimeric cognate receptors for IL-17A
and IL-17F. IL-17RA expression is ubiquitary (hematopoietic
cells and structural non-hematopoietic cells like epithelial
cells, endothelial cells, fibroblasts) conversely to IL-17RC,
which is exclusively expressed in structural non-hematopoietic
cells. Signaling via heterodimeric cytokine IL-17A/F and
heterodimeric receptor IL-17RAC is also possible (78–80). IL-17
effects are transduced by the SEFIR intracellular domain of IL-
17R. Downstream IL-17R signaling noticeably activates NFκB,
ERK, and MAPK and c-Jun N-terminal kinase pathways (61)
(Figure 1).

IL-22 belongs to the IL-10 cytokine family. It plays an
important role in host defense in barrier tissues, and in epithelial
protection and regeneration after injury (42, 46, 81–85). It
enhances proliferation and migration of cells expressing IL-
22R, while it inhibits their apoptosis and differentiation (86–89).
The antimicrobial activity of IL-22 includes the stimulation of
S100 protein and defensin productions (90). Interestingly, IL-
22 production is dependent of the Aryl hydrocarbon receptor
transcription factor (62, 91). IL-22 binds a heterodimeric receptor
made up of the IL-22R1 and IL-10R2 subunits. Interestingly,
IL-22R is only expressed on structural cells (epithelial and
endothelial cells, fibroblasts, and smooth muscle cells) and not in
hematopoietic cells. This repartition of IL-22R is highly relevant
regarding the potential role of IL-22 in airway remodeling as
these cell types are involved in airway remodeling processes. IL-
22R mainly activates downstream STAT3 through transduction
signals involving the receptor associated Janus kinases Jak1
and Tyk2 (92–94) (Figure 1). A soluble receptor for IL-22 [IL-
22 binding protein (IL-22BP)], sharing high homology with
IL-22R, contributes to IL-22 pathway regulation (95). IL-22
also plays a role in the tissue recruitment of neutrophils by
inducing the production of neutrophil attracting chemokines,
notably that of CXCL1 and CXCL5 by bronchial epithelial
cells (96).

Interactions between IL-17 and IL-22 remain mostly not
well-understood. Initially thought to be exclusively part of
the same immunological response because of their common
cellular source (Th17 cells, ILC3), each of these cytokines is
also produced independently by many other cells (Th1 cells,
Th22 cells, mixed Th1/Th22 cells for IL-22; Th2/Th17 for IL-
17) (42, 48). Several studies suggest a mutual ability of IL-17 and
IL-22 to inhibit each other production and respective Th17 and
Th22 differentiation (97–99).

Beyond the homeostatic functions of IL-17 and IL-22,
Th17 response is known to be involved in several chronic
inflammatory diseases such as rheumatoid arthritis, psoriasis,
psoriatic arthritis, ankylosing spondylitis, Crohn’s disease, and
atopic dermatitis (100–103). Among these diseases, some are
particularly characterized by neutrophilic inflammation and
tissue remodeling, such as psoriasis and atopic dermatitis. As a
consequence, the role of IL-17 and IL-22 in asthma, has been
questioned over the last two decades.

INVOLVEMENT OF IL-17 AND IL-22 IN
ASTHMA

The contribution of IL-17 in asthma was first suspected
from the identification of asthmatic patients with neutrophilic
inflammation in sputum as a distinct cluster of non-eosinophilic
severe asthma (104, 105). Knowing the central role of
IL-17 in neutrophil migration, recruitment and activation,
multiple studies investigated the association between IL-17
levels in serum, sputum, bronchial biopsies and asthma. Most
studies found not only increased IL-17 levels in asthmatic
patients (28, 40, 106–108), but also positive correlation
between IL-17 levels and asthma severity and association with
airway neutrophilia (106, 109, 110). The presence of cells
expressing IL-17 (ILC3 cells, Th17 cells) was also positively
correlated with asthma severity (22, 39). Interestingly, specific
Th2/Th17 CD4+ T cells, producing both Th2 and Th17
cytokines were identified in bronchoalveolar lavage (BAL)
of asthmatic patients. Severe asthma was associated with
increased Th2/Th17 cells predominantly polarized toward IL-17
production (Th2/Th17high) in BAL (111). The involvement of
IL-17 in asthma pathogenesis was further confirmed in murine
models, which globally found that ovalbumin sensitization
(inhaled, intraperitoneal, or epicutaneous route) followed by
inhaled challenge was associated with Th17 response, up-
regulation of IL-17 in airways, and that up-regulation of IL-17
enhanced airway neutrophilia and steroid-resistant AHR (112–
115). IL-17 production is also increased in obesity-associated
murine models of asthma and asthmatic pediatric patients (38,
39, 116). Data from murine models are summarized in Table 1.

Similarly, IL-22 and IL-22R upregulation was suggested in
several studies in serum and in bronchial biopsies from asthmatic
adults and children (predominantly in severe asthmatic patients)
and in murine models of asthma, as well as in patients with
other allergic respiratory diseases such as atopic rhinitis (99, 121–
124). IL-22 producing cells, particularly lymphocytes, are also
increased in bronchial biopsies from asthmatic children (123).

However, the role of IL-22 as a protective or a pathogenic actor
in asthma remains less clear than that of IL-17, as pathogenic
effect failed to be constantly reproduced in murine models.
Indeed, conflicting evidences have shown that IL-22 could have
deleterious but also beneficial effects on airway epithelium in
asthma (42, 95, 125, 126) (Table 2). Hence, a protective action
of IL-22 on airway allergic inflammation, in particular on
airway eosinophilic inflammation and Th2 cytokine production,
on AHR and even on some pathological feature of airway
remodeling (goblet cell hyperplasia) has been described in several
studies (127–129, 131). On the other hand, as underlined by
Hirose et al. in an extensive review about dual effects of IL-
22 on airway epithelium, atopic dermatitis models and some
murine models of asthma found pro-inflammatory effects of
IL-22, with enhanced AHR and airway remodeling (mucus
hyperproduction and goblet cell hyperplasia, and smooth muscle
cell hyperplasia) (95, 99, 133, 134). These contrasting results
have been discussed in a previous review (125) (Table 2). One
of the main differences between these studies is the route of
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TABLE 1 | Summary of data about the role of IL-17 in asthma from murine models.

Study Murine Model Allergen Route of

sensitization

Method to study

IL-17 effects

Phase of

allergic

inflammation

investigated

Global effect of

IL-17

Effect of

IL-17 on

Th2

cytokines

Effect of

IL-17 on

IL-22

Effect on

eosinophilic

inflammation

Effect on

neutrophilic

inflammation

Effect on

AHR

Effect on

airway

remodeling

Hellings et al. (117) Balb/c OVA Ip Anti-IL-17 Ab Se+Chal Pro-

inflammatory

↓ NS ↑ ↑

He et al. (113) Balb/c OVA • Ip

• Ec

Anti-IL-17 Ab Se+Chal Pro-

inflammatory

NS NS ↑ ↑

McKinley et al.

(115)

Severe

combined

immunodeficient

Balb/c

OVA N/A • IL-17RA KO

• Infection with IL-17

overexpressing

Adenovirus

Chal Pro-

inflammatory

NS ↑ ↑

Wilson et al. (112) C57BL/6 OVA • Ip

• It

IL-17RA KO Se+Chal Pro-

inflammatory

NST ↓ ↑ ↑ NS (mucus)

Wang et al. (118) C57BL/6 OVA Ip Anti-IL-17 Ab Se+Chal Pro-

inflammatory

↑ ↑ (mucus, s.e.

fibrosis, SM

hypertrophy)

Ano et al. (114) Transgenic

C57BL/6 (RORγt

overexpression)

OVA Sc Anti-IL-17 Ab Se+Chal Pro-

inflammatory

NS ↑ ↑

Zhao et al. (119) C57BL/6 OVA • Ip

• It

Stimulation with IL-17 Se+Chal Pro-

inflammatory

↑ NS ↑ (alteration of

epithelial

integrity)

Kim et al. (39) C57BL/6 + High

Fat Diet

N/A N/A IL-17 KO N/A Pro-

inflammatory

↑

Camargo et al.

(120)

Balb/c OVA Ip Anti-IL-17 Ab Se+Chal Pro-

inflammatory

↑ ↑ ↑ ↑ (s.e. fibrosis,

MMP-9

production)

Lamb et al. (108) Balb/c N/A N/A • Stimulation with

IL-17

• Anti-IL-17 Ab

N/A Pro-

inflammatory

NS NS NS NS

OVA, ovalbumin; Ip, intraperitoneal; Sc, subcutaneous; Ec, epicutaneous; It, intratracheal; Ab, antibody; KO, knock out gene; Se, allergen sensitization; Chal, allergen challenge; NST, effect of IL-17 non-specifically tested; NS,

non-significant effect; AHR, airway hyperresponsiveness; s.e, subepithelial; SM, smooth muscle; MMP-9, matrix metallopeptidase 9; N/A, non-applicable.
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sensitization, which may account for a differential effect of IL-22
with a protective effect associated with the intraperitoneal route,
and pro-inflammatory effects associated with the subcutaneous
route. Additionally, the protective or pro-inflammatory effects
of IL-22 were differently exerted according to the phase of
the allergic reaction (sensitization or challenge). In this regard,
the work of Leyva-Castillo et al., which tried to mimick the
atopic march, is interesting. They found that epicutaneous
sensitization with ovalbumin in mice further challenged with
intranasal ovalbumin led to increased expression of IL-22 in
serum and lungs, which was associated with enhanced AHR and
mixed neutrophilic and eosinophilic airway inflammation. This
was mainly observed with epicutaneous sensitization and not
intraperitoneal sensitization (132). Overall, the precise role of
IL-22 in asthma is still unclear, probably dependent on many
parameters, such as the timing of action during the allergic
process, the route of sensitization, as well as the immunological
microenvironment regulating the Th22 response (Table 2). One
can hypothesize that when IL-22 response is imbalanced, its
physiological role may turn into a harmful action.

Of interest, several studies have shown a global stimulation
of the Th17 response in asthma, with simultaneously increased
expression of IL-17 and IL-22 in peripheral mononuclear blood
cells (PMBC) and bronchial biopsies from asthmatic patients,
this increase being even higher in severe asthmatic patients.
Furthermore, increased levels of IL-17 and IL-22 were insensitive
to steroids, a characteristic frequently found in patients with
neutrophilic airway inflammation and with airway remodeling
and specific to severe asthma (25, 116, 135, 136). In a recent work,
our group also reported airway remodeling and neutrophilia in a
murine model of allergic asthma induced by dog allergen. In this
model, IL-17 and IL-22 expression were both upregulated (137).

In the era of “Omics,” two studies looked at transcriptomics
in blood, sputum and bronchial biopsies of asthmatic patients,
mainly in the U-BIOPRED cohort. Thereby, Badi et al. identified
in asthmatic patients a transcriptomic signature previously
identified in atopic dermatitis, a well-known Th22-driven
inflammatory disease. This signature included upregulation of
Th17 and Th22 pathway-related genes. Enrichment of this
signature in biological samples from asthmatic patients was
positively correlated with asthma severity (138). Similarly, Lamb
et al. found an upregulated Th17 transcriptomic signature in
bronchial biopsies from asthmatic patients (108).

Finally, both IL-17 and IL-22 levels have been found to be
negatively correlated with FEV1 (25, 136, 139), a hallmark of
severe asthma with airway remodeling. Overall, the involvement
of IL-17 in asthma is well-established. Although the involvement
of IL-22 in asthma seems very likely, its exact role is still to
be clarified.

IL-17, IL-22, AND NEUTROPHILIC
INFLAMMATION IN ASTHMA

Airway inflammation contributes to the airway remodeling
process (10). In asthma, airway inflammation is usually
characterized by T2 inflammation with eosinophilic cell
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infiltration of airways. Nevertheless, airway neutrophilia is
classically associated with severe asthma (23). Neutrophilic
asthma is also associated with steroid resistance, poorer lung
function (FEV1) and lower reversibility of airway obstruction,
which can be accounted by airway remodeling (22, 25, 140–142).

IL-17 and IL-22 are involved in neutrophilic inflammation
in asthma. As demonstrated on bronchial biopsies from a large
cohort of asthmatic patients, airway neutrophilia is associated
with both increased IL-17 and IL-22-producing cells (22, 108).
More recently, Badi et al. showed in a cohort of asthmatic
patients that the degree of enrichment in atopic dermatitis-
similar transcriptomic signature, including overexpression of
Th17 and Th22-related genes, was strongly associated with severe
neutrophilic asthma (138).

Indeed, IL-17 is a key cytokine in the recruitment and
activation of neutrophils (69, 76). Neutrophilia is correlated with
IL-17 expression in airway epithelium (108). In murine models
of asthma, IL-17 stimulates and orchestrates airway neutrophilic
infiltration by inducing the expression of neutrophil-attractant
chemokines like CXCL1, CXCL2, IL-6, and IL-8 in humans
(75, 108, 112–115, 117, 143).

Though its place still needs to be clarified in airway
neutrophilia, IL-22 seems also to be an important factor in
neutrophil recruitment (144, 145). It is able to also enhance
production of neutrophil recruitment associated chemokines like
CXCL8 (in humans), CXCL1, CXCL2, CXCL3, CXCL5, and IL-
1b, particularly in mold allergen-induced asthma murine models
(132, 137, 143, 144, 146). Interestingly, several data suggest a
pro-inflammatory effect of IL-22 synergistically with IL-17 on
airway neutrophilia by inducing the expression of chemokines by
epithelial cells but also by airway smooth muscle cells (98, 108,
143, 147).

Overall, the association between both of these cytokines
and neutrophilic inflammation is highly relevant, knowing
that neutrophils are thought to be an effector cell of airway
remodeling, particularly through the release of proteolytic
enzymes like elastases and metalloproteases (notably MMP-9),
thus participating in structural change of the extracellular matrix
of bronchial epithelium (148, 149).

INVOLVEMENT OF IL-17 AND IL-22 IN
AIRWAY REMODELING

Experimental data provides substantial arguments for an
involvement of IL-17 and IL-22 in airway remodeling through
their contribution to the diverse pathobiological processes
that lead to airway remodeling: subepithelial fibrosis, mucus
hyperproduction, airway inflammation and smooth muscle cell
hyperplasia and hypertrophia.

Out of the field of asthma, IL-17 and IL-22 enhance airway
remodeling inmurinemodels of lung injury by pollutants (airway
neutrophilic infiltration, epithelial desquamation, subepithelial
fibrosis) (150). They are also involved in tissue remodeling
in other inflammatory diseases (bone remodeling in psoriatic
arthritis, skin remodeling in atopic dermatitis) as well as in

other chronic respiratory diseases, such as chronic obstructive
pulmonary disease (COPD) (76, 100, 151–158).

The enhancement of airway remodeling by IL-17 has been
confirmed in murine models of asthma in which its blockade
by anti-IL-17 antibodies or genetic deficiency reduced mucus
hypersecretion, goblet cell hyperplasia, subepithelial collagen
deposition and airway smooth muscle layer thickening together
with airway neutrophilia (118, 119). Interestingly, IL-17 seemed
to increase epithelium permeability to allergen, indicating a loss
of epithelial integrity, also observed in airway remodeling (119).
IL-17-induced airway remodeling seemed to be dependent on IL-
6 (119), and to be partially mediated through heparin-binding
epidermal growth factor (HB-EGF) (118).

Regarding the specific topic of airway remodeling, the
understanding of the role of IL-22 suffers from conflicting
evidences. Fang et al. found a modulatory effect of IL-22
with decreased eosinophilic inflammation and Th2 cytokine
secretion, decreased AHR but also reduced mucus production
and goblet cell hyperplasia in lung-specific IL-22 transgenic
model of ovalbumin-induced asthma (130). Paradoxically, in
another murine model of dog allergen-induced asthma, which
reproduces the characteristics of airway remodeling, Aryl
hydrocarbon receptor antagonism decreased IL-22 levels (but
not IL-17) in lungs together with decreased airway remodeling.
The reduction of subepithelial fibrosis, mucus hyperproduction
and smooth muscle thickness after treatment with Aryl
hydrocarbon receptor antagonist suggests an association between
airway remodeling and IL-22 (137). Interestingly, as previously
underlined, IL-22R is not expressed on hematopoietic cells but
only on structural cells (epithelial, endothelial cells, fibroblasts,
smooth muscle cells) which are major contributors of airway
remodeling (42).

Interestingly, B cells, particularly regulatory B cells, seem to
have a beneficial regulatory effect on AHR and airway remodeling
in a murine model of asthma (159). Although there is no specific
data on the role of Th17 cytokines in this regulatory process,
several works have showed that Th17 cells, IL-17 and IL-22
(though this is an indirect effect as B cells do not express IL-
22R)may exert an important role of recruitment, stimulation and
maturation of B cells and a regulatory role of B cell response in
mucosal barriers (160–166). Subsequently, Th17 cytokines might
also contribute to airway remodeling by an indirect effect of
regulation of B cell response.

Respiratory tract infections, and in particular viral infections,
may also contribute to the pathophysiology of asthma and
the development of airway remodeling as a bronchial chronic
inflammation trigger, especially in T2low asthma (167–169). In
this setting, knowing the role of IL-17 and IL-22 in antimicrobial
host defenses in mucosal barriers (170–172), infections may play
an important role of trigger of Th17-induced airway remodeling
in patients with recurrent infection phenotype, by inducing
chronically high levels of Th17 cytokines in lungs.

Overall, IL-17 involvement in airway remodeling seems well-
established while it is less clear for IL-22. However, in vitro data
provide numerous clues in favor of the involvement of both of
these cytokines in several biological processes contributing to
airway remodeling (Figure 2).
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FIGURE 2 | IL-17 and IL-22 cooperate to induce features of airway remodeling in asthma. ECM: extracellular matrix. Pro-inflammatory effect: release of IL-17 and

IL-22 by Th17 cells and ILC-3 induce expression of neutrophil-attractant chemokines by endothelial cells and enhance neutrophil recruitment and diapedesis. IL-17

and IL-22 also induce expression of neutrophil-attractant and neutrophil-activating chemokines by epithelial cells and smooth muscle cells which lead to local

neutrophilic inflammation with release of proteolytic enzymes (elastase, metalloproteases). Epithelial alterations: IL-17 and IL-22 also increase production of mucus by

goblet cells and promotes goblet cell hyperplasia. They also alter epithelial integrity by enhancing E/N-cadherin switch which leads to epithelial-mesenchymal

transition. Smooth muscle alterations: IL-17 and IL-22 promote smooth muscle cell proliferation, migration, and contractility (only IL-17). Subepithelial fibrosis: IL-17

and IL-22 stimulate fibroblast proliferation and switch to pro-fibrotic phenotype and promote collagen production and deposition in ECM relsulting in thickening of

basement membrane. IL-22 also promotes migration of myofibroblast in smooth muscle cell bundles which contributes to local fibrosis and smooth muscle

contractility.

Subepithelial Fibrosis
Subepithelial fibrosis is a major feature of airway remodeling
in asthma. It is mainly characterized by increased collagen
deposition in the extracellular matrix (ECM), resulting in
thickening of basement epithelial membrane of bronchial
mucosa and reduced airway compliance. This phenomenon
contributes to airway obstruction. Mainly fibroblasts,
but also smooth muscle cells are the cellular effectors of
subepithelial fibrosis in asthma. TGF-β and IL-11 are the main
profibrotic cytokines which stimulate collagen secretion by
fibroblasts (9–12).

In chronic inflammatory bowel diseases, the effect of Th17-
type cytokines on subepithelial fibrosis through their action on
myofibroblasts is well-described (173). If Th2-type cytokines
IL-4 and IL-13 involvement in subepithelial fibrosis in asthma
is acknowledged (174, 175), pro-fibrotic effects of IL-17 are

also well-documented. Indeed, IL-17 induces the production of
pro-fibrotic cytokines IL-6 and IL-11 by fibroblasts obtained
from bronchial biopsies of asthmatic patients (40). Additionally,
Bellini et al. showed that circulating fibrocytes isolated from
exacerbating asthmatic patients had increased expression of IL-
17RA as compared to fibrocytes from control healthy subjects
(175). Both IL-17A and IL-17F (but not Th2 cytokines) have
demonstrated the ability to induce release of pro-neutrophilic
chemokines (CXCL1, CXCL8, and TNFa) by fibrocytes, and to
enhance fibrocytes switching toward a profibrotic phenotype
(increased production of α-smoothmuscle actin (SMA)mediated
by CXCL8, of collagen, and of proangiogenic factors like VEGF
and angiogenin) and fibrocyte proliferation (175, 176). This
proliferative effect could be mediated by IL-6 and the Leukemia
inhibitory factor (LIF), which were both found increased
after IL-17 stimulation in this model (175). Al-Muhsen et al.
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suggested that eosinophils could also contribute to the IL-17-
driven subepithelial fibrosis process. In vitro, the stimulation
of eosinophils from asthmatic patients by IL-17 (but not by
Th1 nor Th2 cytokines) induces the expression of the pro-
fibrotic cytokines IL-11 and TGF-β1. However, this effect
requires a co-stimulation with both IL-17A and IL-17F and
can be synergistically enhanced by co-stimulation with IL-23,
a known inducer and upregulator of IL-17R. This effect is
driven by the p38 MAPKinase pathway (177). More recently,
an original work highlighted that IL-17 induces autophagy and
mitochondrial dysfunction in human fibroblasts from asthmatic
patients, associated with impaired apoptosis and increased pro-
fibrotic response (178).

Similar data suggests an involvement of IL-22 in subepithelial
fibrosis in asthma. Liu et al. showed that blood from asthmatic
children containing high levels of IL-22 and IL-22-producing
lymphocytes had the ability to stimulate embryonic fibroblast
proliferation and production by fibroblasts of collagen (α-1 and
α-2 chains of collagen 1), thus suggesting a contribution of
IL-22 to subepithelial fibrosis in asthma through its action on
fibroblasts. This effect is linked to the activation of JAK/STAT3
signaling pathway by IL-22R1 (123).

Moreover, fibroblasts from bronchial biopsies of asthmatic
patients have also been shown to promote Th17 differentiation
of naïve CD4+ lymphocytes and secretion of IL-17 and IL-
22, which in turn stimulates the production of pro-fibrotic
cytokines (IL-6, TGFb) by fibroblasts but also cytokines favoring
Th17 differentiation (IL-23, IL-6, and IL-1b). This suggests that
the microenvironment can also promote a Th17 response in
asthmatic patients, through the existence of amplifying loops in
the fibrosing processes (179).

Subepithelial fibrosis also requires ECM remodeling involving
proteolytic activity. In this setting, several studies interestingly
showed, in murine models of asthma exacerbation, that IL-17
enhanced the production of metalloproteases MMP-9 andMMP-
12, neutrophil elastase, and the myeloperoxidase activity, as well
as ECM collagen deposition (120, 180).

Finally, biopsies from moderate to severe asthmatic patients
showed increased expression of IL-17 in epithelial and specifically
in subepithelial compartments, the latter being the location
of subepithelial fibrosis, thus arguing in favor of a likely
involvement of IL-17 in subepithelial fibrosis in humans.
However, downregulation of IL-17 by a 2 week-course of oral
steroids did not affect collagen deposition (181).

Taken together, these data suggest that IL-17 and IL-22
can promote subepithelial fibrosis in asthma by a direct
action on fibrocytes and fibroblasts, activating collagen
production and deposition in ECM, promoting metalloprotease
activity, angiogenesis and cell proliferation, enhancing Th17
response and in situ neutrophil recruitment, and inhibiting
fibroblasts apoptosis.

Mucus Hyperproduction and Goblet Cell
Hyperplasia
Another critical aspect of airway remodeling is represented by
changes in mucus secretion function. From a pathological point

of view, in asthma, airway remodeling is associated with goblet
cell hyperplasia/metaplasia and mucus hypersecretion. From a
biochemical point of view, changes in mucus rheology and
composition are also observed (9–12).

Normal mucus composition is dominated by mucin
glycoproteins, of which MUC5AC and MUC5B are the most
abundant. It has been demonstrated in vitro that IL-17 (but
not Th2 cytokines) was able to increase MUC5AC and MUC5B
expression by bronchial epithelial cells (182–184). Stimulation of
MUC5AC production is dependent on NfκB transcription factor
(183). IL-17 also induces IL-6 production through activation of
the JAK2 pathway, which in turn activates the ERK pathway,
responsible for enhancement of MUC5B production (182).

At the tissue-scale, IL-17 stimulation increases the number of
goblet cells which are the cellular source of mucus in airways
(185, 186). Moreover, a recent work seems to implicate IL-17 in
goblet cell metaplasia (187).

In addition, a chronic exposition to Aspergillus-induced
model of allergic asthma in mice showed features of airway
remodeling, noticeably airway inflammation and goblet cell
hyperplasia with mucus hyperproduction, associated with lung
function alteration. Dectin-1 is a C-type lectin receptor (CLR)
that is primarily responsible for β-glucan recognition and control
of fungal infection. Interestingly, the features of asthma in
this model of chronic exposure to aspergillus were reduced by
Dectin-1 deficiency which also downregulated IL-17 and IL-
22 production. Of note, neutralization of IL-22 improved lung
function in this model. These data suggests that IL-22 could be
also involved in alteration of mucus secretion in asthma (146).

Epithelial-Mesenchymal Transition (EMT)
and Epithelial Alterations
Epithelial structure alteration is a key component of airway
remodeling. In this process, most structural changes lead to
altered epithelium integrity, epithelial cell damage and apoptosis,
as well as increased epithelial permeability. Among these
changes, a phenotypic switch to mesenchymal cell characteristics
is observed in epithelial cells, thus achieving the epithelial-
mensenchymal transition (EMT). One of the most critical
changes concerns junction proteins, with loss of intercellular
tight junction, especially downregulation of the expression of E-
cadherin, leading to increase in epithelial permeability (9–12).
Additionally, acquisition of a mesenchymal phenotype is likely
to contribute to airway fibrosis (188).

In this setting, a potential role for IL-22 is very likely
regarding its role in protection, restauration and maintenance
of epithelial barrier homeostasis (125, 156). In vitro, TGF-β1-
induced EMT in primary epithelial bronchial cells of severe
asthmatic patients is enhanced by addition of IL-22. IL-22-
enhanced EMT is characterized by acquisition of morphologic
characteristics of mesenchymal cells (“spindle cells”), further
decrease in E-cadherin expression and further increase in N-
cadherin expression. This effect seems to be driven by Zeb1
transcription factor (121).

IL-17 has been involved in EMT in various respiratory
diseases, like idiopathic pulmonary fibrosis, lung cancer, or
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COPD (189–192). In a translational work on obliterans
bronchiolitis, Vittal et al. found that IL-17 could induce EMT,
partially through TGF-β production, resulting in decreased
expression of E-cadherin (193). In in vitromodels, IL-17 induces,
synergistically with IL-4 and TGF-β, reentering in cell cycle
(proliferation) of epithelial cells, fibroblast morphotype switch,
downregulation of E-cadherin, and upregulation of α-SMA (157,
194). A synergistic effect of cigarette smoke together with IL-17
on EMT was also reported by Ma et al. (191).

Interestingly, neutrophils from asthmatic patients were
recently shown to have the ability to induce EMT (195). Given the
preponderant role of IL-17 and IL-22 in neutrophil recruitment,
this supports the involvement of both of these cytokines in EMT
in asthma.

Increase of Airway Smooth Muscle Mass
Increase of airway smooth muscle mass participates to airway
obstruction in asthma and is one of the hallmark of airway
remodeling (9–12). It results from several mechanisms including
increased smooth muscle cell proliferation (hyperplasia), smooth
muscle cell hypertrophy, abnormal migration properties leading
to increased number of cells in smoothmuscle bundles, especially
myofibroblasts which also contributes to local fibrosis (12).

In in vitro models, IL-17A and IL-17F, as well as IL-
22 promote airway smooth muscle cell (ASMC) proliferation,
induce ASMC migration through activation of their respective
cognate receptors and downstream activation of MAPKinases
and NFκB pathways, and inhibit ASMC apoptosis (196, 197).
IL-17-induced ASMC migration is also mediated by Growth-
Related Oncogens (GRO), GROα being CXCL1, also involved
in neutrophil migration (198). Neutrophils contribute to smooth
muscle cell hyperplasia, which is critical given that IL-17 and IL-
22 play an important role in neutrophil recruitment, particularly
in airway smooth muscle bundles (199).

Additionally, translational data from two studies indicate that
IL-17 but not IL-22 can enhance smooth muscle cell contraction
via NF-κB/RhoA/ROCK2 signaling cascades, which are involved
in regulation of phosphorylation of myosin light chain and thus
ASMC contractility (200–202).

Overall, IL-17 and IL-22 stimulates ASMC proliferation and
contractility, smooth muscle cell infiltration by neutrophils,
migration of myofibroblasts into the smooth muscle layer,
inhibit ASMC apoptosis, leading to thickening of airway smooth
muscle mass.

THERAPEUTIC DIRECTIONS

As they are tightly linked to asthma immunobiology, and
especially to severe asthma, IL-17 and IL-22 appear as promising
targets in the treatment of severe asthma. In regard to
the overview of the very likely role of IL-17 and IL-22 in
airway remodeling in asthma that we provide in this review,
this therapeutic perspective is particularly interesting as there
is currently no specific pharmacological treatment targeting
airway remodeling in asthma, whereas several biotherapies
are available for patients with severe T2high asthma. To date,
mainly bronchial thermoplasty, an interventional endoscopic

procedure, offers a treatment option for these patients (203).
Recently, tezepelumab, a human monoclonal antibody blocking
thymic stromal lymphopoietin (TSLP), an epithelial-cell–derived
cytokine which, as an alarmin, plays an early role in the
inflammatory cascade in asthma, showed significant reduction
of exacerbation rate in non-selected patients with severe asthma,
including patients with non-T2 asthma. The effect was consistent
in the subgroup of patients with low T2 biomarkers (low
blood eosinophil count and low FeNO), suggesting that the
effectiveness of this biotherapy is maintained in patients with
non-T2 asthma (204). Of note a recent phase 2 clinical
trial did not show any improvement on airway remodeling
(epithelial integrity and basement membrane thickness) (205).
Nevertheless, tezepelumab may offer a therapeutic option for
patients with severe non-T2 asthma and could prevent the
development of non-already established airway remodeling by
early reduction of bronchial inflammation.

In the setting of Th17-targeting treatment of severe asthma,
IL-17 blockade strategy has been the most studied so far
(Table 3). According to the results obtained in the previously
mentioned murine models of asthma, the effect of brodalumab,
a humanized anti-IL17 monoclonal antibody already approved
in the treatment of psoriasis, was investigated in a randomized
controlled trial (RCT) in non-selected patients with moderate-
to-severe asthma (206). No significant difference was found
on the primary outcome criteria, which was the control of
asthma based on the Asthma Control Questionnaire (ACQ).
Nevertheless, the results of this study have been extensively
discussed on two points. First, there was no selection of patients
according to phenotype or endotype, and, as a consequence,
many patients with T2high asthma may have been included, a
category of patients for whom a beneficial effect of anti-IL-
17 treatment would be less expected than for patients with
neutrophilic asthma. Second, the primary outcome criteria was
improvement of asthma control, a criteria which has not been
found improved by any other already-registered biotherapies in
severe asthma, and which also may not reflect improvement in
airway remodeling. Interestingly, a subgroup of patients with
high FEV1 reversibility at inclusion demonstrated a significant
difference in asthma control, suggesting that patients with not-
yet-established permanent obstruction and airway remodeling
might benefit from IL-17 blockade strategy in the early phase
of airway remodeling (206, 209, 210). Recently, a phase I
trial studying the effect of a bispecific anti-IL-13 and anti-
IL-17A antibody in asthma was early terminated due to
high frequency of treatment immunization (207). Additionally,
experimental data suggest that blockade of IL-17 may restore
sensitivity to steroids, including airway remodeling features
(211). Lastly, a phase 2a RCT found that risankizumab, an anti-
IL-23 monoclonal antibody, induced downregulation of Th17
associated transcription factors, and showed deleterious effects
of outcomes (time to first worsening, annual rate of asthma
worsening) in an unselected population of severe asthmatic
patients (208). This result may put in perspective the protective
aspects of Th17 response in asthma (anti-microbial defense in
particular, although the proportion of infectious exacerbations
was not specifically reported in this study) (209). Therefore,
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TABLE 3 | Summary of results from pre-clinical and clinical studies on Th17-related therapies.

Drug Biochemical nature

and target

Type of study Population of

study

Primary

endpoint

Effect on

primary

endpoint

Effect on

asthma

control

Effect on

exacerbations

Effect on FEV1 Adverse

events

Remark

Brodalumab (206) Human anti-IL-17RA

IgG2 monoclonal Ab

Multicentric RCT,

db, Ph3

18–65 y.o.

moderate-to-

severe asthmatics

on stable ICS, no

biomarker required

(305 patients)

Asthma

control (ACQ)

NS NS NS Injection site

reaction

Possible positive

effect on asthma

control in the high

FEV1 reversibility

subgroup

BITS7201A (207) Humanized bispecific

anti-IL-13 and -IL-17

IgG4 Ab

Monocentric RCT,

ob, Ph1

Healhy volunteers

(41 patients)

Pharmacokinetic

parameters

Frequent

development

of anti-drug

antibodies

Risankizumab (208) Humanized anti-IL-23

IgG1 monoclonal Ab

Multicentric RCT,

db, Ph2

18–75 y.o.

asthmatics on

moderate ICS

dose at least + 1

other controller,

FEV1 40–85%, at

least 2 severe

exacerbations in

the 12 last months

(214 patients)

Time to first

worsening:

Worsening

(shorter time to

first worsening

with treatment)

NS Worsening NS NS Downregulation of

Th17-associated

transcriptome

BIX119 (108) Small molecule,

specific RORγ t inhibitor

Pre-clinical (murine

model)

Balb/c mice Reduction of

neutrophilic

inflammation and

AHR in mice

Tezepelumab (204) Human anti-TSLP IgG2

monoclonal antibody

Multicentric RCT,

db, Ph3

12–80 y.o.

asthmatics on high

ICS dose + 1

other controller, no

biomarker (1,061

patients)

Annualized

exacerbation

rate

Improvement Improvement Improvement Improvement Headaches,

Upper

respiratory

tract

infections

RCT, randomized controlled trial; db, double blind; Ph, phase; y.o., year-old; NS, non-significant effect; AHR, airway hyperresponsiveness; ob, observer-blinded.
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more data are needed on IL-17 blockade strategy. Trials selecting
patients based on an “IL-17 phenotype” using biomarkers like
sputum neutrophilia, IL-17 levels in blood or sputum, or airway
remodeling biomarkers are expected to make progresses in
this field.

Additionally, beyond the non-T2 asthma field, specific
allergen immunotherapy in allergic rhinitis is associated with
decreased serum levels of IL-17 mRNA and IL-17 as compared
to non-treated controls (212, 213). Furthermore, the ratio
between B regulatory cells (Breg) and Th17 cells (Breg/Th17
ratio) obtained from blood samples taken in the early phase
of immunotherapy, positively correlates with a symptom score
of response to this treatment at 3 years (214). This effect of
immunotherapy on Th17 response might be driven through
transdifferentiation of Th17 cells toward Treg cells, contributing
to immunotolerance to allergens (215, 216). Interestingly, a
recent work suggested that specific allergen immunotherapy-
induced immunotolerance was associated with a decrease in
“exhausted-like” Th2 cells in a murine model of chronic exposure
to ovalbumin allergen and in patients with allergic rhinitis, a
specific phenotype of Th2 cells characterized by the expression of
CTLA-4 and PD-1 (217), which has paradoxically been proposed
to contribute to the enhancement of Th2 response (218, 219).
Of note, in their murine model, immunotherapy was associated
with decreased neutrophil count and levels of IL-17 in BAL but
increased expression of IL-17 and IL-22 in lung homogenates
(217). Similarly, modulation of ILC2 exhausted phenotype might
be a relevant target, particularly knowing their involvement in
regulation of chronic allergic inflammation and that a subset of
these cells can produce IL-17 (220, 221). Improvement in the
understanding of the regulatory role of exhausted phenotype
of T2 inflammation-associated cells in allergic inflammation
and of their interaction with Th17 pathway may contribute to
the development of therapies indirectly targeting Th17 pathway
which may also impact Th17-associated airway remodeling.

Although there are no currently clinical studies of IL-
22 targeting therapies in asthma, some data suggest a
potential role for such therapies. First, the efficacy of the
anti-IL-22 antibody fezakinumab was demonstrated in a
randomized controlled trial in atopic dermatitis, a disease
which shares many pathophysiological features with asthma and
especially neutrophilic asthma (tissue remodeling, neutrophilic
inflammation) (222). As previously mentioned, data on IL-
22 blockade strategy from murine models provide conflicting
evidence of the benefit of this strategy. Interestingly, Badi et
al. found a predictive transcriptomic signature of response to
fezakinumab in atopic dermatitis which was enriched in blood
of patients with severe asthma from U-BIOPRED cohort. This
enrichment was especially associated with neutrophilic asthma.
The response to fezakinumab signature was correlated with Th22
related gene expression in blood and sputum (especially IL-22,
CCR10, Aryl hydrocarbon receptor). IL-22 expression in sputum
correlated with the enrichment of the response signature (138).
Given the established role of IL-22 in epithelial physiology and in
tissue remodeling (157), it might be an interesting target for the
treatment of airway remodeling in asthma.

Finally, a new and potent RORγt inhibitor, administered
in a mouse model of house dust mite-induced asthma which
exhibited a transcriptomic signature overlapping with that of a
cluster of patients with severe neutrophilic asthma from the U-
BIOPRED cohort, showed a decrease in IL-22, IL-17, and CXCL1
levels in BAL fluid, in BAL neutrophilia and more interestingly
an improvement in airway resistances in a dose dependent
manner (108). This effect was not achieved by an anti-IL-17
antibody alone. This result may confirm the synergistic action
of IL-17 and IL-22 that has been suggested in several studies
(98, 108, 143, 147). An anti-inflammatory effect targeting the
Th17 response might require an abolition of both IL-17 and
IL-22 actions. Considering this result and this hypothesis, the
inhibition of RORγt, the master driver of Th17 differentiation
may be a promising track in asthma.

Overall, substantial progresses are still to be done in the
field of treatment targeting the Th17 response in asthma and
airway remodeling. Clinical trials relying on relevant outcome
criteria and with endotype-based selection of patients are needed.
Moreover, timing of administration of biotherapies targeting
airway remodeling might be a critical parameter affecting
results of clinical trials. Have such therapies to be administered
preventively before establishment of severe and fixed (maybe
irreversible) airway remodeling and obstruction? Or should we
expect to reverse already-established airway remodeling? Further
responses are awaited on this burning topic.

CONCLUSION

Many evidences are accumulating to indicate a leading role of
Th17 cytokines in patients with severe T2low asthma, particularly
in patients with neutrophilic asthma and airway remodeling.
However, the exact role of Th17 cytokines, especially IL-22, still
needs to be clarified in vivo, though an important number of
experimental in vitro data show their involvement in elementary
biological processes that contribute to airway remodeling (airway
inflammation, subepithelial fibrosis, mucus hyperproduction,
thickening of airway smooth muscle, epithelial-mesenchymal
transition and alteration of epithelial integrity). Therefore, IL-17
and IL-22 are attractive therapeutic targets for new biotherapies
in severe asthma while there is currently no pharmacological
treatment targeting airway remodeling. Future clinical trials
involving molecules targeting Th17 cytokines using appropriate
outcomes and selected populations will be required to progress in
this direction.
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