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Which transcription factors control the distribution of metabolic fluxes under a given condition?
We address this question by systematically quantifying metabolic fluxes in 119 transcription factor
deletion mutants of Saccharomyces cerevisiae under five growth conditions. While most knockouts
did not affect fluxes, we identified 42 condition-dependent interactions that were mediated by a total
of 23 transcription factors that control almost exclusively the cellular decision between respiration
and fermentation. This relatively sparse, condition-specific network of active metabolic control
contrasts with the much larger gene regulation network inferred from expression and DNA binding
data. Based on protein and transcript analyses in key mutants, we identified three enzymes in
the tricarboxylic acid cycle as the key targets of this transcriptional control. For the transcription
factor Gcn4, we demonstrate that this control is mediated through the PKA and Snf1 signaling
cascade. The discrepancy between flux response predictions, based on the known regulatory
network architecture and our functional 13C-data, demonstrates the importance of identifying and
quantifying the extent to which regulatory effectors alter cellular functions.
Molecular Systems Biology 6: 432; published online 30 November 2010; doi:10.1038/msb.2010.91
Subject Categories: metabolic & regulatory networks; cellular metabolism
Keywords: metabolic flux; omics data; regulatory network; transcription factor; transcriptional
regulation

This is an open-access article distributed under the terms of the Creative Commons Attribution
Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon
the article and thendistribute the resultingwork under the sameorsimilar license to thisone. Thework must
be attributed back to the original author and commercial use is not permitted without specific permission.

Introduction

Effective control and modulation of cellular behavior is of
paramount importance in medicine (Kreeger and Lauffenbur-
ger, 2010) and biotechnology (Haynes and Silver, 2009), and
requires profound understanding of control mechanisms. In
cancer treatment, for example, it would be of great impact to
induce apoptosis only in tumor cells but not in healthy ones,
while in biotechnology it is important for the cost-effectiveness
of a process to minimize the formation of by-products and
redirect carbon toward desired compound(s). Learning the
mechanisms through which cells regulate their response to
changing environments can help in the design of reverse-
engineering regulatory circuits to modulate cellular behavior
(Csete and Doyle, 2002). To date, regulatory mechanisms are
mostly inferred from gene expression, interaction or binding
data (Papin et al, 2005; Karlebach and Shamir, 2008; Snyder

and Gallagher, 2009). Yet, the ability to predict cellular
behavior from such inferred mechanisms is still poor
(Bonneau, 2008), owing to the fact that many regulatory
events remain hidden. In particular, very little is known about
how changes in transcript and protein levels affect metabolic
readjustment, and thus, phenotypic behavior (Heinemann and
Sauer, 2010).

Transcriptional regulation is arguably at the forefront of a
cells’s ability to control resource availability, being the first
regulatory layer to determine new cellular composition. Over
the last decade, transcriptional regulatory networks have
been extensively investigated, and the backbone of potential
‘transcription factor–target gene’ interactions has been recon-
structed based on genome-wide protein-DNA binding analysis
and high-throughput gene expression data (Bonneau, 2008).
The first large-scale protein–DNA binding analysis study of the
model eukaryote Saccharomyces cerevisiae revealed a highly
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connected transcription factor network architecture (Lee et al,
2002), whose condition-dependent interaction connectivity
was later identified based on protein–DNA binding data from
different stress conditions (Harbison et al, 2004). Large-scale
genome-wide expression data were used to reconstruct the
organization of transcription factor networks by graph theory
(Yu and Gerstein, 2006; Hu et al, 2007), probabilistic graphical
models (Segal et al, 2003) or clustering algorithms (Ihmels
et al, 2002). The integration of protein–DNA binding topology
and gene expression data through statistical approaches was
used to reconstruct the architecture of the responsive
transcriptional regulatory network, unraveling a rewiring of
the transcriptional network interactions in response to various
stimuli (Luscombe et al, 2004; Balaji et al, 2006; Gitter et al,
2009). An even higher level of integration was achieved by
combining protein–DNA binding profiles with genetic pertur-
bations, gene expression data, protein interaction data and
systematic phenotyping to reveal causal pathway models that
provide global hypotheses of how signaling and transcription
are linked (Workman et al, 2006). Despite this extensive
knowledge, the link from transcriptional regulation to the
functional output is largely missing, because changes in
transcript/protein abundance do not necessarily lead to equal
(or any) changes in function. Explicitly, if the condition-
dependent binding of a transcription factor leads to differential
expression of its target gene(s), the consequences of such
regulation on cellular operation remains nearly impossible to
predict.

In this study, we aim to elucidate the extent to which
transcription factors control the operation of yeast metabo-
lism. As a quantitative readout of metabolic function, we
monitored the traffic of small molecules through various
pathways of central metabolism by 13C-flux analysis (Sauer,
2006). For a systematic analysis, we quantified the flux
distributions (pathway activities) within central carbon
metabolism of 119 single deletion strains that lack metabo-
lism-related transcription factors under five different growth
conditions. We identified condition-dependent networks of
transcription factors that control metabolic pathway activity
(Figure 1). Despite their widespread impact on gene expres-
sion (Hu et al, 2007), only very few transcription factors affect
pathway activity and thus the flux distributions. For transcrip-
tion factors that affect the flux distribution, we then unraveled
flux relevant enzymes based on consistent changes in protein
abundances, and further hypothesize on the underlying
mechanism leading to the control of metabolic flux distribu-
tions based on genome-wide gene expression data (Figure 1).

Results

In the yeast S. cerevisiae, 275 genes are annotated as
‘transcriptional regulatory active’ in the yeast genome
database (Cherry et al, 1998). Out of these, we selected 119
transcription factors related to metabolism or stress responses,
covering B70% of all transcription factors with target genes in
at least one of the two processes. For each of these 119
transcription factors, prototrophic deletion strains were con-
structed and grown under five conditions: glucose, glucose
with high osmolarity, glucose with urea as nitrogen source,
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Figure 1 Schematic overview on the performed experiments and data
analysis. Yellow ellipses and squares indicate altered protein and gene
expression in transcription factor mutants compared with the wild type,
respectively. Black ellipses and squares indicate no difference between mutant
and wild type.
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glucose with low pH and galactose (Supplementary Table 1).
The chosen growth conditions suit the requirements for flux
analysis, such as exponential growth on minimal medium
(Zamboni et al, 2009). They represent two different regulatory
states of reduced (galactose) and maximal carbon source
repression (glucose), as well as a different nitrogen metabo-
lism and two common, permanent stress conditions.

As a general measure for effects of the deleted transcription
factors on metabolism, we determined growth rates (Figure 2,
Supplementary Table 2). The wild-type grew with a maximum
specific growth rate of 0.31–0.331/h under three conditions
and with a maximum specific growth rate of 0.19–0.20 1/h
at low pH or on galactose (Supplementary Table 2). Under all
five tested conditions, 13–15% of the investigated mutants
exhibited a growth defect 420% and up to six mutants did
not grow at all under a given condition. The observed growth
defects indicate that the deleted transcription factors were
required under the respective growth condition.

Transcription factors that control the distribution
of flux

To quantitatively evaluate the effect of single transcription
factor deletions on pathway activity and thus on flux
distributions, all strains were grown in 20% uniformly 13C-
labeled glucose or galactose (Supplementary Table 1). Both
substrates enter central metabolism at the level of glucose-6-P,
but they lead to primarily fermentative or respiro-fermentative
metabolism, respectively (Bro et al, 2005; Küpfer et al, 2005).
During fermentative metabolism, ATP is mainly produced
through glycolysis with subsequent ethanol formation. During
respiro-fermentative metabolism, ATP is simultaneously
produced through glycolysis, the tricarboxylic acid (TCA)
cycle and respiratory chain with only some formation of
ethanol. As glucose and galactose are metabolized to an
unequal extent through the alternative pathways of central
carbon metabolism, different 13C-labeling patterns emerge
that were subsequently determined in protein-bound amino
acids by gas chromatography–mass spectrometry (Sauer,

2006; Zamboni et al, 2009). From the determined mass
isotopomer abundances in amino acids, we calculated six
ratios of converging central metabolic fluxes (Blank and Sauer,
2004; Zamboni et al, 2009), which determine the flux
distribution in central carbon metabolism (Figure 3, Supple-
mentary Figure 1, Supplementary Table 1).

Depending on the growth condition, between 7 and 13% of
the deleted transcription factors altered the determined flux
ratios (Figure 3, Supplementary Table 3). Three out of six flux
ratios corresponding to gluconeogenesis, glycine production
through C1 metabolism and transport of mitochondrial
oxaloacetate into the cytosol were never significantly altered
in any of the mutants. Thus, these three flux ratios were
not controlled by the investigated transcription factors under
the tested conditions. The other three potentially transcrip-
tionally controlled flux ratios were the upper bound of ‘serine
originating from the pentose phosphate pathway’, which
quantifies the relative contribution of glycolysis versus the
pentose phosphate pathway; ‘serine originating from glycine’,
which quantifies the relative contribution of the backward flux
from glycine to serine versus the forward flux from 3-phospho-
glycerate to serine; and ‘mitochondrial oxaloacetate derived
through anaplerosis’, which quantifies the relative contribu-
tion of the respiratory TCA cycle flux versus the replenishment
of the biosynthetic precursor. The relative pathway usage of
glycolysis and pentose phosphate pathway was altered only in
three mutants, whereas the other two flux ratios were altered
depending on the growth condition in 1–12% of the transcrip-
tion factor mutants.

To exclude that the observed alterations in the flux
distributions were indirect consequences of altered mutant
physiology, we correlated the specific growth rates with the
flux ratios by calculating the correlation factor between both
(data not shown). If the transcription factors have an indirect
effect on flux distributions via reduced growth rates in the
deletion mutants, we expect a correlation between mutant
growth rates and the determined flux distributions. For
transcription factors with a direct effect on metabolism,
we expect no such correlation. Relative pathway activity,
for the flux distribution between glycolysis and the pentose
phosphate pathway, and the convergent ratio of anaplerosis
and TCA cycle were not correlated with growth rate (correla-
tion coefficients considering all growth conditions of �0.27
and 0.19, respectively). Thus, they were directly controlled by
the deleted transcription factors and not indirectly influenced
through altered growth rate. The flux ratio quantifying the
backward flux to serine, however, correlated with growth rate
(correlation coefficient considering all growth conditions of
�0.65), implying that the observed alterations in this flux ratio
were indirect consequences of altered growth. As the results
were obtained from single experiments in a screening setup, at
least triplicate experiments were carried out for all transcrip-
tion factor deletion mutants with altered flux ratios for the
relative pathway activity between glycolysis and the pentose
phosphate pathway, and the convergent ratio of anaplerosis
and the TCA cycle (Supplementary Table 4). Thereby, 23 out of
the 24 originally identified mutants were reconfirmed.

As fluxes and their distribution are a readout for the
functional metabolic consequences of a transcript alteration,
we conclude that 23 transcription factors control flux
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Figure 2 Maximum-specific growth rates of the 119 transcription factor mutants
under five growth conditions. Four replicates of the wild type are depicted as
black dots. Deletion strains are depicted as blue dots (average of four replicates)
(Supplementary Table 2).
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distributions under at least one of the tested growth condi-
tions, leading to 42 condition-dependent interactions of
transcription factors with metabolic pathway activity. All 23
transcription factors controlled the TCA cycle flux activity. Two
of them (Rtg1/3) also controlled the relative activity between
glycolysis and the pentose phosphate pathway. Thus, tran-
scriptional control focussed almost exclusively on the TCA
cycle and probably also on the functionally connected, but
here not observed, respiratory chain, while the remainder of
central carbon metabolism was not affected. The control of the
TCA cycle flux activity through the 23 identified transcription
factors exhibited different magnitudes of alteration (Figure 4):
during growth on galactose, the deletion of seven transcription
factors led to a completely abolished TCA cycle usage, but
none of the deletion mutants with higher relative flux through
the TCA cycle actually achieved a TCA cycle flux comparable

with that observed on fully respiratory carbon sources (e.g., on
pyruvate or ethanol; Fendt and Sauer, 2010).

How many transcription factors could have been predicted
to affect pathway activity based on their target gene patterns?
The Yeastract database lists 71 of the investigated transcription
factors with at least one target gene in central metabolism on
the basis of literature-curated, direct, indirect or undefined
evidence from expression and DNA binding data, which could
thus potentially affect pathway activity. Although 55 transcrip-
tion factors have at least one target in glycolysis or the pentose
phosphate pathway, the flux distribution between those two
pathways was altered in only two mutants. Of the 35
transcription factors with at least one target in the TCA cycle,
in contrast, 23 exerted control under at least one of the tested
conditions. To assess the significance of this seemingly better
predictive fidelity, we calculated the predictive fidelity of
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expression and DNA binding data for all TCA cycle genes by
considering (i) only direct or (ii) direct, indirect and undefined
evidence. While generally predictive fidelity increased with
the number of transcription factor target genes in the TCA
cycle, there was no particular combination that achieved a
high percentage of true-positive predictions at a low false-
negative percentage (Figure 5, Supplementary Table 5). Most
relevant for a first prediction on potential flux control, where
a low false-negative rate is desired, was the combination of

all three lines of evidence for transcription factors with one
or more target genes in the TCA cycle genes; (26.1% false
negatives and 48.6% true positives). Thus, the prediction
of flux controlling transcriptional events on the basis of
expression and DNA binding data is rather limited for the
TCA cycle and not possible for others like the pentose
phosphate pathway.

In principle, the low predictive power of gene regulation
data for functional flux responses could be caused by
transcription factor redundancy. To test this hypothesis, we
obtained 13C-flux data from the double and triple transcrip-
tional factor mutants Nrg1/2, Msn2/4 and Mig1/2/3 (data not
shown). We decided to test these mutants as the deleted
transcription factors are main regulators of glucose repression
and stress responds (Zaman et al, 2008). Yet, even these multiple
deletions did not result in altered TCA cycle flux distributions,
indicating that redundancy is not the primary reason for the
observed robustness.

Relevant TCA cycle enzymes that enable higher
pathway usage

Of the 23 transcription factors that controlled TCA cycle flux
distributions under the tested conditions, only Bas1, Gcn4,
Gcr2 and Pho2 exerted control under more than one condition
(Figure 4). None of these four transcription factors had
previously been identified as a key regulator of the TCA cycle.
While Gcn4, Gcr2 and Pho2 have known targets in the TCA
cycle, our finding is entirely novel for Bas1. Gcn4 is a global
regulator of amino-acid biosynthesis and also has five known
targets in the TCA cycle (LPD1, CIT3, ACO2, IDH1, IDP1)
(Hinnebusch, 2005; Teixeira et al, 2006). Bas1 and Pho2 act
together to activate purine and histidine biosynthesis, and only
Pho2 has the TCA cycle gene IDH1 as a target (Hannum et al,
2002; Som et al, 2005; Teixeira et al, 2006). Gcr2 is an activator
of glycolysis genes, but six TCA cycle genes are also among its
known targets (CIT1, CIT3, ACO1, SDH2, SDH3, SDH4)
(Chambers et al, 1995; Teixeira et al, 2006). For these four
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mutants we asked which enzymes are relevant for the higher
activity of the TCA cycle.

For this purpose, we determined the abundance of 50 central
metabolic enzymes with targeted proteomics in the four
mutants during growth on glucose (Figure 6, Supplementary
Table 6). In general, glycolytic enzyme abundances were
decreased in the GCR2 mutant as expected from the known
function of Gcr2, as an activator of glycolysis (Chambers et al,
1995). The GCN4 deletion hardly altered any enzyme
abundances, except those of TCA cycle enzymes. The BAS1
and PHO2 mutants exhibited very similar patterns of
differentially expressed enzymes; that is, all 11 enzyme
alterations observed in the PHO2 mutant were also found in
the BAS1 mutant, supporting the view that they act together
(Hannum et al, 2002; Som et al, 2005). The consistent increase
of several glycolysis enzymes in these two mutants, however,
did not lead to an alteration in the relative use of glycolysis
and the pentose phosphate pathway.

Consistently, increased TCA cycle enzyme abundances in all
four mutants was only found for citrate synthase (Cit1) and
malate dehydrogenase (Mdh1) (Figure 6, Supplementary Table
6). This suggests that the increase in abundance of these two
enzymes is necessary to enable the observed higher activity of
the TCA cycle. As the BAS1 and GCR2 mutants displayed the
highest TCA cycle activity, we looked for enzymes that were

more abundant in these two strains, a criterion that was only
fulfilled by isocitrate dehydrogenase (Idh1). In addition, the
Idh2 member of the isocitrate dehydrogenase complex was
more abundant, but the P-value for the GCR2 mutant was 0.08,
a value greater than the chosen cutoff P-value of 0.05. Thus, we
concluded that during growth on glucose, increased abun-
dance of Cit1 and Mdh1 is necessary to increase the TCA cycle
flux from 0 to 0.01–0.03 mmol/g/h. The additional further flux
increase to 0.10–0.13 mmol/g/h then requires an additional
increase in abundance of Idh1/2p; as seen in the BAS1 and
GCR2 mutants. Although these enzymes are apparently
necessary for achieving a higher TCA cycle activity, they are
not sufficient as additional components of the respiratory
chain must also be expressed at higher levels.

Signaling cascades leading to the control of TCA
cycle activity

After identifying relevant enzyme targets for the higher TCA
cycle flux, we asked through which signaling cascades Bas1,
Gcr2, Gcn4 and Pho2 governed this change in activity. For this
purpose we determined genome-wide transcript abundances
in the four mutants during growth on glucose. Generally,
expression of many genes was altered in all four mutants,
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including most of the known targets of the four transcription
factors (Figure 6, Supplementary Table 7). As already observed
for enzyme abundance alterations, the pattern of differentially
expressed genes in the BAS1 and PHO2 mutants was very
similar, strongly supporting the view that they act together.
When comparing protein and transcript abundance alterations
in central carbon metabolism, the magnitude of transcript
abundance alterations was about half of the abundance
alterations in the corresponding enzymes, yet the direction
was always consistent (Figure 6).

To identify active signaling cascades leading to the control of
TCA cycle activity in the four mutants, we predicted
differentially activated transcription factors based on the
activity pattern of their target genes (Oliveira et al, 2008).
The underlying hypothesis is that a transcription factor is
potentially differentially activated in the mutant compared
with the wild type when its target genes are differentially
expressed. Based on all increased transcripts, that were
identified as potentially relevant for the higher TCA cycle flux,
we found 47, 53, 31 and 14 transcription factors to be
differentially activated in the BAS1, GCN4, GCR2 and PHO2
mutants, respectively (Supplementary Table 8). Not unexpect-
edly due to the chosen set of investigated transcription factor
mutants, the majority of these differentially activated tran-
scription factors were related to metabolism or stress response.

The inferred pattern of differentially activated transcription
factors suggests reduced glucose repression in all four mutants
(Table I). For the GCR2 mutant, our conclusion is based only on
the differential activity of Nrg1, a key transcription factor for
maintaining glucose repression (Zhou and Winston, 2001),
whereas for the PHO2 mutant it is based on differential activity
of the Hap-complex, a global regulator of respiration and a
target of glucose repression (Zaman et al, 2008; Turcotte et al,
2009). The evidence is stronger for the BAS1 mutant because
both Nrg1 and the Hap-complex appear to be differentially
activated. In addition, Adr1, a target of glucose repression
through its activating kinase Snf1 (Zaman et al, 2008), was
identified as differentially activated. For the GCN4 mutant we
have the strongest evidence, as all differentially activated
transcription factors described for the other three mutants are
also found in GCN4 mutant. Moreover, we also found Mig1, the
major transcription factor of the Snf1 repressor complex
involved in glucose repression (Turcotte et al, 2009), and
Msn2/4 to be differentially activated. Differential activity of
Msn2/4, based on the upregulation of its target genes in the
GCN4 mutant, indicates less strong signaling of PKA (Zaman
et al, 2008), which is one of the two major downstream
regulators of glucose repression. Most of the identified
differentially activated transcription factors were also tested
as single deletions in the primary screen, but did not lead to
flux alterations.

To validate the above hypotheses on glucose repression-
related regulation events, we focussed on the GCN4 mutant.
The GCN4 mutant has potentially reduced PKA activity, which
leads to increased Snf1 activity (Haurie et al, 2004; Hedbacker
et al, 2004; Slattery et al, 2008). This in turn leads to the
activation of the Hap-complex and its targets (Schüller, 2003;
Zaman et al, 2008), resulting in an increased TCA cycle activity
(Figure 7). Hence, hyperactivation of PKA should restore TCA
cycle activity to wild type levels. Deletion of BCY1 is one
possibility to uncouple PKA activity from upstream signals,
leading to constitutively active PKA (Zaman et al, 2008). We
constructed the BCY1 deletion strain in the GCN4 mutant
background, but the double mutant grew very poorly. Never-
theless, the determined TCA cycle activity in cultures that grew
to sufficient density was indistinguishable from the activity in
wild-type cells, suggesting that the GCN4 mutant phenotype is
a result of reduced PKA activity (Table II). Thus, we expected
increased Snf1 activity in the GCN4 mutant. Deletion of SNF1

Table I Potentially differentially activated transcription factors that indicate a
reduced glucose repression in the four mutants compared with the wild type

Strains Differentially activated transcription factors

Dgcr2 Nrg1
Dpho2 Hap-complex
Dbas1 Adr1, Hap-complex, Nrg1
Dgcn4 Adr1, Hap-complex, Mig1, Msn2/4, Nrg1
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Figure 7 Signaling cascades involving Gcn4. Known signaling cascade
involving Gcn4 (Schüller, 2003; Slattery et al, 2008; Zaman et al, 2008) and the
here revealed Gcn4 signaling cascade of TCA cycle gene expression.

Table II Relative TCA cycle flux to mitochondrial oxaloacetate in double
deletion strains and HAP4 overexpression strains

Strains Relative TCA cycle flux

Value Error

Wild type 0.00 0.01
Dgcn4 0.13 0.03
Dgcn4Dbcy1 0.01 ND
Dgcn4Dsnf1 0.05 0.01
Dgcn4Dhap4 0.01 0.02

Wild type with empty plasmid 0.01 0.00
Wild type with RPS2-HAP4 0.13 0.01

Values are determined with 13C-flux analysis as one minus ratio ‘mitochondrial
oxaloacetate derived through anaplerosis’ (Blank and Sauer, 2004) (Supple-
mentary Figure 1, Supplementary Table 1). Error ranges were calculated from at
least two independent samples.
‘ND’ stands for not determined.
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in the GCN4 mutant background reduced TCA cycle activity,
but did not fully restore wild-type levels (Table II). These
results suggest that although Snf1 activity was higher in the
GCN4 mutant, increased Snf1 activity accounted only partially
for the observed phenotypes. Hence, PKA regulates TCA cycle
activity, at least in part, through a Snf1p-independent
mechanism (Figure 7). Finally, simultaneous deletion of
GCN4 and HAP4 restored TCA cycle activity to levels and
HAP4 overexpression in wild-type significantly increased TCA
activity to levels comparable with the GCN4 mutant (Table II).
This confirms that the Hap-complex is of crucial importance
for Gcn4-dependent regulation of TCA cycle flux. Thus, the
GCN4 mutant phenotype of higher TCA cycle flux can be
readily explained by decreased activity of PKA and increased
activity of Snf1, which impinge on the Hap-complex to
regulate flux through the TCA cycle (Figure 7), thereby
validating our hypothesis derived from the transcript data
analysis. In the biological context, the observed positive
feedback loops between PKA and Gcn4 might be advantageous
for the cell, due to the interlinkage of the stress response
triggered by the lack of amino acids and the substrate response
triggered by the highly repressive carbon substrate glucose, as
both processes are at least partially dependent on PKA.

Discussion

Starting from the currently largest set of 13C-based flux
distributions, we identified networks of individual transcrip-
tion factors that control metabolic pathway activity. These
networks of active metabolic control have the following
properties. First, they are highly condition dependent, as at
most four transcription factors control the same metabolic flux
distribution under more than one growth conditions. Second,
they focus almost exclusively on the TCA cycle, thereby
controlling the switch between respiratory and fermentative
metabolism, which is consistent with more limited transcrip-
tion factor deletion studies in bacteria (Fischer and Sauer,
2005; Perrenoud and Sauer, 2005; Nanchen et al, 2008). Third,
with four to 14 active transcription factors, they are small
compared with gene regulation networks that were obtained
from expression and DNA binding data.

One of the first large-scale studies to monitor genome-wide
gene function with growth rate as a functional readout was
performed by Giaever et al (2002). Compared with our results,
they found more transcription factors that control cellular
function, mainly because growth rate is a more general
readout on function than metabolic fluxes, as essentially all
cellular processes can affect growth rate. Corroborating our
finding of a major discrepancy between the responsive gene
regulatory network and the network that actively controls
function under a given condition, Giaever et al (2002) found
that only 7% of the gene expression-based predicted pheno-
types were indeed detected at the level of growth rate. Thus,
cellular functions are relatively robust to altered gene
expression during steady-state exponential growth.

For the metabolic network studied here, robustness is also
apparent from the fact that upregulated TCA cycle fluxes
were not sufficient to achieve full respiratory metabolism with
absent or low ethanol formation. Several explanations could

potentially explain the observed robustness. First, the results
might be condition specific, for example, the chosen carbon
substrates might require only a small set of transcription
factors to control the flux distribution. Second, other regula-
tion mechanisms such as post-transcriptional modifications
might actually be the primary flux controlling elements
(Heinemann and Sauer, 2010). Third, the redundancy of
transcriptional networks (Stelling et al, 2004) might mask
the effect of single transcription factor deletions. While we
cannot entirely rule out transcription factor redundancy, none
of the three tested double and triple transcription factor
deletion mutants exhibited a noticeable TCA cycle flux impact;
hence, argue against redundancy. Fourth, environmental
signals might be transmitted by different signaling pathways
to several transcription factors, whose orchestrated action on
multiple target genes is necessary to achieve a functional flux
response. This latter hypothesis would explain why several
transcription factors exert flux effects on the same pathway,
but each flux effect is relatively small, as further, coordinated
manipulations would be necessary to further increase the
respiratory flux. This idea is supported by the observation that
combined disruption of two glucose signaling pathways shifts
metabolism toward respiration, whereas the single signaling
pathway disruptions had no effects (Kuemmel et al, 2010).
While likely several reasons contribute to the observed
robustness, the fourth hypothesis appears to be the most
probable one.

In contrast to the above robustness of fermentative
metabolism, S. cerevisiae appears to have no back up for
transcription factors that are critical to sustain respiration.
During partly respiratory metabolism on galactose, we show
that that single transcription factor deletions can essentially
abolish the TCA cycle flux, and thus respiration. This fragility
of respiration and the preferred fermentative mode of energy
production suggest that yeast is a good model for the so-called
Warburg effect in many human cancers (Warburg, 1956).
Thus, synthetic lethal screens (Costanzo et al, 2010) and large-
scale yeast omics data combined with metabolic and hier-
archical control analysis (ter Kuile and Westerhoff, 2001;
Fell, 2005) or other modeling approaches have the potential to
identify key mechanisms and potential drug targets that
prevent this metabolic shift during cancer development.
Beyond knowledge of regulatory network architecture, our
findings demonstrate the importance of identifying and
quantifying the extent to which regulatory effectors alter
cellular function.

Materials and methods

Strains, medium and cultivation condition

S. cerevisiae wild-type FY4 MATa (Winston et al, 1995) (kindly
provided by Fred Winston) was used as wild type. The single deletion
strains (Supplementary Table 9) were constructed as whole gene
deletion by using a KanMX4 cassette in the prototroph background of
FY4 MATa (Winston et al, 1995) (kindly provided by Charlie Boone),
which is isogenic to the sequenced S288C strain. All double deletion
strains were constructed by crossing the MATa and the MATalpha
single deletion strains, except of the Dgcn4Dbcy1 strain. This strain
was constructed using a NatMX4 cassette. For overexpression, we used
the pRS41H plasmid (Taxis and Knop, 2006) (kindly provided by
Eckhard Boles). For overexpression of HAP4, a RPS2 (promotor)–HAP4
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(overexpressed gene)–CYC1 (terminator) construct was cloned into the
pRS41H plasmid.

Liquid cultivations were carried out in minimal medium batch
cultures as described by Blank and Sauer (2004) with 10 g/l glucose or
galactose. Adjustments for environmental stress conditions: pH 3.75
was achieved with sulfuric acid (pH 3.75 condition), 0.8 mol/l sorbitol
was added to the medium (0.8 M sorbitol condition), ammonium
sulfate was substituted with the same amount (mol/mol) of urea (urea
condition) and glucose was substituted with the same amount (g/g)
of galactose (galactose condition). For the overexpression strain,
300 mg/l hygromycin B (Invitrogen, Basel, Switzerland) was added.
Precultures were always grown in glucose minimal medium. Culture
aliquots for transcript, enzyme and flux ratio analysis were always
harvested during mid-exponential growth phase at an optical density
at 600 (OD600) of OD600 0.5–1.2 following a standardized growth curve.

FY4 was freshly plated from a glycerol stock on a YPD (1% (w/v)
yeast extract, 2% (w/v) peptone and 2% (w/v) glucose) plate (2%
agar), and the deletion strains were freshly plated from a glycerol stock
on a YPD plate containing 300mg/ml geneticin (G418) (Gibco, Paisley,
UK). Liquid precultures were inoculated from YPD plates. Cultivations
were performed in 500-ml shake flasks with a culture volume of 50 ml,
at 301C and 300 r.p.m. in a shaker with 50-mm shaking amplitude
(proteome measurement), or in 96-deep-well plates (Duetz et al, 2000)
(Kuehner AG, Birsfeld, Switzerland) with a culture volume of 1.2 ml, at
301C and 300 r.p.m. in a shaker with 50-mm shaking amplitude
(transcriptome, flux ratio and physiology measurement). To improve
mixing, a single 4-mm diameter glass bead (Sigma-Aldrich, Buchs,
Switzerland) was added to each well.

Specific growth rates were determined from at least three
independent cultures and at least six OD600 data points during the
exponential growth phase per culture, measured with a spectra-
photometer (Molecular Devices, Sunnyvale, USA).

The minimal medium for the flux experiments contained a mixture
of 20% [U-13C]-labeled glucose (13C enrichment X99%, Cambridge
Isotope Laboratories, Andover, USA) or galactose (13C enrichment
X98%, Omnicron Biochemicals, South Bend, USA) and 80% naturally
labeled glucose or galactose, respectively (or 100% [C1-13C]-labeled
glucose (13C enrichment X99%, Cambridge Isotope Laboratories)).

Flux ratio analysis

Flux analysis was performed as described by Blank and Sauer (2004).
13C-labeled cultures (20% U-13C) were harvested during mid-
exponential growth (OD600 0.5–1.2). The cells were washed three
times with ddH2O and stored at�201C for a gas chromatography-mass
spectrometry analysis. Samples for gas chromatography-mass spectro-
metry analysis were prepared as followed: the frozen cell pellet was
hydrolyzed with 6 mol/l HCI for 12 h at 1051C. The samples were dried
at 95 1C under a constant air stream. They were derivatized using 20ml
of the solvent DMF (Sigma-Aldrich) and 20ml of the derivatization
agent N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide with
1% tert-butyldimethylchlorosilane (Sigma-Aldrich) for 1 h at 851C.
The mass isotopomer distributions of the protein-bound amino acids
were measured with a 6890N GC system (Agilent Technologies, Santa
Clara, USA) combined with a 5973 Inert XL MS system (Agilent
Technologies). Flux ratios were determined from the mass isotopomer
distribution of the protein-bound amino acids with the software
FiatFlux (Zamboni et al, 2005), using the analytical equations
developed by Blank and Sauer (2004). For the ‘mit oxaloacetate from
anaplerosis’ flux ratio, Equation (3) from Blank and Sauer (2004),
implemented in the software FiatFlux (Zamboni et al, 2005), was
applied (Supplementary Figure 2):

mit oxaloacetate from anaplerosis ¼ 2-oxoglutarate25 � ðglc2U�glc1U�glc1UÞ
ðglc2U�glc2UÞ � ðglc2U�glc1U�glc1UÞ

;

where 2-oxoglutarate25 is the C2–C5 fragment of 2-oxoglutarate; glc1U is
one carbon glucose fragments; glc2U are two carbon glucose fragments.

Flux ratio significance cutoff was 410%. The exceptions were ‘mit
oxaloacetate from anaplerosis’ and ‘P-enol-pyruvate from cyt oxaloa-
cetate’, where a difference from the wild type 45% was considered as
significant, as technical accuracy for these ratios are very good (1.6%
instead of 43.0%).

Transcriptome data

For transcriptome analysis, harvesting, extraction and DNase digestion
of mRNA aliquotes were performed by the mechanical disruption
protocol of the RNAesy Mini Kit (50) (Qiagen, Rapperswil, Switzerland).
RNA samples were reverse-transcribed into double-stranded cDNA
with One-Cycle cDNA Synthesis Kit (Affymetrix Inc., P/N 900431,
Santa Clara, CA). The double-stranded cDNA was purified using a
Sample Cleanup Module (Affymetrix Inc., P/N 900371). The purified
double-stranded cDNA was in vitro transcribed in the presence of
biotin-labeled nucleotides using a IVT Labeling Kit (Affymetrix Inc.,
P/N 900449). The biotinylated cRNA was purified using a Sample
Cleanup Module (Affymetrix Inc., P/N 900371), and its quality and
quantity were determined using NanoDrop ND 1000 and Bioanalyzer
2100, respectively. Biotin-labeled cRNA samples were fragmented
randomly to 35–200 bp at 941C in fragmentation buffer (Affymetrix
Inc., P/N 900371) and were suspended in 100 ml of hybridization mix
(Affymetrix Inc., P/N 900720) containing a hybridization control and
control oligonucleotide B2 (Affymetrix Inc., P/N 900454). Samples
were hybridized to GeneChip Yeast Genome 2.0 arrays for 16 h at
451C. Arrays were then washed using an Affymetrix Fluidics Station
450 FS450 0003 protocol. An Affymetrix GeneChip Scanner 3000
(Affymetrix Inc.) was used to determine the fluorescent intensity
emitted by the labeled target. Raw data are stored in GEO (GSE19569,
and GSE24057).

Proteome data

For proteome analysis, the targeted proteomics protocol as described
by Picotti et al (2008, 2009) was applied. Cultures were harvested at
mid-exponential growth and washed twice with 41C cold washing
buffer (20 mmol/l Hepes, 2 mmol/l EDTA, pH 7.5). The samples were
shock-frozen in liquid nitrogen and stored at �801C. Cell pellets were
disrupted mechanically by vortexing in the presence of glass beads,
and proteins were precipitated with �201C cold acetone. The protein
concentration was determined with a Bradford assay (Biorad, Munich,
Germany). Fifty mg proteins were mixed with 50 mg 100% [15N]-labeled
protein as internal standard (Picotti et al, 2009). Sulfur bridges
were reduced with dithiothreitol, blocked with iodoacetamide and
proteins were digested with trypsin (Promega, Madison, USA) (1mg
trypsin per 100mg protein). The resulting peptides were cleaned with
a Sep-Pak tC18 (50 mg) reverse-phase cartridge (Waters, Milford,
USA). The desalting solution was 0.1% (v/v) formic acid water
mixture, and the peptides were eluted from the cartridge with 80%
(v/v) acetonitrile water mixture. They were dried under vacuum and
resuspended in 0.1% formic acid. Proteins were quantified on a nano-
LC-MS/MS system consisting of a Tempo nano LC system (Applied
Biosystems, Foster City, USA) and a 4000Qtrap (MSD—Sciex, Applied
Biosystems), operated in MS/MS mode. Raw tandem mass spectro-
metry data have been deposited in the publicly accessible repository of
proteomics data PeptideAtlas (www.mrmatlas.org, Picotti et al
(2008)), and can be browsed using the yeast genome database (Cherry
et al, 1998) accession names.

Statistical analysis

For transcriptome analysis, the Affymetrix CEL files were processed
using R (version 2.8.0; http://www.r-project.org/) and the Bioconductor
affy package (Gautier et al, 2004). Probe intensities were normalized for
background by using the robust multiarray average method (Irizarry et al,
2003), using only perfect match probes. Normalization was performed
using the qsplines algorithm (Workman et al, 2002). Gene expression
values were calculated using the Li and Wong (2001) expression index
calculation method. The P-values for proteome analysis were calculated
with a two-tailed heteroscedastic Student’s t-test. Predictive fidelity was
calculated based on binding and expression data from the Yeastract
database (Teixeira et al, 2006), thereby a transcription factor was counted
as potentially flux distribution controlling when it had a target in a certain
pathway. For assessing the predictive fidelity, we calculated true-positive
predictions (transcription factor that controls flux and has x target gene
in the controlled pathway) and false-negative predictions (transcrip-
tion factor that controls flux but had less than x target gene in the
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controlled pathway). We varied x between one and the number of
target genes that were necessary to achieve 100% true-positive
predictions. For prediction of differentially activated transcription
factors, the differential gene expression for pairwise comparisons
(mutant versus wild type) was assessed using a two-tailed hetero-
scedastic Student’s t-test. The activity of a transcription factor was
assessed by using the scoring system described in Oliveira et al
(2008). The transcriptional regulatory network derived from Yeastract
database (Teixeira et al, 2006) (documented direct only; 20/01/2008)
was used as topology for transcription factor—gene interactions.
Gene nodes were scored with P-values, whereas information on fold
change was used to determine up- or downregulated subnetwork
topologies. A transcription factor with z-score X2 is considered to
have significantly changed activity.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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