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Abstract

Heterogeneity of echo-texture and lack of sharply delineated tissue boundaries in diagnostic

ultrasound images make three-dimensional (3D) registration challenging, especially when

the volumes to be registered are considerably different due to local changes. We imple-

mented a novel computational method that optimally registers volumetric ultrasound image

data containing significant and local anatomical differences. It is A Multi-stage, Multi-resolu-

tion, and Multi-volumes-of-interest Volume Registration Method. A single region registration

is optimized first for a close initial alignment to avoid convergence to a locally optimal solu-

tion. Multiple sub-volumes of interest can then be selected as target alignment regions to

achieve confident consistency across the volume. Finally, a multi-resolution rigid registration

is performed on these sub-volumes associated with different weights in the cost function.

We applied the method on 3D endovaginal ultrasound image data acquired from patients

during biopsy procedure of the pelvic floor muscle. Systematic assessment of our proposed

method through cross validation demonstrated its accuracy and robustness. The algorithm

can also be applied on medical imaging data of other modalities for which the traditional rigid

registration methods would fail.

Introduction

Medical image registration is the process of aligning two or more radiological images in two or

three dimensions [1]. It has been widely applied for radiotherapy treatment planning [2],

image segmentation [3], image guided surgery [4], and longitudinal monitoring [5] among

many other applications. Automated and semi-automated registration methods seek to deter-

mine a transformation between two or more image datasets by solving an optimization prob-

lem that maximizes the similarity between the transformed datasets. These datasets may be

possibly of different imaging modalities, from different subjects, and/or acquired at different
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times. Registration through optimization has been an active area of research [1, 6–12]. Three-

dimensional (3D) volume registration is more challenging than 2D registration due to the

increased number of degrees of freedom needed for transformation and the difficulty in quan-

tifying volumetric discrepancy.

A common application of 3D image registration is the longitudinal monitoring before and

after an interventional procedure. Ultrasound imaging is attractive for longitudinal monitor-

ing because it is inexpensive and noninvasive. 3D volumetric registration of ultrasound images

is considered more challenging than other medical image modalities such as Computed

Tomography and Magnetic Resonance Imaging (MRI) [13] because of the low signal-to-noise

ratio, heterogeneity of echo textures, and low ultrasound image contrast due to artifacts and

attenuation [14]. In particular, ultrasound imaging of soft tissue can be subject to considerable

signal to noise ratio variation [14], frequency-dependent attenuation of the backscattered sig-

nals [15], and tissue deformation. In addition, interventional procedures, such as needle

biopsy, often induce tissue deformation and hematoma [16, 17]. As a result, datasets that were

acquired from the same patient before and after an intervention can be considerably different,

making registration difficult.

3D volume registration methods can be generally classified into two types: rigid registration

using linear transformation and non-rigid registration using nonlinear transformation to

compensate for deformation of structures [18, 19]. For example, a rigid transformation that

includes translation and rotation can be used to align two volumetric data. When significant

differences exist due to natural variations among subjects or changes in physical structures

over time such as tumor development or other factors, non-rigid image registration should be

applied to allow localized deformation and to optimally align different datasets [20]. For our

problem, we chose to solve for a rigid registration because of the overall rigidity of the volume.

Non-rigid transformation may introduce too many degrees of freedom. This may potentially

overfit the data to heterogeneous ultrasound echo textures and result in undesired soft tissue

deformation.

Existing 3D ultrasound registration methods are either feature-based [21–24], intensity-

based [25–29], or combination of the two [30, 31]. Feature-based methods rely on identifiable

features that are extracted from ultrasound image. These features can be anatomical land-

marks, structure boundaries, surfaces, or statistical shape features. Many 3D feature-based

methods have been developed. A few representative ones include a surface-based, nonlinear

registration method to align ultrasound images to histological data in 3D [21], a temporal and

spatial registration approach to align pre-and post-stress ultrasound images [22], a novel

method based on spatial Gabor texture similarity represented by statistical kernel distributions

[23] and registration between an ultrasound volume and a statistical shape model using local

phase bone features from ultrasound images [24]. 3D scale- and rotation-invariant key points

have been used to identify 3D features in fixed and moving volumes [32, 33]. However, defini-

tion and matching of these key points can be difficult.

Compared to intensity-based methods, feature-based approaches are recognized to be more

robust to intensity variation and less susceptible to local minima [30], however require addi-

tional steps on feature extraction. Intensity-based methods [25–29, 31, 34, 35] use raw pixel

intensity values to assess similarity between two datasets and do not need additional features.

One recently proposed intensity-based registration approach involves block-matching and an

outlier rejection method to determine an affine transformation between ultrasound volumes

[25]. Mutual information-based methods are commonly used in registering ultrasound vol-

umes [28, 29]. An intensity-based deformable registration method was employed for 3D ultra-

sound registration through a variational framework [34]. Intensity-based approaches might be

computationally extensive and converge to local minima.
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Existing registration approaches [9, 25, 32–34, 36–38] are not suitable to produce precise

alignment under the challenging conditions mentioned above. As such, there is a need to

develop new automated volumetric registration methods. Globally rigid registration will likely

fail to find the optimal alignment because the anatomical changes obviously violate the rigidity

assumption. Contrarily, non-rigid registration may strive to accommodate those changes but

may result in undesirable deformation in other regions due to the many degrees of freedom

associated with these methods. In this study, we developed and validated a 3D ultrasound reg-

istration method that overcomes these challenges.

Our proposed method is called M3VR, for Multi-stage, Multi-resolution, Multi-volume of

interest Volumetric Registration. It is a two-stage, weighted multiple volume-of-interest (VOI)

registration method. M3VR can be applied on volumetric data of any medical imaging modal-

ity that contain rigid non-deformable structures such as bone as well as deformable tissue such

as muscle. In the first stage, a rigid registration is applied on a single VOI containing rigid

structures to find initial alignment. In the second stage, multiple VOIs that are distributed

across the whole volume and do not include the anatomically different regions are selected to

add influence of soft tissue structures. Then a weighted multiple VOI registration is performed

to calculate the optimal alignment of all these VOIs in order to refine the alignment obtained

from the first stage.

We evaluated our M3VR in a 3D Endovaginal Ultrasonography (3DEVUS) application for

assessing and monitoring pelvic floor disorders, which affect nearly 24% of US women [39,

40]. Pelvic organ prolapse (POP) is a common type of pelvic floor disorder in which the pelvic

organs (bladder, uterus and rectum) descend downward due to the loss of mechanical integrity

of the pelvic floor (Fig 1A), particularly that of the levator ani muscle and the associated con-

nective tissues [41]. POP is associated with significant dysfunction and detrimental impact on

the quality of life of these patients. Injury to the levator ani muscle during vaginal birth is a sig-

nificant risk factor for developing POP [42]. The effects of these injuries can be additive with

subsequent births and can result in levator ani muscle atrophy and increased risk of POP [42,

43]. Accurate and timely detection of injury to the levator ani muscle is critical to the effective

treatment of POP. Modern imaging techniques such as MRI and ultrasonography are cur-

rently used clinically in the non-invasive examination of levator muscle injury [39, 42, 44–48].

Compared to MRI, ultrasonography has the advantage of being fast, cost effective, and eas-

ily available. 3DEVUS provides a comprehensive overview of the pelvic floor anatomy by per-

forming a 360˚ field-of-view scanning (Fig 1B and 1C). Quantitative analysis of the

progression or repair of muscle injury requires longitudinal monitoring and volumetric regis-

tration of the acquired 3DEVUS images [49].

In this paper, we first describe the pelvic floor data used in this study and the M3VR

method in Section 3. Validation metrics and procedure are also discussed. Section 4 presents

our results on the application of M3VR on 3D endovaginal ultrasound data, parameter deter-

mination, as well as validation of the results. In Section 5, we discuss limitations of the pro-

posed method and future directions of this work.

Methods

Ultrasound imaging of the pelvic floor

As part of a previous study, we collected 3DEVUS data from subjects who had different

degrees of levator ani muscle injury and underwent biopsy [50]. 3DEVUS was performed on

each patient once before, twice during, and once after the biopsy (Fig 2). The four datasets

(volume size: 94mm × 94mm × 65mm; spatial resolution: 0.118mm/pixel) per patient include:

(1) a pre-biopsy ultrasound volume (D1 in Fig 2A) with muscle intact for pre-operative
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examination, (2) an ultrasound volume with biopsy needle positioned on the left side of the

pelvis (D2 in Fig 2B), (3) an ultrasound volume with biopsy needle positioned on the right side

(D3 in Fig 2D), and (4) a post-biopsy ultrasound volume (D4 in Fig 2F). D2 and D3 were

obtained during biopsy to guide placement of the J-hook needle in the pelvic floor muscle

region with suspected muscle defect. This technique was similar to that of a previous study by

Busacchi et al. [51].

The proposed study involved secondary analysis of 3DEVUS data collected previously from

patients who had different degrees of levator ani muscle injury and underwent biopsy. The

previous study was approved by the Institutional Review Board at the University of Oklahoma

in 2012 enroll 85 patients who were scheduled for surgery. Informed consent were obtained

from all participants who met the eligibility criteria. Ultrasound volumes obtained from

Fig 1. The anatomy of the women pelvic floor. (A) Axial view. Pelvic floor muscles are the layer of muscles that

support pelvic floor organs, assist in urinary and fecal continence and stabilize connecting joints. (B) 3D Endovaginal

Ultrasound Imaging with 360˚ rotational transducer using a BK Ultrasound System (Flex Focus 500) [9]. (C) Pelvic

floor muscle appears as a V-shaped structure in 3DEVUS (green boundary). Pubic bone and probe can also be viewed

interactively during acquisition and offline.

https://doi.org/10.1371/journal.pone.0224583.g001

Fig 2. Four phrased 3DEVUS data collected from the same subject during biopsy examination. (A) Pre-biopsy 3DEVUS volume.

(B) 3DEVUS volume with biopsy needle on the left. (C) Needle inserted on the left is more visible from a different view. (D)

3DEVUS volume with the biopsy needle on the right. (E) Needle inserted on the right viewed from the sagittal view. (F) Post-biopsy

3DEVUS volume. The development of hematoma can clearly be seen as indicated by the arrow, which showed up as a dark region at

the biopsy site.

https://doi.org/10.1371/journal.pone.0224583.g002
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research and clinic patients were kept on secure servers. We also maintained a database of this

population on a secure server. A data share agreement was made among the University of

Oklahoma, Inova, and George Mason University for secondary analysis of the data. The data

was anonymized by Dr. Shobeiri before being presented to the rest of the team so that the US

volumes were analyzed blindly to other patient information.

The long term goal is to apply quantitative ultrasound analysis to assess pelvic floor muscle

injury, which correlates muscle characteristics obtained from statistical ultrasound texture

analysis at the biopsy location to those obtained from histologic analysis from the needled

biopsy sample. The biopsied tissue was not visible in the ultrasound volume obtained during

biopsy because of the needle. However, it was completely visible and intact in the pre-biopsy

data. In order to establish an accurate correlation, the needle location needs to be determined

in the pre-biopsy data such that quantitative ultrasound analysis can be performed on the

exact biopsied tissue. A precise spatial registration method that optimally aligns the ultrasound

volumes with needle inside (D2 and D3) to the volume without needle (D1) is required to

objectively estimate biopsied tissue location. Although these volumetric data were acquired

from the same subject, optimal alignment is not a trivial problem. D1, D2 and D3 were taken

at different time during the procedure with ultrasound probe repositioned for each dataset.

There was unavoidable displacement of the probe by the clinician, which caused tissue defor-

mation near the probe and variable transformation of the imaged volume. These volumetric

data were also subject to significant tissue change due to insertion of the needle and develop-

ment of post-biopsy hematoma.

M3VR registration framework

The M3VR framework is shown in Fig 3. D3 is defined as the fixed ultrasound volume VF. D1

and D2 are defined as the moving ultrasound volumes VM, which are to be aligned with the

fixed volume D3. In the first stage, an intensity-based multi-resolution rigid registration

method was performed on the pubic bone sub-volume to provide an initial alignment of the

moving ultrasound volumes (D1 and D2) to the fixed ultrasound volume (D3).

As shown in Fig 1C, the pubic bone is located only in the upper half of the volumetric data.

Registering the whole volume based on matching a much smaller sub-volume may be subject

to bias because of the heterogeneous characteristics of ultrasound imaging and offset of the

sub-volume from the center. The resultant error would have been the most severe at places far

from the sub-volume. A related issue is the bias of fit problem that has been examined previ-

ously in the computer vision community [52]. Nevertheless, such locally targeted registration

can effectively bring the two datasets closer to each other, which facilitates subsequent and

more sophisticated registration.

In the second stage, spatially weighted, intensity-based, multiple VOIs, and multiple resolu-

tion registration was performed to optimize the alignment between transformed D1 and D2.

The sub-volume ultrasound data at the biopsy site can be obtained from the transformed nee-

dle location for further analysis. We performed extensive validation to ensure the robustness

and accuracy of the proposed method. The whole registration pipeline was implemented in C+

+ and ITK [53].

The M3VR method optimizes alignment by combining multiple volumes of interest that

accommodate different anatomical structures. The main idea is to select multiple sub-volumes

that do not contain changed anatomical structures. If these sub-volumes are dispersed over the

volume, the bias of fitting is unlikely to occur. The pixel intensity values of different anatomical

structures may have different ranges. This needs to be considered in the overall similarity mea-

surement. For instance, bone appears brighter than muscle in ultrasound images and thus has
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PLOS ONE | https://doi.org/10.1371/journal.pone.0224583 November 21, 2019 5 / 21

https://doi.org/10.1371/journal.pone.0224583


higher intensity values. To adjust the contributions of different structures in the combined

cost function to enforce either fairness or preference of alignment, weights are applied on the

selected volumes of interest to reflect their significance. We will now describe the methodology

in detail.

Stage 1: Multi-resolution pubic bone volumetric registration

In the first stage, we apply the intensity-based volumetric registration method to find the

matching homologous regions across the fixed and moving ultrasound volumes demonstrated

in Fig 4. Considering the pubic bone region as the most rigid and consistently textured struc-

ture in the imaged region, we first calculate the initial transformation based on a volume of

interest containing the pubic bone (Fig 4A). The VOI is first defined by a 3D bounding box of

the pubic bone in D3 and is considered fixed (Fig 4A). A 3D rigid transformation Tθ was com-

puted by optimizing the registration cost function Eq (1) so that another dataset (D1 or D2) is

optimally aligned with D3.

ŷ ¼ argmin
y

�ðVF;TyðVMÞÞ ð1Þ

The object function ϕ in Eq (1) measures the similarity between the fixed VOI VF and the

moving VOI VM. Multi-resolution registration is performed to enhance the registration

Fig 3. Algorithm of M3VR. Two-stage multi-resolution volume registration. Stage 1: pubic bone sub-volume

registration. Stage 2: spatially weighted multiple sub-volumes registration on pubic bone and pelvic floor muscles.

https://doi.org/10.1371/journal.pone.0224583.g003
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robustness against ultrasound image texture variation [36]. Three intensity-based similarity

metrics were examined to compare their effectiveness in aligning the 3DEVUS data.

Mean Square Error (MSE) computes the averaged pixel-wise intensity difference:

MSEðVF;VRÞ ¼
1

M � N � T

XM;N;T

i¼1;j¼1;k¼1

ðVFði;j;kÞ � VRði;j;kÞÞ
2

ð2Þ

where VF(i, j, k) and VR(i, j, k) represent voxel intensities at position (i, j, k) in fixed volume VF

and registered volume VR respectively. M × N × T is the total number of voxels in the VOI.

MSE is based on the assumption that the pixel intensity of the same homologous point remains

constant. Smaller MSE indicates more precise registration.

Normalized Cross Correlation (NCC) computes pixel-wise cross correlation normalized by

the square root of the autocorrelation of the two volumetric images:

NCCðVF;VRÞ ¼

PM;N;T
i¼1;j¼1;k¼1

VFði;j;kÞ � VRði;j;kÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM;N;T

i¼1;j¼1;k¼1
VFði;j;kÞ �

PM;N;T
i¼1;j¼1;k¼1

VRði;j;kÞ

q ð3Þ

NCC is between 0 and 1. NCC equal to 1 means that the two volumes have a linear relationship

between intensities and thus indicates an optimal alignment. Misalignment leads to a smaller

NCC value.

Fig 4. Intensity-based volumetric registration on pubic bone VOI. (A) A cubic VOI enclosing the public bone was defined in the

fixed image volume (green grid). The pubic bone was rendered in cyan simply to highlight the bone dimensions. (B) One slice image

from fixed image volume with pubic bone and muscle boundaries. (C) Corresponding image slice before registration in the moving

image volume. (D) Corresponding image slice after registration in the transformed moving image volume. (E) Pubic bone and

muscle boundaries comparison before registration, the initial boundaries are not matched between fixed and moving images. (F)

Pubic bone and muscle boundaries comparison after registration. The pubic bone boundaries are better aligned demonstrating the

effectiveness of first stage registration.

https://doi.org/10.1371/journal.pone.0224583.g004
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Mutual Information (MI) measures how much information that a random variable captures

about another random variable. MI is calculated based on the entropy of each random variable.

Mutual information between two random intensity variables of two volumetric images IF and

IR is defined as:

MIðIF; IRÞ ¼ HðIFÞ þ HðIRÞ � HðIF; IRÞ ð4Þ

where H(IF) and H(IR) are the entropies of random variables IF and IR respectively. H(IF, IR) is

the joint entropy of IF and IR. From our experiments, NCC gave the best registration results

and was used on all datasets. A quantitative comparison of these three metrics is presented in

Results.

Fig 4 demonstrates the stage 1 registration results of one dataset. To assist visual compari-

son, the pubic bone and muscle boundaries were manually outlined at the corresponding

imaging plane. Fig 4B and 4C show one image slice in the fixed dataset D3 and one in the mov-

ing dataset D1, respectively, before registration. Misalignment of the two pre-registration volu-

metric images was obvious because the corresponding bone or muscle boundaries were apart

from each other in Fig 4E. Note that the manually segmented pubic bone and muscle bound-

aries were only for the ease of visual comparison. The algorithm itself does not use edge fea-

tures at all. Fig 4D shows the resampled image slice in D1 after registration at the same

imaging plane as Fig 4B. Fig 4F shows that after registration, alignment of the pubic bone was

significantly improved. This was demonstrated by the proximity of the pubic bone boundaries.

However, the pelvic floor muscle regions were still misaligned (Fig 4F). The dissimilarity can

be explained by the biased registration problem mentioned above. As a result, a rotational

error occurred in regions distant from the bone VOI, such as in the muscle band.

Even with remaining misalignment, the registration based on the pubic bone region did

manage to provide an initial alignment of two datasets to account for the variable probe place-

ments. The initial alignment is necessary for subsequent multi-regional registration.

Stage 2: Multi-resolution and multi-regional volumetric registration

We developed a weighted multi-regional registration scheme to refine alignment of the whole

volume in the second stage to compensate for the registration bias due to the single and local

VOI considered. Multiple VOIs that include the pubic bone (VFPB
) and the pelvic floor muscle

(VFPM1
and VFPM2

) in the transferred moving volume D1 (Fig 5) were selected as the target

VOIs. Because these regions are distributed in the volumetric data, they restrain each other

from causing overfitting. Transformed D2 is defined as the moving volume and is transformed

via registration to optimally align all target VOIs to those in the transferred D1. The weighted

multi-regional registration is calculated by optimizing the cost function in Eq (5), which mini-

mizes the weighted sum similarity ϕ between multiple VOIs (VFPB
,VFPM1

and VFPM2
) in the fixed

volume VF and the registered moving volume Tθ(VM):

ŷ ¼ argmin
y

ðw1�ðVFPB
;TyðVMÞÞ þ w2�ðVFPM1

;TyðVMÞÞ þ w3�ðVFPM2
;TyðVMÞÞÞ ð5Þ

w1, w2 and w3 are the weights applied on different VOIs which sum to one. These weights are

introduced for two reasons: (1) ultrasound image pixel intensities of different anatomical

structures such as bone and muscle are different, which influences the overall similarity mea-

surement between two volumes. (2) the calculated similarity is also sensitive to VOI size,

which is variable among selected VOIs. In order to manage impact of these factors, weight sca-

lars are multiplied to the corresponding similarity measurements so that their contributions to

the overall similarity can be adjusted. Values of the weights and sizes of the VOIs can be
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determined systematically through trial and error. The values leading to the best registration

result are used.

When solving Eq (5), we adopted a multi-resolution implementation in order to overcome

the lower ultrasound signal-to-noise ratio, heterogeneous ultrasound echotexture, and local

optimum problems [54]. Multi-resolution approach is commonly used in image processing to

improve an algorithm’s robustness against noise. The fixed image data is first resampled at dif-

ferent resolutions and the moving image is resampled at the coarsest level. Starting from the

coarsest level, the transformation is optimized for the pair of datasets at this level and applied

on the moving image. The resulting transformed moving image is then resampled at the sec-

ond coarsest level that is used in optimizing registration at this finer level. The procedure is

repeated until reaching the original resolution.

In terms of optimization, the adaptive stochastic gradient descent optimizer was used

which converged faster for our data compared to other algorithms such as the Levenberg Mar-

quardt optimizer. The optimization was performed for 2000 iterations on each level. Different

numbers of multi-resolution levels were tested and three levels was chosen. Increasing the

number of levels over three did not significantly improve the performance.

Fig 5. VOIs were defined near the pubic bone (cyan) and pelvic floor muscle (purple) regions. The green bounding

boxes specified the volume of interests around the pubic bone (cyan) and pelvic floor muscle (purple).

https://doi.org/10.1371/journal.pone.0224583.g005
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Registration validation

We did cross validation to assess accuracy of M3VR. M3VR is intensity-based rather than fea-

ture based. We used identifiable features such as the anatomical structure boundary to cross-

validate the results. Because these features were not used explicitly in the algorithm, which uti-

lizes pixel intensity only, we hope such an assessment can be more objective and more power-

ful to expose any weakness of the proposed method.

Pubic bone and pelvic floor muscle boundaries before and after applying M3VR were man-

ually segmented and compared both visually and quantitatively. Fig 6 demonstrates how the

validation was perform, with more results summarized in Results. Fig 6A and 6B show image

slices at the same spatial location from transformed D1 and D2 after the first stage registration.

Overlaid bone boundaries (Fig 6C) show satisfying spatial proximity but the muscles do not.

This indicates overfitting of the bone region. Fig 6D and 6E show image slices from D1 and

D2 at the same spatial location after applying the second stage registration, which was effective

in aligning both the pubic bone and muscle regions (Fig 6F). The mean distance between the

two sets of curves error is 0.65 mm.

Results

We applied M3VR on Endovaginal ultrasound data of nine subjects. Registration accuracy

evaluation was performed on each subject.

To test sensitivity of registration accuracy to VOI size, we experimented with the following

volume sizes for the muscle VOIs: 10 × 10 × 10 mm3, 20 × 20 × 20 mm3, 20 × 30 × 20 mm3,

20 × 30 × 30 mm3, 20 × 30 × 40 mm3, 20 × 30 × 50 mm3, 20 × 30 × 60 mm3, and 20 × 30 × 70

Fig 6. Pubic bone and muscle volumetric registration and validation after each stage. Before stage 2 registration,

pubic bone and levator ani muscle boundaries are manually outlined in transformed D1 (A) and transformed D2 (B).

The pubic bone boundaries show satisfying spatial proximity but the muscles misaligned (C). After stage 2 (D) and (E),

bone and muscles boundaries were effectively aligned (F).

https://doi.org/10.1371/journal.pone.0224583.g006
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mm3. The best values of the muscle VOI was found to be 20 × 30 × 30 mm3. The pubic bone

VOI was finalized to be 25 × 37 × 12 mm3 being a bounding box of the pubic bone. The opti-

mal weight values were determined to be w1 = 0.3, w2 = w3 = 0.35. These were obtained

through systematically altering the weights between 0 and 1 with the constraint w1 + w2 + w3 =

1.

We used checkerboard validation, levator ani muscle boundary proximity measurement, as

well as volume intensity similarity to quantitatively evaluate accuracy of the proposed method.

Qualitative validation

Fig 7 illustrates registration results on one patient using the superimposed checkerboard

images, which were used to for visual comparison of two registered images [55–58]. Fig 7A

shows a sequence of image slices in the coronal view of the fixed image data. This includes the

pubic bone and pelvic floor muscles at consecutive anatomical locations. Fig 7B shows the

post-registration moving image at the same corresponding imaging planes. Comparing Fig 7A

to 7B, we conclude that registration was able to transform the moving image to closely align

with the fixed image. Fig 7C shows the checkerboard images generated from the correspond-

ing fixed image slice and moving image slice in the same row. The smoothness of the checker-

board images further demonstrates the effective registration that results in good

correspondence of anatomical structures in these two volumetric data. Boundaries of bone

and muscle were continuous with minimal intensity difference. For instance, the pubic bone

in the synthetized images in Fig 7C appears to be spatially continuous. Checkerboard valida-

tion was performed on all datasets. These all show satisfying visual alignment.

Cross validation of M3VR accuracy

We manually outlined boundaries of the pubic bone and levator ani muscle from the fixed and

registered images (BF and BR) to quantitatively evaluate the registration accuracy. Close prox-

imity of the two sets of boundaries indicates effective registration. We use the Mean Distance

Error (MDE) to evaluate the boundary proximity. After manual segmentation of the bound-

aries, 3D boundary points were calculated based on the spatial resolution of the volumetric

data (Fig 8). For each boundary point belonging to the fixed image piF 2 BF , i = 1, 2, . . ., m, we

computed its shortest distance to the registered boundary BR. The proximity between the two

sets of boundaries was then calculated as the mean shortest distance error averaged over all the

m boundary points from the fixed image. A zero MDE means the two sets of boundaries over-

lap exactly and a large MDE indicates misalignment either translationally, rotationally, or

both.

We validated our method on the 3D endovaginal ultrasound data from 6 patients that

showed traceable levator ani muscle boundaries. The other 3 patients were subject to levator

ani muscle deficiency resulting in loss of muscle volume, which degenerated its outer bound-

ary visibility. Echotexture analysis can still be performed on the remaining muscle in these

dataset. However, they were not suitable for registration accuracy assesssment because the

mannual boundary segmentation might be subject to significant uncertainty resulting in an

unfair comparison. Every 3D endovaginal data was converted into a sequence of 2D coronal

images. Those images that contained clear appearance of the pubic bone and levator ani mus-

cle were identifed. Structural boundaries were outlined in ImageJ [59] and then remapped to

3D. Fig 8 shows a visual comparison of one dataset. It can be seen that misalignment of both

pubic bone and muscle boundaries (Fig 8A) were significantly corrected after registration.

Whereas the muscle boundaries were nearly perfectly aligned, a small amount of misalignment

of the bone boundary was observed in Fig 8B. Such error resulted from the variable local
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Fig 7. Checkerboard validation. (A) A sequence of fixed images in coronal view. (B) Moving images at the same

imaging planes after 3D registration. (C) Checkerboard images of the two images on the corresponding rows, which

show structure continuity and demonstrate effectiveness of M3VR.

https://doi.org/10.1371/journal.pone.0224583.g007

Fig 8. Comparison of pubic bone and levator ani muscles boundaries (A) before and (B) after applying M3VR.

Green: boundaries from fixed ultrasound volume; red: boundaries from moving ultrasound volume.

https://doi.org/10.1371/journal.pone.0224583.g008
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deformation of the pelvic floor soft tissue in individual datasets caused by replacement of the

probe in the vagina, which was impossible to put the prob back to exactly the same location rel-

ative to the pubic bone. We had to make a tradeoff between optimally aligning either the bone

VOI or the muscles VOIs by adjusting the weights in the objective function. We chose to asso-

ciate higher values with the muscle VOI weights because accurate alignment of the muscle

region is more critical for subsequent study on examining levator ani muscle echo texture in

correlation with biopsy analysis.

We compare the registration results of the M3VR method with two other methods: sym-

metric block-matching [60] and global rigid registration [61]. Symmetric block-matching

method uses block-matching to establish the spatial correspondences. The joint forward and

backward transformation parameters are computed simultaneously. Tables 1 and 2 summa-

rizes the quantitative comparison and cross validation results on data from 6 patients. The

Mean Distance Errors of the pubic bone and levator ani muscle are presented. The average dis-

tances of the pubic bone and levator ani muscles all decreased dramatically after applying 3D

registration. For the given dataset, M3VR method has the smallest registration error in both

the levator ani muscle and pubic bone regions. The results demonstrated the necessity of regis-

tration to accurately locate the biopsied tissue, as well as the effectiveness of our approach. The

maximum boundary distance error is less than 1 mm, showing the tight upper bound of the

registration accuracy.

We used the shortest distance map [62] which quantitatively measures the surface proxim-

ity to evaluate the spatial distribution of misalignment. Surfaces of the pubic bone and the leva-

tor ani muscle were first reconstructed from the 3D positions of the boundary points (Fig 9).

We defined the one-sided error distance between a point pM on the moving surface SM (Fig 9

—green) to the fixed surface SF (Fig 9—red) as d(pM, SF):

dðpM; SFÞ ¼ min
pF2SF

EðpM; pFÞ; pM 2 SM ð6Þ

where pF is the point on SF that is closest to pM. E(pM, pF) is the Euclidean distance between

points pM and pF. The shortest distance map of a surface encodes the one-sided errors of all

points on it. A shortest distance map associated with small values indicates the closeness of

two surfaces whereas a shortest distance map with large values reflects greater misalignment.

Fig 9 compares the shortest distance maps of one dataset before and after registration. Both

pubic bone and levator ani muscle were misaligned before registration (Fig 9A), shown by the

blue-green-red colormap (Fig 9B). The pubic bone had larger error compared to the levator

ani muscle before registration. After applying M3VR, the two surfaces were much closer to

each other (Fig 9C) as shown by the bluer shortest distance map (Fig 9D). We also compared

the histograms of the one-sided error distance before and after registration to further analyze

Table 1. Cross validation results on the registration accuracy of the levator ani muscle. MDE—Mean Distance

Error (mm).

Subject Before After

Block Matching [60] Rigid [61] M3VR

1 14.07±11.27 2.67±2.25 1.56±1.01 0.78±0.36

2 23.75±10.81 2.07±1.90 3.39±2.34 0.61±0.39

3 53.91±8.10 2.24±1.36 4.28±2.84 0.71±0.42

4 3.87±2.31 2.34±0.78 0.87±0.57 0.69±0.35

5 14.53±9.49 2.53±0.94 2.74±1.89 0.76±0.38

6 28.31±10.13 1.36±0.97 3.66±3.04 0.83±0.37

https://doi.org/10.1371/journal.pone.0224583.t001
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Table 2. Cross validation results on the registration accuracy of the pubic bone. MDE—Mean Distance Error

(mm).

Subject Before After

Block Matching [60] Rigid [61] M3VR

1 39.06±2.58 0.77±0.40 0.66±0.56 0.30±0.23

2 16.04±4.10 0.57±0.71 1.28±1.51 0.44±0.29

3 34.16±4.02 9.02±2.10 9.42±1.40 0.43±0.29

4 2.90±2.06 2.34±0.78 2.28±1.82 0.99±0.33

5 10.90±2.90 2.26±0.42 1.05±1.64 0.76±0.39

6 24.43±3.94 0.89±0.56 1.44±1.16 0.50±0.34

https://doi.org/10.1371/journal.pone.0224583.t002

Fig 9. Comparison of the reconstructed pubic bone and levator ani muscle surfaces before and after applying M3VR. (A) Pubic bone

and levator ani muscle surfaces before registration. (C) Pubic bone and levator ani muscle surfaces after registration. Red: surfaces

reconstructed from fixed ultrasound volume; green: surfaces reconstructed from moving ultrasound volume. Visualization of one-side

error distances from the reconstructed moving surface (green) to reconstructed fixed surface (red) before (B) and after (D) applying

M3VR. Error distance are visualized using a blue-green-red colormap with blue corresponding to smaller error and red to larger error.

https://doi.org/10.1371/journal.pone.0224583.g009
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the corrected misalignment (Fig 10). The error distances of the pubic bone and levator ani

muscle significantly decreased after applying M3VR.

Table 3 shows the mean error of each anatomical structure. The levator ani muscles have

smaller mean error distance compared to the pubic bones. This indicates that M3VR was able

to effectively improve the alignment in the levator ani muscle regions as well as reduce the

overall misalignment at different spatial regions.

Assessment of similarity metrics

Different volume intensity similarity metrics including mean squares error, normalized Cross

Correlation, and mutual information have been applied in different medical image analysis

Fig 10. Comparison of histograms of error distance of pubic bone and levator ani muscle surface distances before (green) and

after (red) applying M3VR. Histograms of error distance of (A) left and (B) right public bone. Histogram of error distance of (C)

left and (D) right levator ani muscle surface distances.

https://doi.org/10.1371/journal.pone.0224583.g010

Table 3. Comparison of mean SDM on the registration accuracy.

Region Before After

Pubic bone Left 4.47±4.14 1.58 ±0.88

Right 5.96±3.69 2.16 ±0.74

Levator ani muscle Left 3.28±1.49 0.61 ±0.62

Right 4.07±1.61 0.78 ±0.75

https://doi.org/10.1371/journal.pone.0224583.t003
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tasks. As mentioned earlier, we chose normalized cross correlation to measure similarity of the

fixed image and the moving image. The decision was made after systematically examining the

influence of different metrics on the registration results. Table 4 summarizes our analyses.

These results will be potentially informative for future studies on volumetric ultrasound regis-

tration. Similarity between the fixed image and the moving image measured by each of the

metric before and after registration was calculated from all datasets. Consistent with the cross

validation results on boundary proximity, registration using any of these similarity metrics in

the objective function was able to effectively improve alignment of two volumetric data sets.

Fig 11 compares mean and standard deviation of the registration accuracy in Table 4. Mean

square error score deceased from 22.10 ± 11.62 to 6.69 ± 5.33 (p<.001) after registration. Nor-

malized cross correlation score increased from 0.77 ± 0.07 to 0.96 ± 0.01 (p<.0001) and

mutual information score increases from 0.89 ± 0.37 to 2.27 ± 0.05 (p< 0.0001). All three

scores show statistically significant alignment improvement after registration.

Computational time analysis

The computational time of M3VR is mainly affected by sizes of the VOIs and quality of the ini-

tial registration. The closer the two volumes are after the initial registration, the less time it

takes to converge to the minimum in the second stage. The overall registration time of M3VR

on the night datasets included in our study took between 234.20 to 1243.73 seconds of CPU

Table 4. Quantitative analysis of the registration results using volume intensity similarity. Mean Square Error (MSE), Normalized Cross Correlation (NCC), and

Mututal Information (MI).

MSE NCC MI

Subject Before After Before After Before After

1 2.52 0.69 0.85 0.98 1.38 2.28

2 14.35 4.99 0.80 0.96 0.96 2.31

3 26.96 8.62 0.81 0.96 1.26 2.21

4 12.41 1.85 0.71 0.95 0.83 2.21

5 28.93 2.22 0.63 0.95 0.72 2.32

6 37.69 16.35 0.70 0.94 0.34 2.24

7 18.28 6.06 0.83 0.95 1.31 2.22

8 36.72 13.53 0.81 0.96 0.63 2.30

9 20.93 5.95 0.77 0.95 0.56 2.30

https://doi.org/10.1371/journal.pone.0224583.t004

Fig 11. Comparison of intensity similarity measurement of the three metrics before and after registration. The

mean and standard deviation of registration accuracy are calculated through mean square error (A), normalized cross

correlation (B) and mutual information score (C). The registration accuracy is significantly improved after applying

M3VR registration.

https://doi.org/10.1371/journal.pone.0224583.g011
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time on a Dell T7600 workstation (Fig 12). Considering the size and resolution of these data-

sets, we conclude that M3VR is computational affordable for offline volumetric registration.

Discussion and conclusion

In this study, we developed and validated M3VR, a volumetric image registration approach to

optimally align multiple ultrasound data sets containing anatomical differences. The main

contribution is that the method is able to optimally align volumetric datasets that are subject to

significant variation at multiple locations. Our results on 3D endovaginal ultrasound data

from women undergoing surgical biopsy demonstrated the feasibility and effectiveness of the

proposed method. With minor modification on the similarity measurement, M3VR can be

applied on registering 3D or 2D data of other medical imaging modalities, such as MRI and

CT. 3D to 3D, 2D to 2D, 2D to 3D or 3D to 2D registrations can all be formulated in our

framework. Furthermore, M3VR can perform inter-imaging modality registration and inter-

subject registration.

M3VR does not require any image intensity threshold to be specified but relies on the raw

intensity values to find the optimal alignment. The only user inputs are size and location of

each VOI. From the literature and our experiment, these parameters play an important role in

the registration performance. Therefore, similar to many other registration approaches,

parameter tuning is a necessary step to ensure the best results. What we found was that the

optimal parameter values were fairly consistent across different datasets. Therefore, there is no

need to fine-tune VOI parameters for every dataset but only for one or a few representatives.

Furthermore, the process can be automated by systematically varying the parameter values

within a reasonable range in the computer program while exporting the registration accuracy

of each case for offline analysis. The program can be set to test all feasible parameter sets in

one run. Then the optimal parameter values associated with the smallest error can be identified

and used for all other datasets.

We experimented with both feature-based and intensity-based registration. We decided to

perform intensity-based registration. The main reason of using image intensities and not fea-

tures was that it was difficult to robustly and automatically extract anatomical features of the

inner boundary of the pubic bone and outer boundary of the levator ani muscle from all data-

sets. The advantage of intensity-based registration is that potential error or parameters

involved in feature extraction are avoided. The limitation is that many intensity-based similar-

ity metrics such as mean square error and the adopted normalized cross correlation, implicitly

assume pixel-to-pixel intensity value correspondence. This may not hold even in the optimal

alignment of medical image data [63]. Although our study showed that non-pixel-wise

Fig 12. Computational time of M3VR for different subjects. The computational time of M3VR varies among

different subjects. The time difference is mainly affected by sizes of the VOIs and the quality of initial registration.

https://doi.org/10.1371/journal.pone.0224583.g012
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similarity metrics such as mutual information did not lead to better results, future studies may

consider other similarity metrics suitable to compare texture characteristics in the proposed

framework. For instance, histograms of the pixel intensity values emphasize the high level

structural property of the VOI rather than low level individual pixel intensity values and can

be used in the objective function to characterize underlying structures [64].

As mentioned earlier, the pelvic floor volume being scanned was completely rigid mainly

due to the removal and reposition of the ultrasound probe. However, our method did assume

rigid relationships among the multiple VOIs, which unavoidably introduced error in similarity

measurement. Future work may consider a hybrid approach that allows affine transformation

between any two VOIs while assuming rigidity of each VOI. Spatial relationships of the VOIs

can be used as priors to initialize and constrain their relative transformation to avoid overfit-

ting if all VOIs are registered independently.

Implemented in C++, M3VR took up to 21 minutes to register two high resolution volu-

metric datasets (800 × 800 × 650). Although it is not as fast as some of the existing volumetric

registration algorithms that are able to complete in seconds or a few minutes [25, 32, 35], it is

still practical for many offline analysis applications. Future work on improving the computa-

tional efficiency of M3VR will be focused on reducing irrelevant volume for processing and

utilizing the paralleling computing advantage of GPU [11, 25] and more powerful computer

workstations. This will significantly reduce the computational time to determine model

parameters and produce optimal alignment for each dataset while maintaining the same accu-

racy, even if the computations are not in real time. With further improvement, M3VR can

potentially become a useful advanced registration algorithm for many biomedical applications.
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