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Familial frontotemporal lobar degeneration (FTLD) is a pathologically

heterogeneous group of neurodegenerative diseases with diverse genotypes

and clinical phenotypes. Three major mutations were reported in patients

with familial FTLD, namely, progranulin (GRN), microtubule-associated protein

tau (MAPT), and the chromosome 9 open reading frame 72 (C9orf72) repeat

expansion, which could cause neurodegenerative pathological changes years

before symptom onset. Noninvasive quantitative molecular imaging with PET

or single-photon emission CT (SPECT) allows for selective visualization of

the molecular targets in vivo to investigate brain metabolism, perfusion,

neuroinflammation, and pathophysiological changes. There was increasing

evidence that several molecular imaging biomarkers tend to serve as

biomarkers to reveal the early brain abnormalities in familial FTLD. Tau-PET

with 18F-flortaucipir and 11C-PBB3 demonstrated the elevated tau position

in patients with FTLD and also showed the ability to di�erentiate patterns

among the di�erent subtypes of the mutations in familial FTLD. Furthermore,

dopamine transporter imaging with the 11C-DOPA and 11C-CFT in PET and

the 123I-FP-CIT in SPECT revealed the loss of dopaminergic neurons in the

asymptomatic and symptomatic patients of familial FTLD. In addition, PET

imaging with the 11C-MP4A has demonstrated reduced acetylcholinesterase

(AChE) activity in patients with FTLD, while PET with the 11C-DAA1106 and
11C-PK11195 revealed an increased level of microglial activation associated

with neuroinflammation even before the onset of symptoms in familial FTLD.
18F-fluorodeoxyglucose (FDG)-PET indicated hypometabolism in FTLD with

di�erent mutations preceded the atrophy on MRI. Identifying molecular

imaging biomarkers for familial FTLD is important for the in-vivo assessment

of underlying pathophysiological changes with disease progression and future

disease-modifying therapy. We review the recent progress of molecular

imaging in familial FTLD with focused on the possible implication of these

techniques and their prospects in specific mutation types.
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Introduction

Frontotemporal lobar degeneration (FTLD) encompasses
a set of clinical syndromes characterized by progressive
abnormalities in behavior, executive function, language, or
motor function. Patients with FTLD may present clinical
syndromes with the behavioral variant of frontotemporal
dementia (bvFTD), the nonfluent variant of a primary
progressive aphasia (nfvPPA), a semantic variant of PPA
(svPPA), and some patients also have amyotrophic lateral
sclerosis (ALS), corticobasal syndrome (CBS) or progressive
supranuclear palsy (PSP) (1). Approximately, 40% of patients
with FTLD have a positive family history of autosomal dominant
inheritance (2). Threemajormutations were reported in patients
with familial FTLD, namely, the microtubule-associated protein
tau (MAPT), progranulin (GRN), and the repeat expansions
in the chromosome 9 open reading frame 72 (C9orf72). These
mutations could lead to neurodegenerative pathological changes
years before symptom onset (2, 3).

Mutations in theMAPT gene located on chromosome 17q21
first reported in 1998 (4) were discovered in numerous pedigrees
of familial FTLD. The majority of known mutations in the
coding region occur in the repeats, causing the decreased ability
of tau proteins to interact with microtubules, and resulting in
hyperphosphorylated tau accumulation in neurons and glial cells
(5). MAPT mutations of different subtypes have been linked to
various tauopathies. Generally, the mutations inside exon 10
(i.e., N279K, S305N, P301L) and intron 10 (i.e., IVS 10+ 16)
tend to form four tandem microtubule-binding domain repeat
(4R-tau) pathology, while mutations outside exon 10 (i.e.,
V337M, R406W, Q351R) tend to form mixed 3R/4R tauopathy
similar to the tauopathy in Alzheimer’s disease (6).

Mutations in the GRN linked to chromosome 17q21 initially
reported in 2006 (7, 8) could result in a lack of progranulin by
haploinsufficiency and the accumulation of TAR DNA-binding
protein (TDP)-43 protein (9). GRN mutation carriers have a
wide range of clinical phenotypes and illness onset ages. The
bvFTD, CBS, and PPA are the most common clinical syndromes
in patients with GRN mutation (10, 11).

The hexanucleotide GGGGCC (G4C2) repeat expansions
of the C9orf72 were identified as a common genetic cause of
FTLD and ALS in 2011 (12, 13). TDP-43 aggregations were
pathologically discovered in cases with C9orf72 expansions (14).
The most prevalent clinical syndromes were bvFTD, ALS, or a
mixture of both in C9orf72mutation carriers (14, 15).

Currently, the visual inspection of MRI was demonstrated
to easily increase the diagnostic confidence of underlying
FTLD (16, 17). The cortical microstructure was found to be
more sensitive than cerebral atrophy within patients with
GRN mutations (18), suggesting the powerful value of MRI
to correctly diagnose and capture the early abnormalities in
familial FTLD. Noninvasive quantitative molecular imaging
with PET or single-photon emission CT (SPECT) provided

another perspective and allowed for selective visualization
of the molecular targets in vivo to investigate the brain
topographic and pathophysiological changes. The former
included metabolism, perfusion, neuroinflammation, synaptic
function, and neurotransmitters’ activity, and the latter
comprised Tau and Aβ aggregation. There was increasing
evidence that several molecular imaging biomarkers tend to
serve as biomarkers to reveal the early brain abnormalities
in familial FTLD. Identifying molecular imaging biomarkers
for familial FTLD is important for the in-vivo assessment of
underlying pathophysiological changes with disease progression
and future disease-modifying therapy. Thus, we review the
recent progress of molecular imaging in familial FTLD with a
focus on the possible implication of these techniques and their
prospects in specific mutation types.

Methods

Search strategy

We performed electronic searches of Medline, PubMed,
and Embase databases using the combination of a number
of medical subject headings, Emtree subject headings, and
free-text terms (“frontotemporal lobar degeneration,” and
“frontotemporal dementia” for clinical categories; “microtubule-
associated protein tau” or “MAPT,” “progranulin” or “GRN,”
and “chromosome 9 open reading frame 72” or “C9orf72”
for genes; “positron emission tomography” or “PET,” “single-
photon emission CT” or “SPECT,” and “dopamine transporter
imaging” for molecular imaging biomarkers). The retrieval
deadline was 1 December 2021. All the relevant articles were
retrieved, placing restrictions on #elds (free-text terms searched
exclusively in the title or abstract of the articles) and publication
type (original articles).

Discussion

Pathophysiological biomarkers

Tau studies

Tau-PET is currently being explored as a promising method
to identify the tau protein in vivo (19). Several types of tracers
have been applied to map the pattern of tau accumulation in
familial FTLD, especially in individuals with MAPT mutations
thought to be tauopathy. 18F-flortaucipir, the most commonly
used tau tracer, has been proven to bind paired helical filaments
composed of 3R/4R tau in Alzheimer’s disease (AD) (20,
21). In recent years, other tracers, including 11C-PBB3 (22),
18F-MK6240 (23), and 18F-PM-PBB3 (24), started to be applied
in MAPT mutation carriers. 11C-PBB3 could capture wide-
ranging Tau pathologies, including 3R/4R tau and 4R tau (25,
26) compared to18F-flortaucipir (27). For 18F-MK6240 and
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TABLE 1 Studies investigatingMAPT mutation vs. controls.

No. References No. of subjects Techniques Findings

1 Arvanitakis et al. (43) (2 aMAPT+, 5 sMAPT+) vs. 3 NC 18F-FDG PET Asymmetric temporal lobe hypometabolism in 7MAPT+

2 Laws et al. (44) (31 sMAPT_H1+ 10sMAPT_H2)

vs. 16 HC

18F-FDG PET More pronounced hypometabolism in frontal brain areas of H2

carriers than H1 carriers

3 Deters et al. (45) (3 aMAPT+, 8 sMAPT+) vs. 8 NC 18F-FDG PET Hypometabolism bilaterally in the medial temporal lobe, and the

parietal and frontal cortices

4 Yang et al. (46) 2 sMAPT+ vs. 1 NC 18F-FDG PET Hypometabolism in extensive prefrontal areas, and

hypermetabolism in the putamen, globus pallidum, cerebellum,

and sensorimotor cortex

5 Su et al. (24) 1 sMAPT+ vs. HC 18F-FDG PET Brain metabolism significantly decreased in bilateral temporal

lobes and moderately decreased in bilateral frontal lobes with

more remarkable in the left side

6 Clarke et al. (47) 6 aMAPT+ vs. 12 NC 18F-FDG PET Hypometabolism in the anterior cingulate

7 Bevan Jones et al. (36) 1 sMAPT+ vs. 12 HC 18F-flortaucipir PET Increased tau accumulation in the anterior temporal lobes and

ventral anterior cingulate cortex

8 Smith et al. (39) 3 sMAPT+ vs. 4 HC 18F-flortaucipir PET Increased tau accumulation mainly in the hippocampus and

adjacent temporal lobe regions of 2 sMAPT+ with short disease

duration and isolated memory impairment; the temporal, frontal

lobes, and basal ganglia of 1 sMAPT+ with long disease duration

and behavioral deficits

9 Spina et al. (41) 1 sMAPT+ vs. 20 HC 18F-flortaucipir PET Increased tau accumulation in the bilateral frontal pole, medial

orbitofrontal cortex, inferior temporal lobe, insular cortex,

anterior cingulate, dorsolateral prefrontal cortex, and lateral

temporal cortex

10 Jones et al. (34) (3 aMAPT+, 10 sMAPT+) vs. 241

HC vs. 30 AD

18F-flortaucipir PET The greatest tau accumulation in AD and minimal regional tau

accumulation inMAPT+ with mutations in exon 10

11 Bevan Jones et al. (35) 1 aMAPT+ vs. 13 HC 18F-flortaucipir PET A lack of tau aggregation in frontotemporal regions

12 Tsai et al. (42) 6 sMAPT+ vs. 53 HC 18F-flortaucipir PET Tau depositions in left insula and bilateral temporal poles

13 Convery et al. (37) 1 sMAPT+ vs. 6 HC 18F-flortaucipir PET Baseline: tau aggregation in the insula region cortically, and the

medial temporal, putamen, and pallidum regions subcortically

Follow-up: tau aggregation in the same regions as at baseline but

also the temporal region cortically and caudate and thalamus

regions subcortically

14 Soleimani-Meigooni

et al. (40)

2 sMAPT+ vs. 14 HC 18F-flortaucipir PET Tau depositions in the temporal lobes, temporal white matter, and

basal ganglia

15 Malpetti et al. (48) 2 sMAPT+ vs. 15 HC 18F-flortaucipir PET Consistent tau deposition distribution in frontotemporal regions

in 2 sMAPT+

16 Ikeda et al. (22) 4 sMAPT+ vs. 13 HC 11C-PBB3 PET Mild tau depositions in the midbrain and medial temporal areas

of 2 sMAPT+ from kindred with slow progression; profoundly

increased tau depositions in widespread regions of 2 sMAPT+

from kindreds with rapid progression

17 Su et al. (24) 1 sMAPT+ vs. HC 18F-PM-PBB3 PET Slightly diffuse tau deposition especially in the left frontal lobe

18 Levy et al. (23) (3 aMAPT+, 3 sMAPT+) vs. 83 HC 18F-MK-6240 PET At least mild but significant tau deposition in 3 sMAPT+; modest

tau deposition in 2 aMAPT+ within 5 years from estimated onset;

no tau deposition in 1 aMAPT+ about 30 years from estimated

onset

19 Miyoshi et al. (49) 3 aMAPT+ vs. 9 HC 11C-DOPA PET Low dopamine synthesis in putamen

20 Yang et al. (46) 2 sMAPT+ vs. 1 NC 11C-CFT PET Dopaminergic dysfunction in the caudate nucleus and putamen

(Continued)
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TABLE 1 Continued

No. References No. of subjects Techniques Findings

21 Wu et al. (50) (3 aMAPT+, 1 sMAPT+) vs. 6 HC 11C-CFT PET Dopaminergic dysfunction is severe in sMAPT+ and mild in

aMAPT+

22 Smith et al. (39) 3 sMAPT+ vs. 4 HC Amyloid-PET (18F-flutemetamol) Negative in all participants

23 Tsai et al. (42) 5 sMAPT+ vs. 53 HC Amyloid-PET (11C-PiB) Positive in 1 sMAPT+

24 Soleimani-Meigooni

et al. (40)

2 sMAPT+ vs. 14 HC Amyloid-PET (11C-PiB) Positive in 1 sMAPT+

25 Su et al. (24) 1 sMAPT+ vs. HC Amyloid-PET (18F-florbetapir) Negative in 1 sMAPT+

26 Levy et al. (23) (3 aMAPT+, 3 sMAPT+) vs. 83 HC Amyloid-PET (18F-flutafuranol) Negative in all participants

27 Seelaar et al. (51) 10 sMAPT+ vs. 10 HC 99mTc-HMPAO SPECT Hypoperfusion in the left temporal and inferior frontal gyri

28 Chaunu et al. (52) 1 sMAPT+ 99mTc-HMPAO SPECT Hypoperfusion in the bilateral left predominant frontotemporal

and basal ganglia

29 Miyoshi et al. (49) 3 aMAPT+ vs. 9 HC 11C-DAA1106 PET Increased Glial activities in the frontal cortex of 1 aMAPT+, the

occipital cortex of 2 aMAPT+, and the posterior cingulate cortex

of 1 aMAPT+

30 Bevan-Jones et al. (35) 1 aMAPT+ vs. 15 HC 11C-PK11195 PET Microglial activation in frontotemporal regions

31 Malpetti et al. (48) 2 sMAPT+ vs. 15 HC 11C-PK11195 PET Tau deposition overlapped with that of microglial activation but

more extensive

32 Miyoshi et al. (49) 3 aMAPT+ vs. 9 HC 11C-MP4A PET Decreased AChE activity in the temporal, parietal cortex

aMAPT+, asymptomatic MAPT mutation carriers; sMAPT+, symptomatic MAPT mutation carriers; HC, healthy controls; NC, non-carriers; FDG, fluorodeoxyglucose; HMPAO,
hexamethylpropylene amine oxime; PiB, Pittsburgh compound B; PET, positron emission tomography; SPECT, single photon emission computed tomography; AChE, acetylcholinesterase.

18F-PM-PBB3, no clear off-target binding was reported with
the improved design (28–31). 18F-PM-PBB3 has shown higher
binding affinities to 4R tau compared with the 3R/4R tracer
18F-MK6240 (24). The novel tau tracers might help show diverse
tau pathologies in various mutation subtypes.

MAPT_Tau-PET

Frontotemporal lobar degeneration with MAPT mutations
is regarded as tauopathy (32), and tau PET provides an effective
way to explore biomarkers for multiform tau pathologies in a
homogeneous patient group (33). Most individuals with MAPT

mutations inside exon 10 (i.e., P301L, S305N, N279K) and
intron 10 (i.e., IVS 10 + 16) had 4R tau pathology, while
with MAPT mutations outside exon 10 (i.e., V337M, R406W,
Q351R) had 3R/4R paired helical filament tau pathology (34).
MAPTmutations have different types of underlying tauopathies,
leading to different tracer binding patterns.

18F-flortaucipir was most commonly used to track 3R/4R
tau, so most participants with MAPT mutations outside exon
10 showed a higher-level tracer binding than mutations in
exon 10 (34). Only a few 18F-flortaucipir studies included 4
asymptomatic MAPT mutation carriers. 3 of them (1 N279K,
1 R406W, and 1 IVS 10 + 16) had little to no uptake, but
the other MAPT R406W mutation carrier had a signal in
the AD range (34, 35). The heterogeneous results might be
explained by quite a limited sample size. In symptomaticMAPT

mutation carriers, temporal (36–42), insular (37, 41, 42), and
frontal (38, 39, 41) regions were most commonly reported

for increased 18F-flortaucipir uptake. Especially, in two MAPT

R406W mutation carriers with short disease duration, the
hippocampus and adjacent temporal lobe regions were mainly
involved, whereas in another MAPT R406W mutation carrier
with a long duration, tau aggregation spreads across the whole
temporal, frontal lobes, and the basal ganglia (39). Moreover,
a longitudinal study of a MAPT Q351R mutation carrier also
demonstrated that tau aggregation expanded from the insula
region cortically, and the medial temporal, putamen, and
pallidum regions subcortically to the temporal region cortically
and caudate and thalamus regions subcortically even just over 1
year (37). These findings suggested that 18F-flortaucipir might
be a sensitive biomarker for disease progression in symptomatic
MAPT mutation carriers. However, the majority of research
was based on case reports or cross-sectional studies with small
sample size. Longitudinal data with larger cohorts will be
required for such investigations.

Two studies applied 11C/18F-PBB3 tracking both the 3R/4R
tau and 4R tau in symptomaticMAPTmutation carriers (22, 24).
In four patients withMAPT N279K mutation, the kindred with
slow progression exhibited mild binding; in contrast, kindreds
with rapid progression showed profoundly increased binding in
widespread regions from an early disease stage (22). Recently,
a study of 18F-MK-6240 in two asymptomatic MAPT P301L
mutation carriers showed modest tau deposition about 5 years
from estimated onset (23), indicating that 18F-MK-6240 uptake
might be an early biomarker forMAPT P301L mutation carriers
(Table 1).
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TABLE 2 Studies investigated asymptomatic/symptomatic GRN carriers.

No. References No. of subjects Techniques Findings

1 Huey et al. (54) 2 sGRN+
18F-FDG PET Predominant right-sided hypometabolism

2 Jacova et al. (55) 9 GRN+ (4 aGRN+) vs. 11 NC

(8 aNC)

18F-FDG PET GRN+ showed an overall pattern of right anterior cerebral

hypometabolism

3 Josephs et al. (56) 3 sGRN+ vs. 3 sNC vs. 26 HC 18F-FDG PET sGRN+ and sNC vs. HC: left temporoparietal hypometabolism

sGRN+ vs. sNC: more severe anteromedial temporal

hypometabolism

4 Caroppo et al. (57) Baseline: 16 aGRN+ VS 17 NC

Follow-up: 14 aGRN+ VS 14 NC

18F-FDG PET Baseline: left middle temporal gyrus hypometabolism

Follow-up: left inferior temporal, left middle frontal, left inferior

orbital frontal, right superior orbital frontal gyri, left thalamus

hypometabolism

5 Licata et al. (58) 10 sGRN+ vs. 23 HC 18F-FDG PET Inter-individual variability of FDG uptake pattern in sGRN+. All

sGRN+ showed frontal hypometabolism. Asymmetrical

metabolism in half of sGRN+

6 Deng et al. (59) 1 sGRN+
18F-FDG PET Bifrontal and bitemporal hypometabolism

7 Ljubenkov et al. (60) 26 GRN+ (18 sGRN+) vs. 52 HC 18F-FDG PET Left-predominant hypometabolism in dorsal prefrontal, anterior

cingulate, orbitofrontal, inferior frontal gyrus, insular, lateral

parietal, lateral temporal, posterior cingulate, caudate, and

thalamic regions

Bifrontal hypometabolism was associated with worse clinical

symptoms rating

8 Lagarde et al. (53) 1 sGRN+ vs. 8 sporadic FTLD 18F-flortaucipir PET No tau binding in sGRN+; tau binding in 5/8 sNC

9 Carecchio et al. (61) 1 sGRN+ DaTScan (123I-ioflupane SPECT) Reduced tracer uptake in the left putamen

10 Deng et al. (59) 1 sGRN+
18F-DOPA PET 18F-DOPA: reduced DOPA metabolism in bilateral corpus

striatum

11 Josephs et al. (56) 3 sGRN+ vs. 3 sporadic FTLD vs.

26 HC

Amyloid-PET (11C-PiB) Negative in all participants (cut-off score of <1.5). sGRN+ had

lower PiB-PET ratios compared to sNC

12 Dopper et al. (62) 1 sGRN+
99mTc-HMPAO SPECT Symmetrical frontoparietal hypoperfusion.

13 Premi et al. (63) 13 sGRN+ vs. 13 sporadic FTLD vs.

13 HC

99mTc-ECD SPECT sGRN+ and sNC vs. HC: hypoperfusion in frontotemporal areas

sGRN+ vs. sNC: hypoperfusion in anterior cingulate cortex and

left dorsolateral prefrontal cortex

14 Carecchio et al. (61) 1 sGRN+ perfusion SPECT Left predominant bifrontal with homolateral parieto-temporal

hypoperfusion

GRN+, GRN mutation carriers; NC, non-carriers; HC, healthy controls; GRN+, symptomatic GRN mutation carriers; aGRN+, asymptomatic GRN mutation carriers; FDG,
fluorodeoxyglucose; ECD, ethylcysteinate dimer; HMPAO, hexamethylpropylene amine oxime; PiB, Pittsburgh compound B; DaTscan, dopamine transporter scan; PET, positron emission
tomography; SPECT, single photon emission computed tomography.

In MAPT mutation carriers, the value of tau PET for
capturing tau accumulation has been primarily proved, and the
tau aggregation patterns were associated with the subtypes of
mutations and tracers. Therefore, novel tracers for multiform
tau pathologies need to be further explored in longitudinal
studies with larger cohorts.

GRN/C9orf72_Tau-PET

Three studies reported 18F-flortaucipir binding in the
frontotemporal region in five symptomatic GRN mutation
carriers (38, 40, 42), whereas another research found no
18F-flortaucipir binding in a patient with GRN mutation

(53) (Table 2). Similarly, findings among symptomatic C9orf72
mutation carriers were contradictory. Ten patients with C9orf72
mutation had increased 18F-flortaucipir binding in the frontal
lobe (38, 40, 42, 64), while another study found no tau
deposition in six patients with C9orf72 mutation (65) (Table 3).
The contradictory results might be associated with the small
number of participants and different clinical phenotypes.
Moreover, a study showed that 18F-MK-6240 PET scan was
negative for three individuals with GRN or C9orf72 mutations
(23), implying that 18F-MK-6240 might not be an optimal
method for tracking tau deposition in GRN or C9orf72

mutation carriers.
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TABLE 3 Studies investigated asymptomatic/symptomatic C9 carriers.

No. References No. of subjects Techniques Findings

1 Gramaglia et al. (66) 1 sC9+ 18F-FDG PET Bilateral frontotemporal hypometabolism

2 Martikainen et al. (67) 1 sC9+ 18F-FDG PET Hypometabolism in temporal lobes

3 Solje et al. (68) 36 sC9+ 18F-FDG PET Normal in 17.6% of sC9+

4 Block et al. (69) 1 sC9+ 18F-FDG PET Symmetric and mild medial-greater-than-lateral bifrontal

hypometabolism

5 Sha et al. (70) 1 sC9+ 18F-FDG PET Bilateral frontal and temporoparietal hypometabolism

6 Castelnovo et al. (71) 9 sC9+ 18F-FDG PET Prevalent frontal hypometabolism in bvFTD C9+

Right temporal polar and lateral hypometabolism in svPPA C9+

7 Diehl-Schmid et al. (72) 22 sC9+ vs. 22 sporadic FTLD vs. 23

HC

18F-FDG PET sC9+ vs. sNC: a significant reduction of glucose metabolism in

both thalami

8 Levy et al. (73) 1 sC9+ 18F-FDG PET Bifrontal hypermetabolism; no significant areas of

hypometabolism

9 Sellami et al. (74) 1 sC9+ 18F-FDG PET Bilateral frontal and anterior temporal hypometabolism

10 De Vocht et al. (75) 17 aC9+ vs. 25 HC 18F-FDG PET Hypometabolism in frontotemporal regions, basal ganglia, and

thalami of aC9+

11 Filikci et al. (76) 1 sC9+ 18F-FDG PET Hypometabolism in parietotemporal cortex, posterior cingulate

gyrus and precuneus, mesial temporal lobes, and frontal lobes

12 Popuri et al. (77) 15 aC9+ vs. 20 NC 18F-FDG PET Cingulate gyrus, frontal, and temporal neocortices (left >right)

and bilateral thalami hypometabolism

13 Bevan-Jones et al. (64) 1 sC9+ vs. 13 NC 18F-flortaucipir PET Increased binding in frontotemporal cortex of sym C9+

14 Smith et al. (65) 6 sC9+ vs. 6 sv PPA vs. 54 HC 18F-flortaucipir PET C9+ exhibited none or limited 18F-flortaucipir retention

15 Filikci et al. (76) 1 sC9+ DaTScan Unremarkable DaTscan

16 Martikainen et al. (67) 1 sC9+ Amyloid-PET (11C-PiB) Negative amyloid PET

17 Block et al. (69) 1 sC9+ Amyloid-PET Negative amyloid PET.

18 Sha et al. (70) 1 sC9+ Amyloid-PET (11C-PiB) Positive amyloid PET.

19 Filikci et al. (76) 1 sC9+ Amyloid PET (11C-PiB) Negative amyloid PET

20 Malpetti et al. (48) 3 aC9+ vs. 1 sporadic FTLD vs.

19 HC

11C-UCB-J PET aC9+ vs. HC: reduced synaptic density in the thalamus

C9+, C9orf72 mutation carriers; NC, non-carriers; HC, healthy controls; sC9+, symptomatic C9orf72 mutation carriers; aC9+, asymptomatic C9orf72 mutation carriers; bvFTD,
behavioral variant frontotemporal dementia; svPPA, semantic variant primary progressive aphasia; FDG, fluorodeoxyglucose; PiB, Pittsburgh compound B; DaTscan, dopamine transporter
scan; PET, positron emission tomography; SPECT, single photon emission computed tomography.

Amyloid studies

To detect the underlying AD pathology, amyloid-PET
with tracers, including 11C-Pittsburgh compound B (PiB)
(42, 67, 70, 76), 18F-florbetapir (24), 18F-florbetaben (23),
18F-flutafuranol (78), 18F-flutemetamol (39, 79), etc., is applied
in patients with familial FTLD.

Most patients with MAPT mutation indicated negative
results with 11C-PiB or 18F-florbetapir PET (23, 24, 39, 42),
while two patients with MAPT P301L mutation had a positive
11C-PiB scan (40, 42). However, one might imply an incidental
rather than preclinical β-amyloid pathology since the SUVRs
were well below those seen in AD (42); in contrast, the other
regarded as combining with AD presented higher SUVRs close
to AD (40). Negative results with 11C-PiB or 18F-flutafuranol
were reported in patients with GRN and C9orf72 mutation
carriers so far (23, 42, 56, 76). Thus, amyloid-PET may help

discriminate true underlying AD co-pathology from incidental
β-amyloid pathology (80) (Table 4).

Topographic biomarkers

Brain metabolism
18F-fluorodeoxyglucose (FDG)-PET is a technique for

measuring glucose metabolism in vivo (82). Studies of FDG-PET
could capture the different patterns of brain hypometabolism
and even precede brain atrophy in familial FTLD mutation
carriers (43, 45, 47, 55, 57, 72, 83).

MAPT_FDG-PET

A few cross-sectional FDG-PET studies demonstrated brain
hypometabolism in both the asymptomatic and symptomatic

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2022.933217
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2022.933217

TABLE 4 Studies investigating multiple di�erent mutations in FTLD.

No. References No. of subjects Techniques Findings

1 Tsai et al. (42) 6 sMAPT+ vs. 5 sC9+ vs. 1 sGRN+

vs. 53 HC

18F-flortaucipir PET Tau deposition in the left insula and bilateral

temporal poles of sMAPT+; the left lateral

frontal, parietal and temporal lobes of sGRN+;

the frontal poles of sC9+ with varying degrees

2 Soleimani-Meigooni

et al. (40)

2 sMAPT+ vs. 1 sC9+ vs. 1 sGRN+

vs. 14 HC

18F-flortaucipir PET Tau deposition was less than Alzheimer’s disease,

though higher than HC, and did not reliably

correspond with post-mortem tau pathology for

all mutation groups

3 Malpetti et al. (48) 2 sMAPT+ vs. 3 sC9+ vs. 2 sGRN+

vs. 15 HC

18F-flortaucipir PET Consistent tau deposition distribution

(overlapped with that of 11C-PK11195, but was

more extensive) in 2 sMAPT+, heterogeneous

tau deposition distributions among sGRN+ and

sC9+

4 Levy et al. (23) (3 aMAPT+, 3 sMAPT+) vs. 2

sC9+ vs. 2 sGRN+ vs. 83 HC

18F-MK-6240 PET At least mild but significant tau deposition in 3

sMAPT+; modest tau deposition in 2 aMAPT+

within 5 years from estimated onset; no tau

deposition in 1 aMAPT+ about 30 years from

estimated onset Negative for 2 sGRN+, and 1

advanced sC9+ showed minimal regionally

non-specific binding

5 Tsai et al. (42) 5 sMAPT+ vs. 4 sC9+ vs. 1 sGRN+

vs. 53 HC

Amyloid-PET (11C-PiB) Positive in 1 sMAPT+ and 1 sGRN+

6 Levy et al. (23) (3 aMAPT+, 3 sMAPT+) vs.

2 sC9+ vs. 2 sGRN+ vs. 83 HC

Amyloid-PET (18F-flutafuranol) Negative in all participants

7 Seelaar et al. (51) 10 sMAPT+ vs. 19 FTLD-TDP

(6 GRN+, 5 Ser82ValfsX174+,

1 Gln125X+, 13 unknown gene

defect) vs. 10 HC

99mTc-HMPAO SPECT Hypoperfusion in the right frontal lobe,

precuneus, cuneus, and inferior parietal lobule

of familial FTLD-TDP; in the left temporal and

inferior frontal gyri ofMAPT+

8 Lant et al. (81) 10 sMAPT+ vs. 9 sC9+ vs. 8

sGRN+ vs. 13 AD vs. 13 HC

11C-PK11195 PET Significantly microglial activation in all four

regions (cortical gray and subcortical white

matter of frontal and temporal) of FTLD Greater

microglial activation of frontal subcortical white

matter in FTLD than AD, temporal cortical gray

matter in contrast Microglial activation was

higher in FTLD-MAPT than other genetic forms

(GRN, C9)

9 Malpetti et al. (48) 2 sMAPT+ vs. 3 sC9+ vs. 2 sGRN+

vs. 15 HC

11C-PK11195 PET Increased microglial activation predominantly

in frontotemporal regions for all mutation

groups

FTLD, frontotemporal lobar degeneration; TDP, TAR DNA binding protein; aMAPT+, asymptomatic MAPT mutation carriers; sMAPT+, symptomatic MAPT mutation carriers; sC9+,
symptomatic C9orf72 mutation carriers; sGRN+, symptomatic GRN mutation carriers; HC, healthy controls; NC, non-carriers; HMPAO, hexamethylpropylene amine oxime; PiB,
Pittsburgh compound B; PET, positron emission tomography; SPECT, single photon emission computed tomography.

MAPT mutation carriers (24, 43, 45–47). Hypometabolism in
the temporal lobe (43, 45) and anterior cingulate cortex (47)
was reported in asymptomatic MAPT mutation carriers, while
temporal lobe hypometabolism even preceded the brain atrophy
on MRI in the asymptomatic stage (43). In symptomaticMAPT

mutation carriers, hypometabolism regions spread extensively to

the frontotemporal lobes (24, 43, 46), while hypermetabolism
was also found in the putamen, globus pallidum, cerebellum,
and sensorimotor cortex (46). These findings all pointed to
early involvement of the temporal lobe in asymptomatic MAPT

mutation carriers. Furthermore, only one study compared three
asymptomatic MAPT mutation carriers and 8 symptomatic
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MAPTmutation carriers, but found no difference in FDGuptake
(45), which was mainly due to the small sample size. However,
most current studies were cross-sectional with a small cohort,
and further studies are needed to characterize the trajectories of
metabolism patterns from asymptomatic to symptomaticMAPT

mutation carriers.

GRN_FDG-PET

Two studies indicated asymmetric temporal lobe
hypometabolism with FDG-PET in asymptomatic GRN

mutation carriers (55, 57). After 20 months of follow-up,
hypometabolism spread to the frontal lobe and thalamus (57).
The metabolic changes appeared before brain atrophy on MRI
and approximately more than 10 years before clinical onset
(57), suggesting that FDG-PET changes can be detected as
early biomarkers in GRN mutation carriers. In symptomatic
GRN mutation carriers, the asymmetrical hypometabolism
of temporoparietal (56) and frontal (58) lobes was reported
primarily based on a small number of cross-sectional studies
or case reports. Hypometabolism patterns were observed to
correlate with clinical manifestations (56), but another study
failed to find clear metabolic change pattern in each clinical
subtype (58).

C9orf72_FDG-PET

In asymptomatic C9orf72 mutation carriers, extensive
hypometabolism was observed in frontotemporal and
subcortical regions in two studies (75, 77). Thalami
hypometabolism was found in both the asymptomatic
(75, 77) and symptomatic (72) individuals with C9orf72

mutation, especially when compared to sporadic FTLD patients
(72), suggesting that thalami could be a distinguishing early
biomarker for C9orf72 mutation carriers. In symptomatic
C9orf72 mutation carriers, some studies showed that the
hypometabolism patterns were consistent with the clinical
diagnosis and correlated well with the brain atrophy on
MRI, for example, prevalent frontal hypometabolism in
patients with bvFTD and temporal polar and lateral temporal
hypometabolism in patient with svPPA (66, 69, 71, 74).
However, the cross-sectional studies above with small sample
sizes still need to be replicated in longitudinal studies with
larger cohorts.

Most studies demonstrated the concordance between
structural MRI and FDG-PET in MAPT (43, 45), GRN (84, 85),
and C9orf72 (74, 77) mutation carriers. However, controversy
still existed regarding the earlier or more sensitive biomarkers
(43, 45, 77). Some studies showed that additional informative
MRI modalities such as diffusion tensor imaging (DTI) and
arterial spin labeling (ASL) had equivalent or even better
diagnostic utility of FTLD compared with FDG-PET (86–89),
but others found a gap in sensitivity or accuracy that still
remained (90, 91). Further investigations of familial FTLD need
to compare the clinical value of microstructural MRI and PET.

Dopaminergic system

Dopamine functional deficits can be measured in vivo

via PET or SPECT with various types of tracers assessing
dopamine synthesis and storage [18F-DOPA, 11C-DOPA, 11C-
dihydrotetrabenazine (DTBZ), 18F-fluoropropyl-DTBZ, etc.],
transporter density (123I-FP-CIT, 123I-ioflupane,11C-CFT,
99mTc-TRODAT, etc.), or postsynaptic terminals [11C-
raclopride, 123I-iodobenzamide (IBZM), etc.] (92).
Dopaminergic deficits were evaluated by the techniques
mentioned above, especially in patients with familial FTLD
with Parkinsonism.

Parkinsonism may present as the initial symptom in MAPT

mutation carriers, particularly individuals with MAPT N279K
mutation. Tracers such as 11C-DOPA and 2b-carbomethoxy-
3b-(4-trmethylstannylphenyl) tropane (11C-CFT) were used to
reveal dopaminergic function. The 11C-CFT uptake in the
putamen was mildly low in asymptomatic MAPT N279K
mutation carriers (49, 50). In symptomatic patients, both the
caudate nucleus and putamen were involved more heavily
(46, 50).

Individuals with GRN mutations and Parkinsonism could
show reduced DOPAmetabolism in bilateral corpus striatum by
18F-DOPA PET (59) or reduced tracer uptake in left putamen by
123I-ioflupane SPECT (61). Parkinsonism is not uncommon in
GRN mutation carriers and sporadic patients with FTLD.

Brain perfusion

Perfusion SPECT is a well-established technique for
measuring regional cerebral blood flow (rCBF) to assess
brain function (93). The tracers utilized in brain perfusion
SPECT are technetium-99m-hexamethylpropyleneamineoxime
(99mTc-HMPAO) and technetium-99m-ethylcysteinate dimer
(99mTc-ECD), both which are distributed proportionally to
rCBF (93). Perfusion imaging has beenwidely used in the clinical
evaluation of patients with neurological and psychiatric diseases
(94), including FTLD.

In 11 MAPT mutation carriers, including eight in P301L,
two in G272V, and one in G389R, significant hypoperfusion
detected by 99mTc-HMPAO SPECT was found in the
asymmetric frontotemporal lobes (51, 52). Several studies
indicated that hypoperfusion occurred in frontal areas of GRN
mutation carriers (61–63). Compared with MAPT mutation
carriers, patients with GRN mutation exhibited relatively
more posterior hypoperfusion, including the precuneus and
inferior parietal lobule detected by 99mTc-HMPAO SPECT (51).
Perfusion SPECT might be a potential biomarker to identify
MAPT and GRN mutation carriers.

Neuroinflammation

Previous studies of genome-wide association (95) and
animal (96) suggest that neuroinflammation might be an
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earlier process in FTLD, even preceding tau accumulation.
The neuroinflammation is accompanied by the activation
of microglia, and 18 kDa TSPO, previously known as
peripheral benzodiazepine receptors, is highly expressed (97).
Thus, radioligands (11C-PK11195, 11C-DAA1106) have been
developed to target TSPO to visualize neuroinflammation in vivo
(98, 99).

In asymptomatic MAPT mutation carriers, two studies
with 11C-PK11195 PET (35) or 11C-DAA1106 PET (49)
revealed increased levels of microglial activation, even despite
a lack of significant atrophy or 18F-flortaucipir uptake (35).
In symptomatic patients, 18F-flortaucipir binding overlapped
with 11C-PK11195 binding and was more extensive across
the brain (38). These findings suggest that neuroinflammation
might facilitate tau aggregation initially, then tau-mediated
neurodegeneration takes the dominant role. Combining
different modalities in a relatively homogeneous group
such as familial FTLD with a specific mutation subtype
would better understand the underlying mechanism of
disease progression.

Across different mutation subtypes, familial patients
with FTLD with MAPT, GRN, and C9orf72 mutations all
showed increased 11C-PK11195 binding predominantly in
frontotemporal regions (38), and 11C-PK11195 binding was
significantly higher in temporal subcortical white matter in
MAPT mutation carriers than in other genetic (GRN, C9orf72)
mutation carriers or sporadic FTLD (81). Future studies could
add more details to the neuroinflammation patterns of subtypes
of familial FTLD.

Synaptic function and acetylcholinesterase
activity

The synaptic vesicle glycoprotein 2A (SV2A) is a
transmembrane protein ubiquitously expressed in secretory
vesicles of synapsis in all the brain areas (100). It is critical for
synaptic function (101), and it has been related to neurologic
disorders such as AD and epilepsy (102–104). The density
of SV2A could be quantified by the newly developed tracer
11C-UCB-J (105). Reduced synaptic density in the thalamus
detected by 11C-UCB-J was found in three asymptomatic
C9orf72 mutation carriers compared to healthy controls. It
proved the role of the thalamus in C9orf72 mutation carriers
again, especially before symptom onset (48). There is a lack
of studies on synaptic density mapping in other early staged
mutation carriers. Thus, its value and correspondence with
other imaging techniques remain unknown.

11C-MP4A PET could reflect acetylcholinesterase
(AChE) activity in vivo. A study showed reduced AchE
activity in the temporoparietal cortex in one of three
asymptomatic MAPT N279K mutation carriers (49).
Therefore, more studies with larger sample sizes are

needed to provide further evidence for 11C-MP4A PET in
familial FTLD.

Challenges and limitations of molecular
imaging

Even though more and more tracers were approved
by the US Food and Drug Administration and by the
European Medicines Agency for clinical usage (106), the
higher cost and longer acquisition times compared to MRI
might limit the wide applications in clinical practice (107).
Changes in the levels of human fluid components could
reflect underlying pathophysiological processes, and several
fluid biomarkers were available or showed potential values
such as Aβ, tau, NfL, and progranulin. A lack of multicenter
standardization of procedures and quality control would
compromise the stability and reliability of outcomes (108).
By contrast, molecular imaging could provide more robust
and comprehensive (quantitative and spatial distribution)
information. However, the unspecific binding was still a
challenge. Off-target binding of first-generation tau tracers
such as 18F-flortaucipir might interfere with the quantification
in several brain regions (109). Further development of 4R
tau and TDP-43 specific tracers was needed to move toward
precise diagnoses in FTLD. Several studies demonstrated
that some molecular imaging biomarkers of FTLD with
mutations could be different from sporadic individuals (72, 81),
suggesting findings in genetic FTLD that may not translate to
sporadic FTLD.

Conclusion

This review summarized recent molecular imaging findings
in familial frontotemporal lobar degeneration regarding
common genetic mutations. The application of advanced
neuroimaging techniques in monogenetic familial FTLD
provides a unique opportunity to study specific proteinopathies
and their clinical phenotypes. Although various study
designs and data analysis methods generated heterogeneous
nonspecific results, some key biomarkers could still be
identified, pointing to specific brain regions worth further
exploring. The combination of multimodal neuroimaging
would also help identify the underlying mechanism of these
biomarkers. To date, this research topic has been limited by a
large multicenter longitudinal cohort study and a comparison
between asymptomatic/symptomatic mutation carriers and
sporadic patients with FTLD. Thus, the changes in different
time points of these biomarkers between FTLD mutation
carriers and sporadic ones are largely unknown, and the
prognostic value of these biomarkers is still unclear. Future
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studies could focus on these issues and provide more insight
into the significance of these molecular imaging methods and
their findings.
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