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ABSTRACT
Plant activators activate systemic acquired resistance-like defense responses or induced systemic
resistance, and thus protect plants from pathogens. We screened a chemical library composed of
structurally diverse small molecules. We isolated six plant immune-inducing thienopyrimidine-type
compounds and their analogous compounds. It was observed that the core structure of thienopyrimidine
plays a role in induced resistance in plants. Furthermore, we highlight the protective effect of
thienopyrimidine-type compounds against both hemibiotrophic fungal pathogen, Colletotrichum
higginsianum, and bacterial pathogen, Pseudomonas syringae pv. maculicola, in Arabidopsis thaliana. We
suggest that thienopyrimidine-type compounds could be potential lead compounds as novel plant
activators, and can be useful and effective agrochemicals against various plant diseases.
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Plants have evolved effective defense mechanisms against dif-
ferent types of diseases (fungal, bacterial, and viral) and pests.
Plants respond to pathogen attacks by increasing their resis-
tance. Diseases in plants occur rarely because many plants
defend themselves against microbial pathogens by employing
elaborate defense mechanisms, including both localized and
systemic resistant responses. Systemic acquired resistance
(SAR) is an inducible plant defense response to pathogen infec-
tion and is simultaneously activated in uninfected organs of the
plant as well.1 This results in enhanced resistance in the entire
plant against further pathogen attacks. Accumulation of sali-
cylic acid (SA), which is an endogenously synthesized signaling
factor, is required for the induction of SAR.2 Although defense
responses are genetically controlled, artificial tools are also able
to regulate them. Not only pathogen attacks but also chemicals,
called plant activators, activate disease resistance in plants.
Plant activators activate SAR-like defense responses or induced
systemic resistance (ISR).1,3 Consequently, various defense-
related genes, including Pathogenesis-Related (PR) genes are
expressed in the whole plant. For example plant activators, 2,6-
dichloroisonicotinic acid (INA), benzo(1,2,3)thiadiazole-7-car-
bothioic acid S-methyl ester (BTH), Imprimatin, N-cyano-
methyl-2-chloroisonicotinamide (NCI), and probenazole
(PBZ) and its derivative, benzisothiazole (BIT) induce SAR by
stimulating the signal transduction pathway for SAR develop-
ment.4-9

To identify the main compounds that function as plant acti-
vators, large-scale and high-throughput screening procedures
using plant immune system were established.6,10-13 These

screenings enabled us to identify small molecules that protect
plants against diseases. We previously developed a high-
throughput screening procedure for identifying plant activa-
tors, employing a b-glucuronidase (GUS) histochemical stain-
ing assay. This method considered promoters of the
Arabidopsis thaliana defense-related genes, PR-1 as a marker
for the SA-dependent signal transduction pathway, and PR-4
and PDF1.2 as markers for the ethylene (ET)/jasmonic acid
(JA)-dependent signal transduction pathway.14,15 In particular,
this system could monitor the activation of SA- and ET/JA-
induced resistance in A. thaliana plants. This system enabled
us to perform 1,000 to 2,000 screenings per week per person,
and was economical in terms of both time and space. Using
this screening system, we previously reported that pyrimidine-
type plant activator (PPA) induces plant defense programs by
moderating reactive oxygen species.16

In the present study, we describe thienopyrimidine-type
compounds, obtained by our screening system, protecting A.
thaliana plants against the hemibiotrophic fungal pathogen,
Colletotrichum higginsianum, and bacterial pathogen, Pseudo-
monas syringae pv. maculicola.

Using the previously established screening system, we
screened a chemical library composed of structurally diverse
small molecules. We isolated six plant immune-inducing thie-
nopyrimidine-type compounds and their analogs (N2781,
N2835, N2947, N2969, N2972, N2914C, N2914A1 to
N2914A4) (Fig. 1).

Induced resistance against pathogen-attack and chemicals is
associated with the expression of defense-related marker genes,
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SA-associated A. thaliana PR-1 gene,2 and the JA/ET-depen-
dent PDF1.2 gene.17 To determine whether these thienopyrimi-
dine-type compounds function as activators of induced
resistance, we investigated the transcription profiles of PR-1
and PDF1.2 mRNA in A. thaliana plants (Col-0 accession)

treated with these compounds by quantitative real time-poly-
merase chain reaction (qRT-PCR). The A. thaliana plants were
grown in a mixture consisting of Soil-mix (Sakata Seed Corp.),
expanded vermiculite (1.5 to 2 mm granules), and pearlite (2.5
to 3.5 mm granules) in a 2:1:1 ratio for 28 days in a growth

Figure 1. Molecular structure of plant immune-inducing thienopyrimidine-type compounds and its analogous compounds.

Figure 2. Expression of defense-related genes after treatment with TPA. Twenty eight day-old A. thaliana Col-0 plants were foliar-sprayed with 0.08 mM TPAs. The leaves
were collected 2, 5, 10 24, and 48 h after treatment, and total RNA was isolated. The transcription levels of PR-1 and PDF1.2 mRNA were monitored by qRT-PCR analysis.
The transcription levels of these genes were normalized against that of housekeeping gene, CBP20. The nucleotide sequences of the gene-specific primers for each gene
were described previously.18 The relative expression ratios are shown as fold induction relative to the expression level at 0 h. Bars indicate the standard error (SE). The
experiment was repeated at least twice with similar results.
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chamber at 22 �C under a 12-h light/ 12-h dark cycle. The A.
thaliana plants were treated with 0.08 mM thienopyrimidine-
type compounds using foliar sprays, and total RNA was then
extracted from the leaves at 2, 5, 10, 24, and 48 h. These com-
pounds strongly induced PR-1mRNA expression in A. thaliana
plants over a period (Fig. 2). The mRNA expression of PDF1.2
rapidly increased, reaching a peak at 5 to 10 h in A. thaliana
plants foliar-sprayed with the compounds compared with that
of PR-1 gene. The timing of induction of the SA- and JA/ET-
dependent representative marker genes differed in A. thaliana
plants foliar-sprayed with the compounds and yeast cell wall
extract.18 In addition, the transcription levels of PR-1 mRNA
were much higher in A. thaliana plants foliar-sprayed with the
compounds than those of PDF1.2. These results showed that
thienopyrimidine-type compounds function as activators of
induced resistance and, therefore, were named as thienopyrimi-
dine-type plant activator (TPA).

A. thaliana plants were pre-treated with 0.08 mM TPAs
using foliar sprays, and then inoculated with a spore suspension
(5 £ 105 spores ml¡1 in distilled water) of C. higginsianum. The
inoculated plants were then placed in a growth chamber at
22 �C under a 12-h light/12-h dark cycle, and maintained at
100% relative humidity.19 The control plants were treated only
with distilled water. Our results showed that treatments with
N2914C, and N2914A1 effectively protected A. thaliana leaves
against anthracnose, a group of fungal diseases, commonly
affecting the developing shoots and leaves, when compared
with the control (Fig. 3). The N2969, N2972, N2914A2, and
N2914A4 treatment showed moderate reduction in disease
incidence (Fig. 3).

To determine whether TPA protects A. thaliana against bac-
terial pathogen, the plants were sprayed with 0.08 mM TPAs,
2 days before inoculation with P. syringae pv. maculicola
(Psm).20 The treatment with 0.08 mM TPAs, N2781, N2835,
N2947, N2914C, N2914A1, N2914A2, and N2914A4 controlled
the bacterial infection and growth in the leaves (Fig. 4). Conse-
quently, TPA protected the plants against bacterial leaf spot
caused by the pathogen. The TPA N2914C-treated plants

contained three hundred-fold lower bacterial titers than that in
the control plants. In addition, this concentration of TPA did
not cause any phytotoxicity, i.e, inhibition of plant growth,
reduction in yield, or leaf burn.

Thus, in this study, we showed that the core structure of
thienopyrimidine plays a role in induced resistance in plants.
Furthermore, we indicated the protective effect of TPA against
hemibiotrophic fungal as well as against bacterial pathogens in
A. thaliana plants. We suggest that TPA could be a significant
potential lead compound as a novel plant activator, and a useful
agrochemical against various plant diseases.
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