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Abstract
Organismal	metabolic	rates	(MRs)	are	the	basis	of	energy	and	nutrient	fluxes	through	
ecosystems. In the marine realm, fishes are some of the most prominent consumers. 
However,	their	metabolic	demand	in	the	wild	(field	MR	[FMR])	is	poorly	documented,	
because it is challenging to measure directly. Here, we introduce a novel approach to 
estimating	the	component	of	FMR	associated	with	voluntary	activity	(i.e.,	the	field	ac-
tive	MR	[AMRfield]).	Our	approach	combines	laboratory-	based	respirometry,	swimming	
speeds, and field- based stereo- video systems to estimate the activity of individuals. 
We	exemplify	our	approach	by	focusing	on	six	coral	reef	fish	species,	for	which	we	
quantified	standard	MR	and	maximum	MR	(SMR	and	MMR,	respectively)	in	the	labo-
ratory,	and	body	sizes	and	swimming	speeds	in	the	field.	Based	on	the	relationships	
between	MR,	body	size,	and	swimming	speeds,	we	estimate	that	the	activity	scope	
(i.e., the ratio between AMRfield	and	SMR)	varies	from	1.2	to	3.2	across	species	and	
body	 sizes.	Furthermore,	we	 illustrate	 that	 the	 scaling	exponent	 for	AMRfield varies 
across	 species	 and	 can	 substantially	 exceed	 the	widely	 assumed	 value	 of	 0.75	 for	
SMR.	 Finally,	 by	 scaling	 organismal	 AMRfield estimates to the assemblage level, we 
show the potential effect of this variability on community metabolic demand. Our 
approach may improve our ability to estimate elemental fluxes mediated by a critically 
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1  |  INTRODUC TION

Anthropogenic	 stressors,	 such	 as	 climate	 change,	 over-	harvesting,	
and pollution, are affecting biological communities at an unprec-
edented rate (Halpern et al., 2008; Venter et al., 2016).	 Scientists	
and	policy-	makers	are	becoming	increasingly	concerned	that	these	
community	impacts	will	 irreversibly	alter	key	ecosystem	functions,	
preventing these natural systems from maintaining indispensable 
services to humans (Cardinale et al., 2012).	 In	 this	 context,	 tools	
to	quantify	and	monitor	ecosystem	processes	are	valuable	(Tilman	
et al., 2014).	 However,	 while	 there	 is	 a	 long-	standing	 tradition	 in	
measuring ecological processes in mesocosms and controlled in situ 
experiments, the assessment of rates of ecological processes in nat-
ural conditions is still in its infancy (Reich et al., 2012),	especially	for	
marine	ecosystems	(Brandl,	Rasher,	et	al.,	2019).

In coastal marine ecosystems, fishes represent one of the most 
thoroughly studied, ecologically important, and economically valu-
able	group	of	consumers	 (Bozec	et	al.,	2004;	Tamayo	et	al.,	2018).	
Despite the complexity of measuring the contribution of mobile 
species	to	ecosystem	fluxes	(Wilson	et	al.,	2010),	several	attempts	
have	been	made	to	quantify	the	contributions	of	fishes	to	nutrient	
and	carbon	cycling	(Brandl,	Rasher,	et	al.,	2019; Villéger et al., 2017).	
These	functions	are	usually	quantified	at	the	individual	level,	which	
can then be scaled up to community levels through an additive 
framework	 (Allgeier	 et	 al.,	 2014;	 Barneche	 et	 al.,	 2014;	 Brandl,	
Tornabene,	et	al.,	2019;	Morais	&	Bellwood,	2019).	While	there	are	
inherent limitations to this approach, individual- based modeling cur-
rently	 represents	our	best	means	 to	quantify	ecological	processes	
across	communities	of	mobile,	aquatic	organisms.	Nevertheless,	the	
accuracy of these approaches inevitably depends on our capacity to 
precisely	estimate	the	physiological	requirements	and	expenditures	
of individuals in their natural environment.

The	metabolic	rate	(MR)	of	living	organisms	is	an	essential	deter-
minant	of	their	physiological	requirements	and	therefore	represents	
a crucial parameter to estimate the flow of energy and nutrients 
in	 any	 ecosystem	 (Allen	 et	 al.,	2005;	 Brown	 et	 al.,	2004).	MRs	 of	
fishes	are	generally	evaluated	through	two	metrics:	(i)	standard	MR	
(SMR)	(Fry,	1957; Vinberg, 1960),	which	corresponds	to	the	MR	of	
an inactive and fasting individual (Chabot et al., 2016)	and	(ii)	max-
imum	MR	(MMR),	which	corresponds	to	the	aerobic	MR	of	an	ani-
mal	that	is	exercising	at	full	capacity	(Norin	&	Clark,	2016).	Theory	
predicts	 that	 individual	MR	 increases	hypoallometric	 (sub-	linearly)	

with body mass according to a power function with a scaling expo-
nent	of	approximately	0.75	(Brown	et	al.,	2004; Gillooly et al., 2001; 
West	 et	 al.,	 1997).	 While	 laboratory	 measurements	 of	 the	 SMR	
of resting fishes have both confirmed a scaling exponent close to 
0.75	(Barneche	et	al.,	2014;	Clarke	&	Johnston,	1999)	and	rejected	
it	 (Bokma,	2004;	Killen	et	al.,	2016),	 an	0.75	scaling	exponent	has	
been	used	to	estimate	community-	level	MRs	 (Cheung	et	al.,	2013; 
Deutsch et al., 2015;	Holt	&	Jørgensen,	2015).

Knowledge	 of	 SMR	 and	 MMR	 allows	 for	 the	 calculation	 of	 a	
fish's	aerobic	scope,	which	is	the	ratio	between	MMR	and	SMR	and	
represents	the	capacity	to	elevate	MR	above	maintenance	to	sup-
port	energetically	demanding	tasks	such	as	physical	activity	and	di-
gestion	 (Clark	et	al.,	2013).	Within	species,	aerobic	scope	tends	to	
increase with body mass regardless of being expressed in absolute 
(MMR	minus	SMR)	or	factorial	(MMR	divided	by	SMR)	values	(Halsey	
et al., 2018),	as	the	scaling	exponent	of	MMR	is	often	observed	to	be	
higher	than	that	of	SMR	(Glazier,	2005;	Killen	et	al.,	2007).	Both	SMR	
and	MMR	can	be	estimated	 relatively	accurately	 in	 the	 laboratory	
through	measurements	of	oxygen	uptake	 rates	 (Clark	et	al.,	2013; 
Svendsen et al., 2016).	However,	 animals	 in	 the	wild	 rarely	 reside	
at	SMR	or	exercise	maximally.	Thus,	calculations	of	energy	expen-
ditures in wild fishes are hamstrung by our inability to accurately 
estimate	MRs	 in	 fishes	 that	pursue	 their	normal,	daily	activities	 in	
their natural environment.

The	field	MR	(FMR)	represents	the	average	MR	of	an	individual	
in the wild (Chung et al., 2019; Nagy, 2005)	and	lies	somewhere	be-
tween	SMR	and	MMR	(Nagy,	2005).	On	average,	free-	living	fishes	
in their natural habitats will only exploit a given proportion of 
their aerobic scope and, in non- sedentary fishes, physical activity 
will	be	a	major	component	of	FMR	 (Chung	et	al.,	2019).	Thus,	 the	
factorial	 scope	 for	 activity	 (FSA),	 which	 corresponds	 to	 the	 ratio	
between	 the	 component	 of	 FMR	 related	 to	 physical	 activity	 (the	
AMRfield)	and	the	SMR,	 is	a	better	reflection	of	energy	expenditure	
in the wild than the aerobic scope (Chung et al., 2019),	bearing	 in	
mind that internal homeostatic processes such as digestion and 
reproduction	also	 incur	 an	energetic	 cost	 as	part	of	 the	 full	 FMR.	
In terrestrial vertebrates, where the doubly labeled water tech-
nique	has	allowed	for	widespread	quantification	of	FMR	(Webster	
&	Weathers,	1989),	 the	metabolic	 scaling	exponent	of	FMR	 tends	
to	be	higher	than	that	of	SMR	(~0.8; Nagy, 2005).	While	the	meta-
bolic	scaling	exponent	of	MMR	in	fishes	approximate	or	exceed	0.8	
as	well,	the	scaling	of	FMR	or	AMRfield remains poorly documented 

important	 group	 of	 aquatic	 animals	 through	 a	 non-	destructive,	 widely	 applicable	
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(Norin	&	Clark,	2016).	Understanding	how	MR	scales	with	body	mass	
in	 the	wild	 is	 fundamentally	 important	 for	 fisheries	 (e.g.,	 stock	as-
sessments)	and	predictions	of	the	effects	of	climate	change,	as	the	
metabolic  scaling exponent is an integral part of growth models used 
to forecast the size of fishes at both current and future temperatures 
(Von	Bertalanffy,	1957; Cheung et al., 2013; Deutsch et al., 2015; 
Marshall	&	White,	2019).

Since	FMR	is	challenging	to	measure	for	water-	breathing	animals	
in	 the	aquatic	environment	 (Treberg	et	al.,	2016),	 it	has	only	been	
estimated for a small number of fishes (e.g., Chung et al., 2019; Cruz- 
Font	et	al.,	2016; Lucas et al., 1993;	Murchie	et	al.,	2011).	These	es-
timates are largely derived from biotelemetry approaches that rely 
on accelerometry tags and heart rate measurements calibrated with 
rates	of	oxygen	uptake	in	the	laboratory	(Gräns	et	al.,	2009;	Treberg	
et al., 2016).	A	major	limitation	of	biotelemetry	is	that	its	application	
is	limited	to	large	individuals	as	it	requires	surgical	attachment	or	im-
plantation	of	tags	(Gräns	et	al.,	2009).	More	recently,	FMR	has	been	
estimated from the isotopic composition of carbon in fish otoliths 
(Chung et al., 2019).	However,	 this	 approach	 relies	on	destructive	
sampling and the generality of the undoubtedly promising results 
are	 yet	 to	 be	 applied	 across	 a	 broad	 range	of	 species.	 Thus,	 non-	
invasive	methods	to	estimate	FMR	on	many	co-	occurring	fish	spe-
cies in the field are needed to better understand the contributions 
of fishes to ecosystem functioning.

Here, we propose a new approach to estimating a major com-
ponent	of	the	FMR,	the	AMRfield.	Specifically,	we	estimated	the	SMR	
and	 MMR	 of	 six	 reef	 fish	 species	 using	 traditional	 respirometry	
techniques	in	the	laboratory,	and	then	quantified	in	situ	swimming	
speeds of the same species using underwater stereo- video systems. 
This	permitted	us	to	derive	AMRfield	and	the	FSA	on	the	basis	of	the	
theoretical	 relationship	between	MR	and	swimming	speed,	and	 to	
assess the mass- scaling exponents of AMRfield	 for	each	species.	By	
combining our results with underwater visual census data of fish size 
and	abundance	on	reefs	around	Mo′orea,	French	Polynesia,	we	also	
estimate	assemblage-	level	SMR	and	AMRfield. In doing so, we demon-
strate	the	potential	applicability	of	our	approach	to	tackle	questions	
across fields of organismal, community, and ecosystem ecology in 
the marine biome.

2  |  METHODS

2.1  |  Theory

Our	approach	to	quantifying	the	AMRfield is based on the relationship 
between	swimming	speed	(v)	and	MR	(Binning	et	al.,	2013;	Norin	&	
Clark,	2016;	Torres	&	Childress,	1983)	 (Figure 1).	We	assume	 that	
MRs	vary	predictably	with	swimming	speed	following	a	traditional	
power function, which can be adapted to a log10 transformed form 
(Brett,	1964;	Korsmeyer	et	al.,	2002):

 

We	further	assume	that (1)	the	SMR	represents	the	MR	of	an	individual	
when its swimming speed is zero and (2)	the	MMR	represents	the	oxy-
gen	uptake	rate	of	individuals	at	their	maximum	swimming	speed	(vmax; 
Figure 1).	The	previous	equation	can	thus	be	rewritten	as:

and AMRfield can then be estimated using the average swimming speed 
in the field (vfield):

The	FSA	is	computed	by	dividing	a	fish's	AMRfield	by	their	SMR.	We	note	
that	the	FSA	tends	to	be	calculated	over	a	24	period,	which	means	that	
we have to consider the amount of time spent resting. If a fish is resting 
for	a	certain	amount	of	hours	(t)	a	day	and	the	MR	at	resting	equals	the	
SMR,	the	FSA	can	be	estimated	as	follows:

Thus,	on	 the	basis	of	 known	SMR	and	MMR	estimates	along	
with the vmax of individuals, AMRfield of a species can be estimated 
if the average swimming speed in the field (vfield)	 for	 specific	
body	 size	 is	 known.	 For	 our	 case	 study,	we	 estimated	 SMR	 and	
MMR	using	respirometry	in	the	laboratory,	obtained	vmax through 

(1)MR = a10bv

(2)log10(MR) = log10(a) + bv,

(3)log10(MR) = log10(SMR) +
log10(MMR) − log10(SMR)

vmax
v,

(4)log10
(

AMRfield
)

= log10(SMR) +
log10(MMR) − log10(SMR)

vmax
vfield,

(5)FSA =
(24 − t)AMRfield + tSMR

24SMR
.

F I G U R E  1 Definition	of	fish	metabolic	rates	along	with	the	
swimming	speed	range.	SMR	is	the	standard	metabolic	rate	at	
swimming	speed	(v)	zero.	AMRfield is field active metabolic rate 
at average swimming speed in the field (vfield).	MMR	is	maximum	
metabolic rate, assumed to be reached at maximum swimming 
speed (vmax)
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empirical data available in the literature, and estimated v using 
stereo-	camera	video	recordings	in	the	field.	We	then	used	these	
estimates of AMRfield	to	estimate	the	FSA	and	the	metabolic	scaling	
exponent for AMRfield.	Finally,	to	evaluate	the	impact	of	assessing	
assemblage-	level	MRs	 on	 the	 basis	 of	 a	 realistic	 proxy	 of	 FMR,	
AMRfield	(instead	of	using	the	more	commonly	measured	SMR	as	an	
estimate	of	minimum	energetic	 requirements),	we	 scaled	up	our	
estimates at the assemblage level according to visual census data 
of	 fish	 sizes	 and	 abundances	on	 a	 coral	 reef	 in	Mo′orea,	 French	
Polynesia.

2.2  |  Case study species

We	 focused	on	 six	 common	 reef	 fish	 species	with	 varying	 body	
sizes and shapes, trophic strategies, and behavioral patterns: 
Cephalopholis argus	 (family	 Serranidae),	 a	 large,	 fusiform,	 seden-
tary piscivore; Chaetodon ornatissimus	 (family	 Chaetodontidae),	
a small- bodied, laterally compressed, obligate coral feeder; 
Ctenochaetus striatus	(family	Acanthuridae),	a	medium-	sized,	graz-
ing detritivore; Naso lituratus	(family	Acanthuridae),	a	large-	bodied,	
grazing herbivore feeding on macroalgae; Odonus niger (family 
Balistidae),	 a	 large-	bodied	 schooling	 planktivore;	 and	Zebrasoma 
scopas	(family	Acanthuridae),	a	compressed,	small-	bodied,	grazing	
herbivore	 feeding	 on	 filamentous	 algae.	 All	 data	were	 collected	
in	Mo′orea,	French	Polynesia,	between	March	2018	and	February	
2019.	For	respirometry	experiments,	individuals	were	collected	in	
the	lagoon	(depth	range	1–	6	m)	next	to	Opunohu	Bay	(17.4928°S,	
149.8555°W)	with	hand	nets	and	clove	oil.	Immediately	after	cap-
ture,	the	individuals	were	transported	to	aquaria	in	the	laboratory	
and started an acclimatization and fasting period of a minimum 
of	48 h.	The	water	temperature	of	the	aquaria	was	controlled	by	
the	 ambient	 sea	 temperature	which	 fluctuated	 around	 28°C	 for	
the	duration	of	the	experiments.	All	protocols	related	to	the	cap-
ture and handling of fish complied with the ethical standards of 
the Centre for Island Research and Environmental Observatory 
(CRIOBE).

2.3  |  Standard and maximum metabolic rates

To	 quantify	 SMR	 and	 MMR,	 we	 conducted	 intermittent-	closed	
respirometry	experiments	(Clark	et	al.,	2013; Steffensen, 1989)	at	
28 ± 0.5°C	on	 a	 total	 of	 68	 individuals	 across	 the	 six	 study	 spe-
cies with the sample size per species ranging between four and 
23	 individuals.	After	an	acclimation	and	fasting	period	of	48 h	 in	
aquaria,	the	fish	were	individually	transferred	to	a	water-	filled	tub	
at	28°C	and	sequentially	chased	by	the	experimenter	until	visibly	
exhausted	 to	 elicit	MMR	 (Norin	 &	 Clark,	2016).	 Once	 the	 chas-
ing was concluded, each individual was immediately placed in a 
respirometry chamber submerged in an ambient and temperature- 
controlled	 tank,	where	 they	were	 left	 for	 approximately	 24 h	 to	
reach	 SMR.	 The	 intermittent	 respirometry	 cycles	 consisted	 of	 a	

measurement	 (closed)	period	 followed	by	an	open	period	during	
which the respirometry chambers were flushed with fully aerated 
water	 from	 the	 ambient	 tank.	 Based	 on	 previous	work	 (Norin	&	
Clark,	2016),	we	considered	the	oxygen	uptake	rate	(ṀO2)	during	
the	first	closed	cycle	(directly	after	transferring	the	fish)	to	be	re-
flective	of	the	individual's	MMR.	Depending	on	fish	size,	respirom-
etry	chambers	ranged	in	volume	(including	tubes	and	pumps)	from	
0.38 to 4.4 L, and measurement and flush periods lasted between 
2–	9	 and	3–	5	min,	 respectively.	 SMR	was	 calculated	 as	 the	 aver-
age of the 10% lowest ṀO2 values measured during the entire 
respirometry	trial,	after	 the	removal	of	outliers,	while	MMR	was	
calculated from the slope of the first measurement period (Chabot 
et al., 2016).

2.4  |  Field swimming speeds

We	used	two	underwater	stereo-	video	systems	that	were	placed	
on the seafloor to record fish movements in the wild. Each video 
system consisted of two small action cameras (GoPro Hero5 
Black),	 mounted	 90 cm	 from	 each	 other	 at	 an	 angle	 of	 approxi-
mately	 6°.	 This	method	 allows	 three-	dimensional	 (3D)	measure-
ments	 (Butail	 &	 Paley,	2012;	 Hughes	 &	 Kelly,	1996).	 To	 analyze	
the	 recorded	videos,	we	used	VidSync,	 an	open-	source	Mac	ap-
plication providing accurate 3D measurements (Neuswanger 
et al., 2016),	 which	 allows	 for	 synchronization,	 calibration,	 and	
analysis	of	videos.	We	recorded	calibration	videos	to	correct	for	
the nonlinear optical distortion of the images due to camera lenses 
and underwater housings, and to define the 3D coordinate sys-
tem (x, y, z)	used	throughout	the	analyses.	Errors	in	length	meas-
urements through video analysis increase with distance from the 
cameras (Neuswanger et al., 2016).	 Thus,	 for	 each	 underwater	
stereo- video system, we fitted a linear regression model describ-
ing the error in measurements as a function of their distance from 
the nearest camera, which we used to adjust all measurements 
of distances and fish lengths (Figure 1).	We	recorded	20	station-
ary stereo videos between November 19, 2018 and December 12, 
2018.	Videos	were	recorded	at	12–	14 m	depth	on	the	reef	slope	at	
the	Tiahura	 long-	term	monitoring	site	 in	Mo′orea	 (17°29′00.6″S,	
149°54′20.9″W)	 and	 at	 five	 different	 time	 periods:	 5:00–	7:00,	
8:00–	10:00,	 11:00–	13:00,	 14:00–	16:00,	 and	 17:00–	18:00.	 Each	
recording lasted for ~1	to	1.5	h.	We	then	took	measurements	dur-
ing	three	10	min	sequences	with	intervals	of	10	min	that	excluded	
the	 first	 2	 min	 to	 account	 for	 the	 presence	 of	 divers.	We	 took	
measurements for all fishes visible in both cameras for 3– 5 s dur-
ing	 the	 three	10	min	sequences.	For	each	 individual,	 fork	 length	
was measured three times from the videos as the straight- line dis-
tance	between	the	fish's	head	and	 its	 tail	 fork,	and	three	to	five	
consecutive swimming speeds were measured as the distance the 
fish	moved	 over	 3–	5	 s.	 Final	 fish	 lengths	 and	 swimming	 speeds	
were then calculated as the mean of the repeated measurements. 
In total, we recorded lengths and speeds for 634 individuals, with 
sample sizes per species ranging between 64 and 264 individuals.
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2.5  |  Maximum swimming speed

We	assumed	maximum	swimming	speeds	(vmax)	from	previous	work	
that estimated the swimming speed at which a fish becomes ex-
hausted and stops swimming when it is exposed to regular incre-
mental	 changes	 in	 speed	 in	 an	 experimental	 flume	 (Brett,	 1964; 
Fulton,	2007).	 In	 the	original	work	of	Fulton	 (2007),	 the	maximum	
swimming speeds of 192 individuals from five fish families and their 
corresponding lengths were measured, and these measurements 
were then used in the present study to relate maximum swimming 
speed with body size and caudal aspect ratio as a proxy for variations 
in swimming ability while accounting for the effect of fish family and 
body shape type. Caudal aspect ratio and body shape values were 
retrieved	from	Fishbase	(Froese	&	Pauly,	2018).

2.6  |  Data analysis

We	 quantified	 AMRfield	 and	 FSA	 by	 combining	multiple	 regression	
models,	 that	 describe	 the	 relationships	 between	 SMR	 and	 MMR	
with body mass, swimming speed (v),	and	maximum	swimming	speed	
(vmax;	from	Fulton,	2007)	with	body	size.	First,	we	used	the	respirom-
etry	data	to	fit	a	relationship	between	either	SMR	or	MMR	and	body	
mass	using	a	Bayesian	hierarchical	model,	while	accounting	for	the	
co-	variation	between	MMR	and	SMR.	We	define	the	log10	of	SMR	
and	MMR	to	be	normally	distributed	with	a	mean	(�)	and	a	standard	
deviation (�)	as	follows:

 

where i  is the individual, j is the species, k	is	the	type	of	MR	(SMR	or	
MMR),	a is the global intercept of the regression; aj,k is the effect on 
the	intercept	for	each	species	and	type	of	MR,	b is the global slope of 
log10(weight), and bj,k is the effect on the slope for each species and 
type	of	MR.	We	obtained	the	mean	intercept	and	slope	per	species	by	
summing	global-		and	species-	level	parameters.	We	used	an	informa-
tive normal prior for the global slope exponent (i.e., metabolic scaling 
exponent)	with	an	average	of	0.75	and	0.1	as	the	standard	deviation	
(West	et	al.,	1997).	For	all	other	parameters,	we	used	weakly	informa-
tive	priors	(Burkner,	2017).

Second, using the data retrieved from the video analyses, we 
fitted	 a	hierarchical	Bayesian	 regression	model	 for	 estimating	 fish	
swimming	speed	as	a	function	of	body	length.	We	defined	the	log10 
transformation of swimming speed to be the student t- distributed 
with degrees of freedom (�),	mean	(�),	and	a	standard	deviation	(�).	
The	student's	t- distribution was applied to build a robust regression, 
as	our	data	includes	outliers	(Motulsky	&	Brown,	2006).

 

where v is the swimming speed, i  is the individual, j is the species, a is 
the global intercept of the regression, aj is the effect on the intercept 
for each species, b is the global slope, and bj is the effect on the slope of 
each	species.	For	each	species,	regression	exponents	were	estimated	
by summing two effects of the model: the global parameter and the 
species- specific effect on the global parameter.

Thirdly,	 we	 fitted	 a	 similar	 model	 to	 predict	 maximum	 swim-
ming speed in function of body length and aspect ratio using data 
extracted	from	Fulton	(2007),	including	random	effects	of	the	inter-
action between family and body shape on the intercept and slope 
of body size.

 

where i  is the individual, j is the interaction of family and body shape, a 
is the global intercept of the regression, aj is the effect on the intercept 
for each family and body shape, b is the global slope, bj is the effect on 
the slope for each family and body shape, and AR is the aspect ratio 
of the tail. Here, we also applied the Student's t- distribution and used 
general	uninformative	priors.	We	then	used	this	model	to	estimate	the	
maximum swimming speed of the species included in our study.

2.7  |  FAS, AMRfield, and FSA calculations

We	estimated	 the	 factorial	 aerobic	 scope	 (FAS),	AMRfield,	 and	 FSA	
for	the	full-	size	range	of	all	model	species	(per	cm).	To	estimate	the	
fish's	FAS	at	each	possible	length,	we	first	predicted	their	SMR	and	
MMR	by	estimating	their	weight	using	the	published	length–	weight	
relationship	 accessed	 through	 FishBase	 (Froese	 et	 al.,	 2014),	 and	
making	predictions	based	on	our	model	parameters.	For	each	itera-
tion	of	the	prediction,	we	calculated	FAS	as	FAS = MMR

SMR
	(F.	Fry,	1947; 

Killen	et	al.,	2016).	Finally,	we	summarized	the	FAS	for	each	species	
at	all	sizes	by	taking	means,	standard	deviations,	and	95%	credible	
intervals.

To	estimate	AMRfield,	we	needed	 the	SMR,	MMR,	vmax, and vfield 
(log10

(

AMRfield
)

= log10(SMR) +
log10(MMR) − log10(SMR)

vmax
vfield).	 For	 each	

length and species, we estimated vfield, vmax,	 SMR,	 and	MMR	using	
the	above-	mentioned	regression	models.	To	incorporate	an	estimate	
of uncertainty, we included 1000 iterations for vfield.	For	vmax,	SMR	
and	MMR	we	used	the	median	of	the	predicted	values	in	this	step.

Once we determined AMRfield,	we	calculated	FSA	with	the	follow-
ing	equation:

We	 repeated	 this	 for	 each	 iteration	 and	 then	 summarized	 FSA	 per	
species	per	size.	We	assumed	that	fish	rested	for	12 h	 (i.e.,	sleeping)	
(Marshall,	1972).	As	such,	for	all	studied	species,	we	assumed	that	they	
are active during the day and inactive during the night.
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2.8  |  Assemblage- level estimates

In 2016, reef fish communities were assessed across 13 sites on 
the	 outer	 fringing	 reef	 around	Mo′orea	 using	 underwater	 visual	
censuses.	During	each	 census,	 a	 single	diver	 swam	along	a	25 m	
transect	and	counted	all	fishes	within	a	2	m	wide	band.	All	fishes	
were identified to the species level and their total length was es-
timated to be the nearest 1 cm. Each transect covered an area 
of 50 m2,	 except	Tiahura	 and	Haapiti,	which	 covered	 an	 area	of	
100 m2	 each.	 At	 each	 site,	 three	 transects	 were	 performed,	 ex-
cept	for	Tiahura	and	Haapiti	where	four	and	two	transects	were	
performed,	 respectively.	We	 extracted	 data	 for	 our	 model	 spe-
cies from this database, which resulted in 802 individuals across 
the	six	species.	Then,	we	quantified	the	SMR	and	AMRfield for each 
individual	 using	 the	 above-	mentioned	 methodology.	 Finally,	 we	
calculated	the	total	SMR	and	AMRfield of the fish assemblage com-
posed of the six species at each site by summing across individual 
estimates.

3  |  RESULTS

3.1  |  Standard and maximum metabolic rates

The	 regression	model	predicting	MRs	 (log10	of	SMR	and	MMR)	as	
a function of log10 of body mass with varying slopes and intercepts 
per	species	had	a	Bayesian	R2 of .96 (Table 1; Figure 2).	The	aver-
age	metabolic	scaling	exponent	across	species	was	0.73	for	SMR	and	
0.78	for	MMR	(Table 1).	The	median	species-	specific	scaling	expo-
nents	varied	between	0.68	and	0.76	for	SMR	and	between	0.77	and	
0.78	for	MMR.

3.2  |  Swimming speed

The	regression	model	predicting	species-	specific	swimming	speed	as	
a	function	of	body	size	had	a	median	Bayesian	R2	of	.57	and	its	resid-
ual variance (�)	was	0.37.	The	average	species-	specific	slope	values	
varied	between	0.18	and	0.97	(Figure 3,	Table	S2).	At	the	individual	

scale, the 95% credible interval of swimming speed predictions var-
ied	between	28.5	and	32.4	cm s−1 across all species and size classes. 
For	maximum	 swimming	 speed,	 our	model	 showed	 an	 increase	 in	
body	 size	 and	 aspect	 ratio	 (Table	 S3),	 with	 a	median	 Bayesian	R2 
of	 .46.	We	 then	used	 this	model	 to	 estimate	maximum	 swimming	
speeds (Figure 3).

3.3  |  FMR, FAS, and FSA estimations

We	estimated	AMRfield,	 FAS,	 and	 FSA	 across	 the	 size	 range	 of	 our	
study	species	as	observed	in	the	monitoring	dataset	from	Mo′orea	
in	2016.	Across	all	species	and	size	classes,	the	average	AMRfield es-
timates	ranged	between	0.001	and	1.013 g	O2 d−1 at the individual 
level	(Table	S4).	FAS	and	FSA	estimate	range	between	2.4	and	7.0,	
and	between	1.2	and	3.2,	respectively,	across	species	and	sizes.	The	
scaling exponent of AMRfield	was	higher	than	the	SMR	exponent	for	
all species, except for C. striatus (Figure 4a),	hence,	FSA	 increased	
with size for all those species (Figure 4b).	 The	 scaling	 exponent	
of AMRfield	 was	 considerably	 higher	 than	 the	MMR	 exponents	 for	
N. lituratus and O. niger.

3.4  |  Assemblage- level predictions

Scaling	 up	 SMR	 and	 AMRfield to the assemblage level revealed 
major variation in the two estimates of metabolism, with aver-
age	SMR	(±SD)	for	this	assemblage	of	six	fish	species	across	sites	
(ranging	 between	 0.026 ± 0.009	 and	 0.325 ± 0.021 g	 O2 m−2 d−1; 
Figure 5)	 tending	 to	be	about	half	 total	AMRfield (ranging betwen 
0.036 ± 0.014	 and	0.465 ± 0.07 g	O2 m−2 d−1).	 Spatial	 variation	 in	
total	SMR	and	AMRfield reflected patterns in the relative abundance 
of the six study species across sites (Figures 5 and S4).	Afareaitu,	
Maatea,	Motu	Ahi,	Taotaha,	and	Tetaiuo,	sites	where	C. argus and 
O. niger dominated the reef fish assemblage had a total AMRfield 
about	 twice	 as	 high	 as	 total	 SMR.	 On	 the	 contrary,	 sites	 domi-
nated by C. striatus	(50–	95%	of	the	total	reef	fish	abundance)	had	
a total AMRfield	1.27–	1.41	times	higher	than	total	SMR	(i.e.,	Nuarei,	
Pihaena,	Temae,	and	Tiahura).

TA B L E  1 Overview	of	species-	specific	slope	coefficients	(scaling	exponents)	of	the	regression	of	log10-	transformed	SMR	and	MMR	on	the	
function of log10- transformed body mass

Species SMR slope SMR (mass = 1 g) MMR slope MMR (mass = 1 g)

Cephalopholis argus 0.68	(0.57;	0.77) 0.0033	(0.0019;	0.0047) 0.77	(0.69;	0.87) 0.0124	(0.0079;	0.0178)

Chaetodon ornatissimus 0.7	(0.6;	0.78) 0.0038	(0.0029;	0.0047) 0.77	(0.7;	0.85) 0.0091	(0.0069;	0.0117)

Ctenochaetus striatus 0.76	(0.68;	0.83) 0.0042	(0.0031;	0.0056) 0.77	(0.71;	0.84) 0.0103	(0.0078;	0.0137)

Naso lituratus 0.73	(0.57;	0.89) 0.0041	(0.0029;	0.0054) 0.78	(0.68;	0.93) 0.0146	(0.01;	0.0202)

Odonus niger 0.7	(0.58;	0.81) 0.0028	(0.0016;	0.0042) 0.77	(0.68;	0.85) 0.0129	(0.0081;	0.018)

Zebrasoma scopas 0.7	(0.64;	0.76) 0.0038	(0.003;	0.0046) 0.77	(0.72;	0.83) 0.008	(0.0063;	0.01)

Note:	The	intercept	for	each	species	is	expressed	as	the	back-	transformed	value	for	an	individual	of	1	g.	Values	in	between	brackets	represent	the	
95% CI.
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4  |  DISCUSSION

FMR	is	an	essential	organismal	process	that	mediates	consumption	
rates across the food web, thus influencing system- wide fluxes of 
energy	and	nutrients.	By	coupling	laboratory	data	on	MRs	with	field	
observations of body size and swimming activity through stereo- 
video	 analysis,	we	 estimated	 the	 activity	 component	 of	 FMR	 (the	
AMRfield).	Further,	we	demonstrate	that	the	FSA	of	reef	fish	species	
varies substantially across species, and that the metabolic scaling 
exponent of AMRfield can substantially exceed the canonical value 
of	 0.75,	 which	 also	 affects	 community-	level	 estimates	 of	 MR.	
Therefore,	 our	 results	 highlight	 the	potential	 pitfalls	 of	 estimating	
the	 community-	level	MR	 of	 heterogeneous	 reef	 fish	 assemblages	
based	on	scaled-	up	estimates	of	SMR	instead	of	AMRfield.	We	suggest	
that the coupling of physiological traits with stereo- video analyses 
provides	an	opportunity	to	estimate	FMRs	of	fishes	in	marine	envi-
ronments that allow for visual assessments.

The	FSA	can	be	an	 important	parameter	 to	predict	 the	energy	
consumption	of	 fishes	 in	 the	wild	 (e.g.,	Schiettekatte	et	al.,	2020).	

Our	 estimates	 of	 FSA	were	 comparable	 to	 previous	 estimates	 for	
a	 small	 freshwater	 fish,	 in	which	 the	FSA	was	obtained	 through	a	
combination of bioenergetic modeling and behavioral observations 
(~1.9;	Trudel	&	Boisclair,	1996).	In	contrast,	several	other	fish	species	
may have a much higher AMRfield as locomotion has been reported 
to	 increase	MR	up	to	fivefold,	and	up	to	ninefold	 in	tuna	(Thunnus 
albacares)	 (Brill	&	Bushnell,	1991; Chabot et al., 2016).	However,	 it	
is	still	challenging	to	quantify	where	AMRfield lies for most species.

The	varying	estimates	of	FSA	may	relate	to	the	swimming	speed	
and	the	aerobic	capacity	of	the	studied	species	(Clark	et	al.,	2013; 
Killen	et	al.,	2016).	In	our	case	study,	the	two	fishes	with	the	high-
est	FSA	were	O. niger and C. argus, which appear to exploit about 
45% and 60% of their aerobic scope in their natural environment, re-
spectively.	Therefore,	C. argus	has	a	high	FSA	mostly	due	to	its	high	
aerobic scope, while O. niger	has	the	highest	FSA	in	our	case	study	
both because of a high aerobic capacity and because it uses a larger 
proportion of it for swimming. On the other hand, fishes with a lower 
FSA	(i.e.,	C. ornatissimus, C. striatus, and Z. scopas)	were	quite	active,	
relative to their maximum swimming capacities, and exploited more 

F I G U R E  2 Linear	regressions	between	
log10- transformed metabolic rate 
(g O2 d−1)	and	weight	(g)	for	the	study	
species. Symbols represent empirical 
measurements. Solid and dashed lines 
represent predicted mean standard 
metabolic	rate	(SMR)	and	maximum	
metabolic	rate	(MMR)	values,	respectively.	
Transparent	areas	are	the	95%	credible	
intervals of the fitted values of the 
regression

F I G U R E  3 Linear	regressions	between	
log10-	transformed	speed	(cm s

−1)	and	
length	(cm)	for	the	six	study	species.	
Symbols represent the raw data of 
individuals measured through stereo- 
video analysis. Solid lines and shaded 
areas represent the predicted mean 
back-	transformed	values,	and	associated	
95% credible interval of swimming speeds. 
The	dashed	lines	represent	the	predicted	
maximum swimming speeds
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than 50% of their aerobic scope. However, because their aerobic 
scope	is	low,	so	is	their	FSA.

These	 results	 corroborate	 the	 notion	 that	 AMRfield in fishes 
is strongly influenced by ecological traits, such as size, trophic 
level,	and	habitat	use	(Brown	et	al.,	2004;	Killen	et	al.,	2016; Nash 
et al., 2015).	 Larger	 fishes	 tend	 to	 have	 a	 higher	 aerobic	 capacity	
than	 smaller	 species	 (Brown	 et	 al.,	2004;	 Killen	 et	 al.,	 2007),	 and	
larger sizes in fishes permit the establishment of larger home ranges 
(Nash et al., 2015).	Furthermore,	predators	often	have	a	higher	meta-
bolic capacity, compared to herbivores, and pelagic fishes often have 
higher metabolic potential than benthic fishes, as they have high lo-
comotory demands because of their mobility in a 3D environment 
(Killen	et	al.,	2016; Nash et al., 2015).	Pairwise	comparisons	among	
our study species (e.g., the herbivorous Z. scopas vs. the carnivorous 
C. argus or the benthopelagic C. striatus vs. the epipelagic O. niger)	
strongly support an ecological basis for metabolic differentiation.

Beyond	interspecific	differences,	our	results	suggest	that	AMRfield 
scales	differently	with	body	mass	compared	to	SMR	or	MMR.	The	
SMRs	of	our	study	species	varied	predictably	with	body	mass,	in	ac-
cordance	with	the	metabolic	theory	of	ecology	(Brown	et	al.,	2004),	
with the average slope value approximating the allometric scaling 
exponent	of	0.75	often	found	empirically	and	predicted	theoretically	
by	West	et	al.	(1997).	In	contrast,	half	of	the	species	(i.e.,	Z. scopas, 
N. lituratus, and O. niger)	had	a	scaling	exponent	for	AMRfield ,	that	ex-
ceeded	0.75	with	95%	credibility.	In	particular,	the	FSA	for	N. litura-
tus, and O. niger was positively correlated with body size, suggesting 

that large individuals consume more oxygen in their natural environ-
ment	than	previously	assumed.	For	other	species,	such	as	C. argus 
and C. striatus, the scaling exponent of AMRfield was similar to that 
of	SMR	implying	a	negligible	effect	of	activity	on	metabolic	scaling.	
Importantly, there appears to be a higher interspecific variability 
of the scaling exponent for AMRfield	compared	to	that	for	SMR	and	
MMR.	This	underlines	the	importance	of	both	species	identity	and	
body	size	when	estimating	FMR.

Scaling	 up,	 community-	level	 SMRs	 should	 vary	 predictively	
with both community composition and intraspecific size structure 
(Allen	 et	 al.,	2005;	 Barneche	 et	 al.,	2014).	 However,	 failing	 to	 ac-
count	for	the	increased	variation	in	scaling	exponents	of	FMR	may	
lead to severe underestimates of the contribution of large mobile 
fishes to the total respiration of fish communities. Indeed, compar-
ing	our	assemblage-	level	estimates	based	on	SMR	with	assemblage-	
level estimates based on AMRfield reveals the potential pitfalls of 
using	SMR	to	study	community-	level	MRs	(e.g.,	Cheung	et	al.,	2013; 
Deutsch et al., 2015;	Holt	&	Jørgensen,	2015).	The	 ratio	between	
community- level AMRfield	and	SMR	is	highly	variable,	thus	suggesting	
that	universal	corrections	to	convert	laboratory-	estimated	SMR	into	
AMRfield	are	likely	unreliable.	For	example,	communities	with	a	similar	
biomass and size structure may be considered as having a similar 
MR	when	using	SMR	as	a	proxy.	However,	if	a	community	includes	
species that have a much higher metabolic scaling exponent, the role 
of	large	individuals,	and	thus	the	community-	level	MR	may	be	under-
estimated	severely.	Thus,	it	would	be	important	to	consider	a	higher	
variation	in	metabolic	scaling	of	FMR	than	previously	assumed	if	we	
want to estimate energy flow in fish communities.

While	our	approach	offers	a	novel	way	to	estimate	the	activity	
rate	 and	MR	of	 fishes,	 it	 comes	with	 limitations.	First,	we	extrap-
olated maximum swimming speeds for our study species based on 
literature	 data	 to	 reconstruct	 the	 relationship	 between	 MR	 and	
swimming	 speed	 (Fulton,	 2007).	 Although	 we	 accounted	 for	 size,	
family, variation in body shapes, and a proxy for swimming ability, 
swimming speed across species within a family and body shape may 
still differ substantially, introducing potential bias to our calculations. 
Further,	our	method	 relies	on	 the	assumption	 that	MR	varies	pre-
dictably with swimming speed following a traditional power func-
tion	(Brett,	1964;	Korsmeyer	et	al.,	2002).	While	this	power	function	
has	been	found	to	accurately	predict	MR	for	multiple	species,	more	
complex functions may be optimal for others, for example incorpo-
rating a plateau at the highest swimming speeds (Roche et al., 2013).	
Finally,	the	method	we	used	to	define	MMR	(i.e.,	the	chase	method)	
could	have	introduced	additional	bias.	MMR	does	not	differ	between	
post-	exercise	 (e.g.,	chase)	and	sustained	swimming	across	multiple	
species	(Killen	et	al.,	2017).	However,	there	is	alternative	evidence	
from coral reef fishes suggesting that they can in fact achieve a 
higher	maximum	rate	of	oxygen	uptake	while	swimming	compared	
to after a chase (Roche et al., 2013; Rummer et al., 2016).	 Future	
studies could resolve all of the above- mentioned issues by measur-
ing swimming speed and respiration rate simultaneously in the labo-
ratory and our approach can easily be adapted when additional data 
become available.

F I G U R E  4 (a)	Fitted	scaling	exponents	for	standard	metabolic	
rate	(SMR),	maximum	metabolic	rate	(MMR),	and	field	metabolic	
rate	(AMRfield)	based	on	slopes	of	the	log10– log10 relationships 
between the metabolic rates (g O2 d−1)	and	body	mass	(g).	Lines	
represent the 95% credible interval and dots indicate the average 
values.	(b)	Predicted	average	factorial	scope	for	activity	(FSA)	for	
the six reef fish species across their body size range



    |  9 of 12SCHIETTEKATTE ET Al.

Furthermore,	 we	 quantified	 FSA	 assuming	 that	 fishes'	 spon-
taneous swimming activity follows strict circadian cycles, with 
all activity occurring diurnally. However, the activity patterns of 
reef	fishes	are	often	flexible	(Zhdanova	&	Reebs,	2006).	While,	in	
principle, all our studied families are diurnally active, some species 
(e.g.,	Serranidae)	can	be	nocturnally	active	 (Mourier	et	al.,	2016).	
Thus,	our	assumption	can	cause	potential	underestimates	of	FSA	
in C. argus and other species with more flexible circadian activity 
patterns.	 Currently,	 stereo-	video	 recordings	 are	 unable	 to	 quan-
tify fish swimming speeds at night, as measurements are inaccu-
rate	 and	 imprecise	 in	 darkness	 and	 poor	 visibility	 (Neuswanger	
et al., 2016).	Infrared	lighting	in	stereo-	video	recordings	could	pro-
vide an opportunity to observe nocturnal behavior and movement 
in	fishes,	but	only	observations	in	close	proximity	are	likely	to	be	
fruitful	 because	 of	 the	 limited	 range	 of	 infrared	 light	 (Bassett	 &	
Montgomery,	2011).

Finally,	while	AMRfield represents an improved estimate of energy 
expenditure	in	the	field,	it	still	lacks	components	such	as	reproduc-
tion and digestion. Digestion (often expressed as specific dynamic 
action	[SDA])	can	be	a	large	component	of	the	energy	budget	of	cer-
tain fishes (e.g., ~17%	of	 SMR;	Holt	&	 Jørgensen,	2015).	 SDA	can	
be measured in the laboratory, where a fish is given a meal and the 
resulting increase in oxygen consumption is measured for the dura-
tion	of	the	digestion	of	this	meal.	SDA	relates	predictably	to	both	the	
meal size and body mass of a fish (Secor, 2009),	but	using	this	rela-
tionship	to	calculate	the	SDA	of	species	in	natural	communities	is	not	
feasible.	It	is	nearly	impossible	to	track	the	frequency	of	meals	and	
meal sizes of fishes in the wild, even though some bioenergetic mod-
eling allows for an approximation of daily consumption rates (e.g., 
Schiettekatte	 et	 al.,	2020).	 Further,	 these	 experiments	 are	 largely	
based on predatory fishes, and do not necessarily represent natural 
feeding behavior as many fishes do not consume and digest a meal 

F I G U R E  5 Field	(AMRfield)	and	standard	metabolic	rates	(SMR)	of	an	assemblage	of	six	reef	fish	species	at	13	sites	around	Mo′Orea,	
French	Polynesia.	Dashed	lines	represent	1.5	times	the	SMR	as	a	reference.	Colored	bars	display	the	relative	abundances	of	the	reef	fish	
species at each site
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fully before eating the next meal. Notably, herbivores, detritivores, 
and	planktivores,	feed	constantly,	and	their	energy	expenditure	re-
lated	 to	 digestion	 is	 understudied.	 Therefore,	we	 stress	 the	 need	
for more research on the energy consumption of digestion across 
a	wide	range	of	fishes	to	achieve	improved	FMR	approximations	for	
fish communities in the wild.

Despite these limitations, our proposed method may help us un-
derstand some of the variations in AMRfield among reef fishes, which 
is necessary to understand ecosystem- level estimates of elemental 
fluxes.	So	far,	 the	quantification	of	AMRfield is limited to laboratory 
techniques	that	are	reliant	on	destructive	sampling	(analysis	of	trace	
elements in otoliths; Chung et al., 2019),	or	restricted	to	species	that	
are	big	enough	to	be	tagged	with	biotelemetry	equipment	 (Brodie	
et al., 2016;	Treberg	et	al.,	2016).	When	combined	with	 respirom-
etry trials, stereo- video offers a non- destructive and non- invasive 
alternative	to	these	techniques	that	can	be	applied	to	all	species	that	
can	be	reliably	observed	using	in	situ	cameras.	While	the	post-	hoc	
treatment of the stereo- video outputs demands significant time 
and effort, the development of open- source software to automate 
data collection from the video will greatly strengthen our ability and 
non-	destructive	approach	to	quantifying	reef	fish	AMRfield	(Bassett	&	
Montgomery,	2011; Guénard et al., 2008).
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