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Modulating electrophysiology 
of motor neural networks 
via optogenetic stimulation 
during neurogenesis 
and synaptogenesis
Gelson J. Pagan‑Diaz1,2, Jenny Drnevich  3, Karla P. Ramos‑Cruz1,2, Richard Sam  2,4, 
Parijat Sengupta1,5,6,7 & Rashid Bashir1,2*

Control of electrical activity in neural circuits through network training is a grand challenge for 
biomedicine and engineering applications. Past efforts have not considered evoking long-term 
changes in firing patterns of in-vitro networks by introducing training regimens with respect to stages 
of neural development. Here, we used Channelrhodopsin-2 (ChR2) transfected mouse embryonic 
stem cell (mESC) derived motor neurons to explore short and long-term programming of neural 
networks by using optical stimulation implemented during neurogenesis and synaptogenesis. Not 
only did we see a subsequent increase of neurite extensions and synaptophysin clustering, but by 
using electrophysiological recording with micro electrode arrays (MEA) we also observed changes in 
signal frequency spectra, increase of network synchrony, coordinated firing of actions potentials, and 
enhanced evoked response to stimulation during network formation. Our results demonstrate that 
optogenetic stimulation during neural differentiation can result in permanent changes that extended 
to the genetic expression of neurons as demonstrated by RNA Sequencing. To our knowledge, this is 
the first time that a correlation between training regimens during neurogenesis and synaptogenesis 
and the resulting plastic responses has been shown in-vitro and traced back to changes in gene 
expression. This work demonstrates new approaches for training of neural circuits whose electrical 
activity can be modulated and enhanced, which could lead to improvements in neurodegenerative 
disease research and engineering of in-vitro multi-cellular living systems.

Inducing neuronal plasticity is one of the grand challenges in neuroengineering. Understanding and control-
ling nerve connectivity and their plasticity could have profound impacts in regenerative medicine1–4, as studies 
have shown that engrafting motor neuron containing embryoid bodies (MEBs) can improve recovery in motor 
nerve injuries1,3. The ability to enhance or control the electrophysiological functions of such MEBs could be 
used for improvement of motor function recovery. Furthermore, in the emerging field of engineering biohy-
brid neuronal-driven biological machines, it would be highly advantageous to forward-engineer programmable 
neural networks that could be installed within in vivo or in vitro systems in order to achieve targeted functional 
behaviors5–7. While the mechanisms responsible for synaptic modulation and circuitry formation (i.e. memory 
and learning) have been studied in invertebrate and mammals, the complexity of neuronal plasticity pathways, 
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such as potentiation and homeostatic plasticity, have made it difficult to control neural circuit development for 
in vitro applications8. Furthermore, studies have shown varying degrees of emerging phenomena that are cor-
related to neuronal plastic events that would imply “learning” or “memory storage” in neural circuits9–13 These 
varying degrees extend from neural mechanisms that regulate potentiation to feedback mechanisms with respect 
to associations to stimulation. Currently, in-vitro micro electrode array (MEA) systems have aimed to study the 
effects of stimulation protocols in the resulting network dynamics for the past 30 years13–19. While some of these 
studies have induced transient changes in the recorded signals, most have focused on changes of number of action 
potentials in mature primary neurons and in learning as a result of feedback to strengthen associations to the 
stimulation patterns. Due to the fact that these phenomena emerge from multiple pathways related to neuronal 
plasticity, finding new approaches to enhance and modulate these plastic responses in a long-term way would 
be highly advantageous in the field.

Because most of these studies on plasticity have focused on modulation of mature neurons, we hypothesized 
that we could induce plasticity-related long-term electrophysiological changes in in-vitro neural networks, by 
implementing training regimens during early stages of differentiation, i.e. neurogenesis, coupled with training 
regimens during network formation, i.e. synaptogenesis. To this end, we used 465 nm pulsed light to induce 
depolarization in specific temporal patterns to implement a training regimen on differentiating channelrhodop-
sin (ChR2)-expressing MEBs grown in suspension and continued the training regimen after seeding them on 
functionalized glass to allow for neurite extension and network development. In parallel, we seeded the MEBs on 
MEA chips while continuing training regimens to be able to characterize the network dynamics during network 
development. We first characterized responses to the optogenetic stimulation during neurogenesis by assessing 
morphological parameters, followed by analyzing the resulting electrophysiological responses including the 
network’s synchronicity, firing patterns in power spectra and the system’s responsivity to stimulation during 
recording. These results showed a direct correlation between perturbations during differentiation and plastic 
responses occurring during network formation. Finally, through RNA sequencing studies, we observed genetic 
changes that serve to explain the observed modulations in these neuronal systems.

Materials and methods
Experimental model and subject details.  mESC culture and differentiation.  A feeder layer of mito-
mycin-C inactivated mouse embryonic fibroblast (MEF) was seeded at a cell density of ~ 3.5 × 104 cells/cm2 and 
cultured in DMEM (Dulbecco’s modified Eagle’s medium) supplemented with 1% fetal bovine serum, 1% L-
glutamine and 1% penicillin-streptavidin. Subsequently, HB9:GFP transgenic mouse embryonic stem (mES) 
cells transfected with (Channelrhodopsin) ChR2-TdTomato were seeded on the feeder layer at a ratio of 1.5 mES 
cells per MEF. Media was changed to mESC proliferation medium and replaced daily.

Differentiation begun prior to mESC colonies coming in contact with one another. Cultures were trypsinized 
(0.05% Trypsin) after being exposed to embryonic stem cell differentiation medium (eDM) for an hour, and later 
seeded on 100 mL low adhesion dishes in 10 mL eDM. The next day, floating cells were collected to separate the 
culture from adhered non-neuronal lineages. On the following day, embryoid bodies (EBs) were replated in eDM 
supplemented with 1 µM of retinoic acid (RA) (Sigma Aldrich, MA) and 1 µM puromorphine (PM) (STEMCELL 
Technologies, MA). On D5, EBs were resuspended in fully supplemented eDM (FS eDM) supplemented with RA 
and PM plus 10 ng/mL of growth factors, glial cell-derived neurotrophic factor (GDNF) and ciliary neurotrophic 
factor (CNTF) respectively. Media was changed daily.

MEA fabrication.  Platinum micro-electrode array chip were fabricated on borofloat glass wafers following 
standard lithographic techniques. Photoresist LOR3A (MicroChem, MA, USA) was spun on clean substrates, 
followed by spin coated layer of photoactive S1805 (Dow Chemical Comp., MI). Spun substrates were exposed 
using an EVG 620 (i-line) aligner (EV Group Inc., Tempe, AZ) and developed. Ti/Pt (1:3) was later evapo-
rated for a total thickness of 1,000 Angstroms. To passivate traces between the detection area and contact pads, 
300 nm of silicon nitride was deposited on the entire substrate using Plasma-Enhanced Chemical Vapor Deposi-
tion System (PlasmaLab International, WA). Finished chips were diced into 49 × 49 mm squares and fitted with 
acrylic wells bonded by Dow Corning Sylgard 184 (Ellsworth Adhesives, IL).

To ensure that thermally generated noise voltages were below membrane voltage fluctuations during neuronal 
electrical activity, electrode impedance was decreased through electrochemical treatment of the electrodes20. 
Platinum black was formed on top of clean electrodes to achieve high surface area using a Gamry Reference 
600 Potentiostat. The galvanostatic deposition was achieved by running a chronopotentiometry experiment at 
2.83E-6 A/cm2 versus Ag/AgCl for 15 s in a solution of dihydrogen hexachloroplatinate (0.08 mM H2PtCl6-6H2O, 
Sigma Aldrich, with 0.25 g/L of (CH3COO)2Pb Alfa Aesar) for a total of 21.45 ng (1.71E-2 ng/µm2) of crystal-
lized platinum. The impedance reduction due to the platinum black deposition was examined by electrochemical 
impedance spectroscopy.

Electrophysiology recording.  MEA measurements were performed using a MEA 2,100-Lite Amplifier (Multi 
Channel Systems MCS GmbH, Germany) at 37 °C. Electrical activity from ChR2 + MEBs cultured on MEA were 
measured every other day. Measurements were performed in dark at a sampling rate of 10 kHz for 20 min in FS 
eDM with sealed covers to keep CO2 concentration stable.

Optogenetic stimulation was performed using a laser diode (LD) Driver (Doric Lenses, Quebec, Canada) 
attached to a single LD, Blue 465 nm with a Fiberoptic Patchcord for an incident intensity of 10 mW/mm2 
which ensured that the intensity at the samples was still above the 1 mW/mm2 limit for ChR2 activation even 
after refraction from the lid and media. Because embryoid bodies were below 200 µm of diameter, the incident 
intensity of the blue light could penetrate across the entire EB21. Stimulation patterns were designed with Doric 
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Neuroscience Studio. Optogenetic potentiation regimens were performed in a 3D printed casing which held 
the fiberoptic in place against the dish lid. During neurogenesis, stimulation was achieved by collecting MEBs 
and resuspending in a 35 mm dish which fit in the 3D printed casing. During recording, stimulation was done 
by mechanically holding the fiberoptic against the MEA lid. Potentiation regimens consisted of 5 ms pulses at 
20 Hz for one second every other second for 1 h for a total of 1,800 cycles, while stimulation during recording 
consisted of the same pattern for only 10 cycles at equidistant times during the 20 min recording sessions. Meas-
urements and calculations of heat transfer from beam to the media showed that the energy imparted would cause 
temperature fluctuations of less than 1 °C, which are less than common fluctuations from normal cell handling.

Immunostaining and imaging.  Immunocytochemistry was performed on samples fixed with 4% paraformalde-
hyde and treated with 0.05% Triton-X. Permeabilized samples with blocked with 4% bovine serum albumin at 
4 °C overnight. Samples were later stained with primary antibodies at 4 °C overnight, followed by staining of sec-
ondary antibodies at room temperature for 2 h. All antibodies were diluted in Antibody Diluent (ThermoFisher 
Scientific, MA). The used antibodies were 1) anti-NeuN antibody for neural populations, (clone A60, Alexa 
Fluor 555 conjugate), 2) anti-GAD65/67 polyclonal goat antibody (Santa Cruz Biotechnology), 3) anti-vGlut 
polyclonal guinea pig antibody (Synaptic Systems, Germany), and 4) DAPI as a nuclear stain. For synaptophy-
sin clustering quantification between MEBs, the used primary antibody was anti-synaptophysin 1 polyclonal 
chicken antibody (Synaptic Systems, Germany). It was counter stained with goat anti-chicken IgY AlexaFluor 
647 (Abcam, MA), respectively, along with DAPI as a nuclear stain. After washing overnight at 4 °C in blocking 
buffer, samples were mounted with Prolong Diamond antifade (ThermoFisher, MA) and imaged using Zeiss 880 
Confocal microscope (Carl Zeiss Microscopy).

Scanning electron micrographs.  SEM images were taken at 1 kV after grounding the entire array through the 
contact pads, to avoid charging the insulating Nitride layer, at 100-300X magnification.

RNA extraction.  Samples of MEBs were carefully collected and centrifuged at 14,000 rpm for 15 min. After 
aspirating supernatant, samples were flash frozen using liquid nitrogen and immediately stored at -80 °C, until 
mRNA extraction. Total RNA was collected and purified using the RNeasy Mini Kit Part 1 (Qiagen). The total 
RNA concentration was quantified using a Nanodrop spectrophotometer.

Quantification and statistical analysis.  Spike/burst  analysis.  Multi-Channel Analyzer  software was 
used for counting and analytically extracting temporal parameters of fast events. Raw data was digitally filtered 
using a 2nd Order Butterworth high pass filter (cutoff frequency: 200 Hz). Action Potentials (APs), were detect-
ed as “spikes” by setting a threshold at 5 × standard deviations from the noise magnitude distribution. Analysis 
of firing rate behaviors and burst parameters followed spike detection22. For this experiment, burst detection was 
defined by the following parameters:

•	 Max interval to start burst: 50 ms
•	 Max interval to end burst: 50 ms
•	 Min. interval between bursts: 100 ms
•	 Min. duration of burst: 50 ms
•	 Min. number of spikes in burst: 4

This analysis was done for active electrodes which were defined as electrodes which recorded at least 10 AP/
min.

Spectral analysis.  Spectral analysis was performed on the slow component of raw data to assess modulations 
in network behavior. Data extracted as ASCII files were filtered in MATLAB using Butterworth 2nd order high 
pass digital filter with a cutoff frequency of 200 Hz. This filtered data was then used to detect the occurrences of 
spikes. Spectral components in the frequency domain from this binned spike data were obtained through Fast 
Fourier transform (FFT) between 0.1 and 200 Hz to remove DC components from data and detect frequency 
components occurring in bursts or clusters of spikes.

FFT was obtained for subsequent non-overlapping intervals of 10 s across the initial 4 min of spontaneous 
activity and normalized by the area under the curve. Calculated spectra were smoothed using a 3-point win-
dow moving average. Data was stored in 2D matrices, summed across electrodes and averaged across MEAs.

Synaptophysin cluster counting.  Stack images were superimposed for 10 microns in ImageJ. Then a binary 
threshold was set so that only saturated pixels were conserved.  Images were sampled ten times at regions in 
between MEBs with a 150-by-150 µm area across three biological repeats by day.

Quantifying network synchronicity.  Overall network correlation was assessed through the automated use of 
spike data and a customized MATLAB code that calculated cross-correlation for discrete functions, as follows:

(

f ∗ g
)

[n] def

∞
∑

m=−∞

f ∗[m]g[m+ n]
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Here, f and g denote the discreet functions at point n, which represent the recorded MEA signals. Further-
more, f* denotes the complex conjugate and m is the lag or displacement, meaning a feature in f occurring at 
n that occurs in g at n + m23. Spike train data for each channel was cross-correlated with every other channel. 
Results were normalized so the autocorrelations have unit value at zero lag. The value at zero lag (tch-x = tch-y) was 
stored for each correlation in a 60-by-60 matrix relating every channel to each other and plotted as a heat map 
and a bar graph was used to plot the average.

RNA sequencing analysis.  Each sample that was categorized as an N for the RNA Sequencing consisted of an 
entire culture of mESC grown and differentiated from a 35-mm well which resulted in around 100–150 MEBs. 
Biological triplicates were obtained by thawing and evenly dividing three different vials of 2E6 mESC (< P7) 
evenly across three wells for a total of 9 seeded wells, and each was handled independently. After expansion and 
neural induction steps (at D2), one well pertaining to each of the 3 thawed vials were snap frozen. Furthermore, 
one well pertaining to each of the 3 thawed vials were assigned to be trained, and the remaining three served 
as controls. At D9, all MEBs were collected in their separate samples and snap frozen for RNA extraction and 
downstream RNA Sequencing.

The RNA-seq libraries were prepared with Illumina’s ’TruSeq Stranded mRNA-seq Sample Prep kit’ (Illumina). 
The libraries were quantitated by qPCR and sequenced on one lane on a HiSeq 4,000 for 101 cycles from one 
end of the fragments using a HiSeq 4,000 sequencing kit version 1. Fastq files were generated and demultiplexed 
with the bcl2fastq v2.20 Conversion Software (Illumina). Adapters and low-quality bases were trimmed from 
reads using Trimmomatic24 (v0.36) with parameters LEADING:28 TRAILING:28 MINLEN:30. The trimmed 
reads were quasi-mapped to Gencode’s M19 transcriptome using Salmon25 (v 0.8.2) with additional parameters 
–seqBias –gcBias –numBootstraps = 30. Transcript expression value were summarized to the gene-level and cor-
rected for average transcript length using the “lengthScaledTPM” method26. TMM-normalized27 log2 counts per 
million (cpm) values (prior.count = 3) were calculated and only genes with > log2(0.5 cpm) in at least 3 samples 
were analyzed using the limma-trend method28. Three pairwise comparisons were made (C vs D2, S vs D2 and 
S vs C) and multiple testing correction was done separately for each comparison using the False Discovery Rate 
method29; significant differential expression was indicated at FDR p-value < 0.05.

Statistical analysis.  All data sets from electrophysiological responses were extracted from raw recordings using 
Matlab (Mathworks, Natick MA, USA). To validate the MEB-derived neural networks by measuring the response 
to known signaling molecules, one MEA per signaling molecule was used, selecting 15 active electrodes. Testing 
responses of neurite extension to training regimens during neurogenesis was done by monitoring and imaging 
20 separate embryoid bodies seeded on gridded coverslip and measuring and averaging at the 4 cardinal points 
for each measured embryoid body. Response of presynaptic puncta to stimulation regimens was measured for 10 
images from 40x  objectives of separate cultures. Electrophysiological responses were measured for three cultures 
grown on separate MEAs per experimental group, with each replicate value obtained from averaging active elec-
trodes from each culture. All results, unless stated otherwise, are expressed as mean + /- SEM. Statistical compar-
isons were performed in OriginLab using one-way ANOVA and repeated measures ANOVA (when appropriate) 
for group and longitudinal difference test and followed by post-hoc Tukey test for multiple comparisons when 
applicable. Differences were considered statistically significant if p < 0.05.

Results
Optogenetic stimulation was used on mESC-derived MEBs to implement training regimens during two important 
stages of neural development: neurogenesis (while still in suspension) and synaptogenesis (seeded on function-
alized glass or MEAs) (Fig. 1a). Training regimens consisted of periodic stimulation with 5 ms pulses at 20 Hz 
in 1 s intervals for an hour (Supplementary Fig. 1a). This regimen has been shown to enhance axonal growth30, 
and thus would suggest that it could lead to a shift in structural potentiation in a neural network. The regimen 
was repeated every 24 h as differentiation occurred within the EBs, with an expectation that consistent repetition 
would enhance the potentiation and cause long-term changes in the firing patterns of the network. Following 
established differentiation protocols of mESC towards mature motor neurons31–33, the described training regimen 
was started at D2 of differentiation, at which point stem cells have been induced towards neuronal lineages, and 
specialization and maturation of motor neurons has been shown to take place in the subsequent 7 days (Fig. 1b). 
Since one of the transcription factors that drove differentiation, retinoic acid, is light sensitive, media was changed 
every single day immediately after stimulation to ensure that stimulation effects on MEBs were not artifacts 
(i.e. false positives) caused by photodegradation of factors (Supplementary Fig. 1b)34. Furthermore, since the 
differentiation was monitored with the expression of the motor neuronal marker Hb9 through a GFP reporter, 
we used the plateau of GFP expression between D8 and D9, as an indicator that D9 was an appropriate time 
point for seeding the MEBs on glass (Supplementary Fig. 1c). Thus, after these 7 days (D2-D9) of differentiation, 
stimulated (S) and non-stimulated (NS) cultures were seeded on MEA chips (Fig. 1c). Careful seeding practices 
were applied to ensure that ~ 20 MEBs were seeded within the sensing area of the MEAs for a ~ 50% coverage by 
the MEBs (Supplementary Fig. 2). Seeding in this manner ensured empty space between clusters for the exten-
sion of processes, even though some nearby clusters would start fusing into larger clusters. The resulting two 
groups of samples seeded on MEAs were further subdivided into two more experimental groups, referring to 
whether or not a training regimen was continued during network formation on chip for the consequent 15 days 
(D10-D25). For ease of discussion, S or NS prior to a colon (e.g. S:X or NS:X) will refer to the presence or lack 
thereof of stimulation, during neurogenesis, while S or NS written after a colon (e.g. X:S or X:NS), indicates the 
presence or absence of stimulation during synaptogenesis (Fig. 1a). 
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The electrical activity of the resulting neuronal cultures was measured with the MEA system and the raw 
data was filtered to remove low frequencies (< 200 Hz), to remove undesired voltage artifacts (e.g. stimulation 
artifacts), and extract action potentials recorded as spiking events (Fig. 1d). A two-step procedure was used to 
remove false positives from the analyzed data: (1) the detection threshold was set at a value at which no positives 
would be detected from the ground electrode, then (2) the recorded spikes at each electrode were inspected to 
ensure that the detected spikes had the appropriate voltage phases relating to action potentials: depolarization, 
repolarization and refractory period.

MEB cultures form active neural networks with excitatory and inhibitory populations.  In this 
work, neural networks were cultured from intact MEBs, in contrast to growing them as a monolayer after disso-
ciation. The long-term goal of our study is the modulation of electrical activity of the MEBs towards downstream 
implantation in in-vivo or in-vitro experimental systems and modulating the functionality of such systems 
through the resulting interaction. When cultured in their intact form, MEBs tend to keep their spheroid shape, 
while extending processes which contain neurites that form networks as they undergo synaptogenesis (Fig. 2a). 
Furthermore, dense web-like neurite structures form within the spheroid itself (Fig. 2b) and both excitatory 
(vGlut) and inhibitory (GAD65/67) receptors stain positively (Fig. 2c).

Network formation was validated by exposing MEB cultures grown on MEAs (Fig. 2d) to varying concentra-
tions of commonly used exciting and inhibiting signaling molecules for 5 min: L-glutamate, acetylcholine, cyclic 

Figure 1.   Approach to training mESC-derived motor neuronal embryoid body networks during neurogenesis 
and synaptogenesis. a Representative diagram of experimental setup combining differentiating ChR2 mESC’s 
and MEAs. b Representative diagram of ChR2 mESC differentiation toward motor neuronal embryoid bodies 
monitored by the expression of GFP guided by the motor neuronal specific Hb9 promoter (scale bar: 200 µm). c 
Representative image of fabricated MEA chip. d Representative spontaneous spike trains from MEA recordings 
of cultured embryoid body networks.
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AMP, cyclic GMP, norepinephrine and GABA. (Fig. 2e). As expected, L-glutamate evoked a statistically significant 
(repeated measures ANOVA with a Greenhouse–Geisser correction, n = 15; F(1.28,17.89) = 18.78, p = 1.88E-4) 
response in the network. A post hoc Tukey test showed a statistically significant positive difference at p < 0.05 
between 0 µM to 10 µM, while higher concentrations, 100 µM and 250 µM, showed a decrease in firing rate 
with the latter showing a statistically significant negative difference to the spontaneous firing rate, most likely 
related to excitotoxicity35. Other excitatory signaling molecules, acetylcholine and cyclic AMP, evoked a con-
tinuously excitatory response (repeated measures ANOVA; ACh (with Greenhouse–Geisser correction), n = 15: 
F(2.13,29.78) = 16.14, p = 1.31E-5 and cAMP: F(3,42) = 125.49,p = 4.20E-15) continued a gradual increase in firing 
rate with increasing concentrations. Cyclic GMP, another cyclic nucleotide similar in function as cAMP, failed 
to evoke any statistically significant effect on firing rate (repeated measures ANOVA with a Greenhouse–Geisser 
correction, n = 15; F(2.08,29.18) = 2.86, p = 0.07). On the other hand, the inhibitory neurotransmitters evoked 
statistically significant effects on the MEB-derived networks, with norepinephrine (repeated measures ANOVA, 
n = 15; F(3,42) = 81.43, p = 1.53E-17), showing a statistically significant decrease at p < 0.05 in a post hoc Tukey test 
from 0 µM to 10 µM, and 100 µM to 250 µM, while GABA (repeated measures ANOVA, n = 15; F(3,42) = 191.55, 
p = 1.60E-24) showed a statistically significant decrease in firing rate at p < 0.05 in post hoc Tukey test at each 
concentration. The responses corroborated the development of endogenously active neural networks expressing 

Figure 2.   Intact MEBs indicate formation of internal networks and form active networks between them a (i) 
Scanning electron micrograph of two embryoid bodies. (scale bar: 200 µm) and (ii) confocal image showing 
dense clusters of synaptophysin between cultured embryoid bodies (scale bar: 50 µm). b (i) MEB cryosections 
showing usual internal structure. (Scale bar: 50 µm) with (ii) zoom in of internal structure of a sectioned 
embryoid body (scale bar: 15 µm). c Representative confocal image of MEB cryosection stained for GAD65/67 
and vGlut. Triangles show GAD65/67 clusters d. Representative confocal image of entire field of view for neural 
culture grown on the MEA sensing area (scale bar: 200 µm) with scanning electron micrograph zoom in of 
embryoid bodies extending processes atop of sensing electrodes. e. Bar graph for average firing rate of 15 active 
electrodes for cultured embryoid body networks exposed to known neuronal signaling molecules at sequential 
addition of tonic baths of 10, 100 and 250 µM. Glut Glutamate, ACh Acetylcholine, cAMP cyclic AMP, cGMP 
cyclic GMP, NE norepinephrine, GABA gamma-aminobutyric acid) across 5 min of recording/exposure (n = 15; 
error bar represents SEM, * p < 0.05; ANOVA with Tukey post-hoc test).
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different kinds of receptors. The observations that MEBs extend processes within the body itself while respond-
ing to both excitatory and inhibitory signaling molecules would lead to the hypothesis that these MEBs could 
be forming intrabody circuits which could be “trained” during differentiation and have these changes last after 
network formation.

Stimulation during neurogenesis results in morphological changes in MEB cultures.  The effects of stimulation 
during differentiation were initially observed in neurite extension and presynaptic protein clustering. While it 
has been reported that neurite outgrowth could be enhanced if neural populations simultaneously underwent 
optogenetic stimulation30, it was not clear if effects of the stimulation on MEBs done in suspension would still 
result in an increase of neurite extension when later seeded on chips, as this would indicate some stable long-
term changes in the neuronal system. To quantify this, S:NS and NS:NS MEBs were seeded at low confluence 
on gridded coverslips and imaged 6 times every two hours on D10 (1 DIV) to quantify the number of extend-
ing neurites (Fig. 3a). Observations showed a consistently statistically significant positive difference (ANOVA, 
n = 20; 14hrs: F(1,38) = 215.44, p = 0.0; 16hrs: F(1,38) = 148.40, p = 1.08E-2; 18hrs: F(1,38) = 257.32, p = 0.0; 20hrs: 
F(1,38) = 199.14,p = 1.11E-2; 22hrs: F(1,38) = 221.35, p = 0.0; 24hrs: F(1,38) = 76.11,p = 1.31E-2) of number of 
neurites extended for S:NS samples, compared to NS:NS, for each of the six hours the two groups were meas-
ured and compared. This indicates an increased rate of neurite extension as a result of the stimulation during 

Figure 3.   Stimulation during neurogenesis affects key morphological parameters of network formation. a. 
Representative phase contrast images of neurite extension along the periphery of embryoid bodies between non-
stimulated (NS) and stimulated during neurogenesis (S) samples (scale bar: 50 µm). b. Bar graphs representing 
the average number of neurites protruding from the periphery of embryoid body normalized by the perimeter 
of the embryoid body at a given time after seeding. Each point signifies the number of extending neurites 
normalized by the perimeter of an individual embryoid body (n = 20; error bar represents SEM, *p < 0.05, 
ANOVA with Tukey post-hoc test). c. Representative fluorescence images of synaptic puncta stained against 
SY38 at D11 along a neurite. Arrow denote presynaptic puncta. (scale bar: 5 µm). d. Bar graphs representing 
the average number of presynaptic puncta along the length of neurites for D11. Each point corresponds to the 
average number of synaptic puncta along a neurite normalized the length of the neurite per field of view (n = 10; 
error bar represents SEM, *p < 0.05, ANOVA with Tukey post-hoc test). e. Bar graphs representing the average 
number of presynaptic puncta per unit area for D11-D15. Each point corresponds to the average number of 
synaptic puncta per unit area in an individual field of view (n = 10; error bar represents SEM, *p < 0.05, ANOVA 
with Tukey post-hoc test).
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neurogenesis (Fig. 3b). Next, we wanted to observe the effect of stimulation during differentiation on the pro-
pensity of the network to form synapses. To quantify this, the clustering of presynaptic synaptophysin stained 
with anti-SY38, was counted along individual neurites as well as per unit area between the groups NS:NS and 
S:S (Fig. 3c). By D11 (2 DIV) S:S samples showed a statistically significant ~ twofold increase (ANOVA, n = 10; 
F(1,18) = 24.58, p = 1.02E-4) of synaptophysin clusters per neurite than NS:NS samples (Fig. 3d). This increase 
of pre-synaptic clusters per neurite combined with the increase in neurite extension resulted in S:S samples 
presenting a statistically significant higher synaptophysin clusters per unit area than NS:NS counterparts at 
D11 (ANOVA, n = 10; F(1,18) = 40.18, p = 5.68), D13 (ANOVA, n = 10; F(1,18) = 131.58, p = 1.04E-9) and D15 
(ANOVA, n = 10; F(1,18) = 74.87, p = 7.88E-8) (Fig. 3e). When monitoring the difference of pre-synaptic clusters 
per unit area at D13 and D15, the statistically significant difference indicated that optogenetic stimulation during 
neurogenesis evoked physiological responses on two important aspects of neural network development: neurite 
extension and presynaptic clustering (Fig. 3e).

MEB network synchronicity is amplified by stimulation during neurogenesis and synaptogenesis.  Network syn-
chrony is a common parameter used to characterize a developing neural network, as it gives information on 
the network’s plasticity and connectivity. Various studies have successfully shown that the presence of chronic 
stimulation results in improved network synchrony36–38. In our study, we wanted to observe the long-term effects 
of stimulation regimens on the network synchrony and determine if these effects were amplified or shifted when 
the training regimen during neurogenesis was extended during synaptogenesis. From the raster plots of the 
spontaneous activity recorded at D21, the increased level of synchronous activity was notable between NS:S and 
S:S samples versus S:NS and NS:NS (Fig. 4a). This can be appreciated by the peaks above the raster plots, which 
correspond to a summation of the activity across all electrodes, where synchronous networks would result in 
discrete peaks whereas in samples that lacked coordinated firing, the resulting line plot seemed to lack any peaks.

Similarity between electrode recordings was quantified with cross-correlation in order to quantify synchro-
nous behavior. Values for the similarity across the network were obtained by calculating cross-correlation for 
all electrode combinations (Supplementary Fig. 3). For this analysis, only spontaneous recordings of active 

Figure 4.   MEB network synchronicity is amplified by stimulation during neurogenesis and synaptogenesis. 
a. Representative raster plots of MEB cultures at D25 showing network synchrony by line plots of the sum of 
active electrodes for each time point. b. The average correlation value (χ) was calculated for active electrodes 
across time for an average value for each electrode, then mapped to their respective spatial position on the 
MEA array. c. Bar graphs representing the mean correlation value across the culture for the MEA cultures at the 
different days of recording. The correlation value for the culture was calculated using active electrodes during 
spontaneous time of each culture for each day of recording. Each point corresponds to the correlation value 
across electrodes for each MEA culture. (n = 3; error bar represents SEM, *p < 0.05, ANOVA with Tukey post-
hoc test).
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electrodes (electrodes detecting at least 10 spikes/min) were used to quantify the long-term effects of the train-
ing regimen on steady state synchrony. When average correlation values per electrodes were mapped to their 
position on the chip, NS:S and S:S samples showed high synchrony level ( 

−
χ > 0.5) across the entire network for 

spontaneous recordings at D21 (Fig. 4b). This showed that synchronous behavior extended across the entire 
network and was markedly higher for networks that were stimulated during synaptogenesis.

Interestingly, when the network wide mean synchronicity was calculated for each recording day, a trend of 
higher synchrony was observed for samples that had been exposed to some form of training regimen (NS:S, 
S:NS or S:S) but no statistical significance was observed at D11 (ANOVA, n = 3; F(3,8) = 3.42, p = 0.073) and D13 
(ANOVA, n = 3; F(3,8) = 1.77, p = 0.23). At D15, a statistically significant difference (ANOVA, n = 3; F(3,8) = 7.47, 
p = 0.010) was observed, with a post hoc Tukey test performed at p < 0.05 showing statistical significance between 
NS:S and S:NS 

−
χ values. Subsequently, while no statistical significance was observed for D17 (ANOVA, n = 3; 

F(3,8) = 3.88, p = 0.055), D19 (ANOVA, n = 3; F(3,8) = 3.58, p = 0.066) and D21 (ANOVA, n = 3; F(3,8) = 3.61, 
p = 0.065), a gradual trend was observed for the synchronicity of networks undergoing training during synap-
togenesis (NS:S and S:S) being larger than their counterparts (NS:NS and S:NS). At D23, there was a statistically 
significant difference among the experimental groups (ANOVA, n = 3; F(3,8) = 8.73, p = 6.6E-3). Post hoc com-
parisons using Tukey test at p < 0.05 indicated that the 

−
χ value for NS:S and S:S were higher than both NS:NS and 

S:NS groups. This statistically significance was sustained for D25 (ANOVA, n = 3; F(3,8) = 6.46, p = 0.016), with 
the post hoc Tukey test showing significant difference between 

−
χ for S:S and 

−
χ for NS:NS as well as S:NS. (Fig. 4c).

Spectral density elucidates changes in steady state firing.  Conventionally, electrophysiological behavior is char-
acterized by firing rate during set epochs and burst parameters (Supplementary Fig. 4). However, when analyz-
ing these parameters during spontaneous firing, there was no discernable trend in the change of long-term firing 
rate or burst parameters between experimental groups. However, when observing the spike data during steady 
state of a more mature neural network (D25), there were deviations on how the spike firing clustered into bursts, 
despite the fact that no clear change in the number of spikes was observed (Fig. 5a). We accredited this seeming 
conflict between the quantitative and qualitative data to the selection method of the burst detection parameters 
(See Quantification and statistical analysis). In order to avoid arbitrariness in the selection of these parameters, 
we decided to characterize the data in the frequency domain. For this reason, we focused on characterizing 
spontaneous firing recorded on MEAs by comparing changes in the power spectrums of recorded signals cal-
culated through Fourier transforms (Fig. 5b). To obtain spectral profiles, binned spike counts were divided into 
10-s-long contiguous windows and transformed to the frequency domain, thus representing the power spec-
trum as a function of time (Fig. 5b). When initially calculating the power spectral density (PSD) and observing 
between the DC frequency and the Nyquist frequency, we noticed that most of the components appeared below 
7 Hz for all samples. For this reason, we compared samples between 0.1 Hz (to remove DC component) and 
5 Hz. Focusing between 0.1–5 Hz, all samples except S:S, showed frequency profiles of their respective firing pat-
terns with components across the entire bandwidth of interest. This spontaneous heterogeneous firing patterns 
can be expected from these cultures formed from MEBs, as they are a super-network composed of individual 
networks from within each MEB. On the other hand, S:S samples show a clear change in their frequency profile, 
where most of the spectral power fell within 0.1-1 Hz.

Moreover, if the signal power is summed between the frequency range of 0.1-1 Hz, the training regimen 
pattern had a statistically significant effect at p < 0.05 on the power magnitude within this frequency interval 
(ANOVA, n = 3; F(3,8) = 20.15, p = 4.37E-4). Post hoc comparisons using Tukey test at p < 0.05 showed a sta-
tistically significant difference between power magnitude withing 0.1-1 Hz of samples non stimulated during 
synaptogenesis (NS:NS, S:NS) and samples stimulated throughout development (S:S) (Fig. 5c). Moreover, the 
post hoc Tukey test indicated a statistically significant difference between power spectra values between NS:S 

Figure 5.   Stimulating training regimens modulates firing patterns in the frequency domain. a. Fifteen 
second representation of spontaneous voltage recording from NS:NS, NS:S, S:NS and S:S samples for D25. b. 
Smoothened (3 point moving average) and normalized (AUC) power spectra was calculated for contiguous 
10 s windows across the 4 min of spontaneous recording NS:NS, NS:S, S:NS and S:S. Resulting matrices were 
averaged across samples. c. Bar graph for the sum of power spectral density magnitude from (b) across the 
spontaneous recording time between 0.1 Hz and 1 Hz (n = 3; error bar represents SEM, *p < 0.05, ANOVA with 
Tukey post-hoc test).
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and S:S, implying that combined stimulation of both neurogenesis and synaptogenesis had an amplified effect 
on modulating the power spectra of the networks than just stimulation during synaptogenesis. This statistical 
significance was not observed in the mature networks (D25: ANOVA, n = 3; F(3,8) = 0.063, p = 0.98) if the power 
was summed for the whole frequency interval of interest (0.1-5 Hz) (Supplementary Fig. 5).

Neurogenetic stimulation changes the opto‑response of MEB networks.  Another aspect of consideration on 
the effect of training MEBs during neurogenesis was whether the early stage perturbation had some effects on 
how the later-stage network would respond to the same perturbation. To study this, we recorded responses to 
optogenetic stimulation from sets of samples that had not undergone the training regimen during neurogenesis 
(Fig. 6a) and compared them to those set that had undergone such regimen (Fig. 6b). Initial observation showed 
a difference between how the networks responded when stimulated early in the network development (D11) 
versus more mature networks (D25). For example, when early networks, which had a low spontaneous firing 
rate (D11) were stimulated, there would be a very notable evoked response during stimulation followed by a 
quiescent state, where the network would barely fire before returning to the baseline spontaneous firing rate. In 
contrast, more mature networks (D25), would still show an evoked response during stimulation but would auto-
matically return to baseline firing rate right after stimulation ceased. What was interesting was that the quiescent 
time after stimulation for early S:S networks were notably shorter than those from the NS:S samples (Fig. 6a-
b). Moreover, at D25, while NS:S samples would return to the same baseline firing rate right after stimulation 
stopped, S:S samples showed a transient change in firing rate for several seconds after the stimulation stopped 
(Fig. 6a-b).

Figure 6.   Stimulation during neurogenesis alters response to stimulation during network formation. Summed 
spike counts per each 100 ms for all active electrodes across the 20 min of recording were graphed for D11 and 
D25 for one representative sample from NS:S (a) and S:S (b). c. Zoom-in of a for 1 min, centered around the 
20 s of stimulation at D25 for sample NS:S, the arrows represent the firing rate interval prior to stimulation 
(FRpre), the firing rate during stimulation (FRstim) and the firing rate after stimulation (FRpost). d. Bar graphs 
showing the mean firing rate increase between Frstim/Frpre for D11-D25. (n = 9; error bar represents SEM, 
*p < 0.05, ANOVA with Tukey post-hoc test)). e. Bar graphs showing the firing rate increase between Frpost/Frpre 
for D11-D25. (n = 9: error bar represents SEM, *p < 0.05, ANOVA with Tukey post-hoc test)). f. Raster plot of 
average correlation value for each electrode during 10 s bins across the entire recording time. g. Ratio of average 
correlation value prior to stimulation during recording and correlation value post stimulation (χpost/ χpre). 
(n = 3; error bar represents SEM, *p < 0.05, ANOVA with Tukey post-hoc test).
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To quantify this behavior, the evoked firing rate during stimulation (FRstim) and the post-response firing rate 
(FRpost) were compared to the firing rate prior to stimulation (FRpre) for the three instances of stimulation within 
recording for each of the three MEA networks for both experimental groups (Fig. 6c). While the fold-change 
increase of firing rate FRpre to FRstim decreased with time for both NS:S (repeated measures ANOVA with Green-
house–Geisser correction, n = 3; F(1.48, 11.83) = 14.79, p = 1.12E-3) and S:S (repeated measures ANOVA with 
Greenhouse–Geisser correction, n = 3; F(1.88, 15.02) = 11.02, p = 1.31E-3 (because more mature networks would 
have a higher baseline firing rate), when comparing the amount of evoked action potentials during stimulation 
(FRstim/FRpre), S:S samples seemed to respond more strongly to stimulation than NS:S samples (Fig. 6d). One-way 
ANOVA determined a statistically significant difference between NS:S and S:S FRstim/FRpre values for D13 (n = 9; 
F(1, 16) = 5.55, p = 0.031), D15 (n = 9; F(1,16) = 5.90, p = 0.027), D17 (n = 9; F(1,16) = 11.30, p = 4E-3), D19 (n = 9; 
F(1,16) = 8.78, p = 9.2E-3), D23 (n = 9; F(1,16) = 10.81, p = 4.6E-3) and D25 (n = 9; F(1,16) = 9.94, p = 6.2E-3), while 
only showing a trend (not statistically significant) of higher S:S FRstim/FRpre values for D11 (n = 9; F(1,16) = 4.48, 
p = 0.05) and D21 (n = 9; F(1,16) = 1.1, p = 0.31).

Additionally, the quiescent state response post-stimulation observed in early days (D11, D13 and D15), 
reflected itself in FRpost being less than FRpre, resulting in FRpost/FRpre < 1 for NS:S and S:S samples. We observed 
that this transient decrease in firing rate was statistically significantly shorter for the S:S samples than the NS:S 
for D11 (ANOVA, n = 9; F(1,16) = 19.95, p = 3.9E-4) and D13 (ANOVA, n = 9; F(1,16) = 9.49, p = 7.2E-3) (Fig. 6e). 
Repeated measured ANOVA indicated that FRpost/FRpre ratios increased for both NS:S (Greenhouse–Geisser 
corrected, n = 9; F(3.06, 24.48) = 36.92, p = 2.69E-9) and S:S (n = 9; F(7,56) = 5.66, p = 5.63E-5). Furthermore, 
at later days of network development, it was notable that FRpost/FRpre was ~ 1 for NS:S, meaning that the steady 
state firing rate was indistinguishable from that immediately following the termination of stimulation. On the 
other hand, S:S samples showed FRpost/FRpre values above 1 from D17 forward, indicating that the network would 
transiently increase in firing rate right after stimulation. One-way ANOVA showed that this increase between 
FRpost/FRpre values for S:S and NS:S was statistically significant for D17 (n = 9; F(1,16) = 12.19, p = 3E-3), D21 
(n = 9; F(1,16) = 6.94, p = 0.018) and D23 (n = 9; F(1,16) = 9.91, p = 6.23E-3), while only showing a non-statistically 
significant trend for D19 (n = 9; F(1,16) = 2.16, p = 0.16) and D25 (n = 9; F(1,16) = 3.76, p = 0.071). It is relevant 
to mention that these effects were observed while there was no perceivable change in efficiency of the blue light 
to activate the ChR2 ion channels and evoke a response in the networks (Supplementary Fig. 6). These obser-
vations were corroborated by repeated measures ANOVA performed at p < 0.05, which showed no statistically 
significance change in efficiency (repeated measures ANOVA, n = 12; F(2,22) = 1.25, p = 0.31).

To further study how the training regimens affected network response, we also quantified the evoked response 
reflected in the network’s synchronicity for the initial stimulation done on the initial spontaneous interval of 
recording. For this purpose, raster-plots of the average values of cross-correlation (as calculated for the analysis 
in Fig. 4) were calculated using 10 s bins across the entire 20 min of recording (Fig. 6f). When quantifying the 
short term effect of stimulation during recording had on network synchronicity, by comparing 

−
χ post to 

−
χ pre, a 

trend was observed where the presence of a training regimen during neurogenesis seemed to cause the correlation 
fold-change ( 

−
χ post/

−
χ pre) for S:S samples to be higher than NS:S samples. One-way ANOVA detected a statistically 

significant difference between 
−
χ post/

−
χ pre for S:S and NS:S for days D19 (n = 3; F(1,4) = 16.49, p = 0.015) and D23 

(n = 3; F(1,4) = 11.12, p = 0.029) (Fig. 6g).

Changes evoked by stimulation during neurogenesis result in genetic changes.  Given the effects on neurite exten-
sion, presynaptic clustering, frequency profiles and network response to stimulation that were observed as a 
result of the presence of training regimens on MEBs during neurogenesis, we proceeded to determine genetic 
changes that could provide possible mechanistic explanations. Total messenger RNA sequencing was performed 
and analyzed for stimulated (S) and non-stimulated (NS) MEBs at D9, as well as EBs at D2. The differentially 
expressed genes in MEBs that underwent training regimens during neurogenesis were compared to those that 
did not, both with respect to the genetic expression of EBs sampled prior to differentiation (at D2). A total of 
749 differentially expressed genes between S and NS with p < 0.05 were detected and clustered and color coded 
with respect to the differential expression of D2 (Fig. 7a). There were 200 genes that were upregulated during 
control differentiation, but this upregulation was lessened for samples that underwent training regimen (black 
bar), while the upregulation of 172 genes was amplified for those same samples (red bar). On the other hand, 
there were 202 genes whose downregulation was stagnated for samples with training regimen (yellow bar). For 
173 genes, the control downregulation was further amplified after stimulation (blue bar). Something important 
to note was that this observed differential expression did not include changes in phenotype populations, match-
ing the immunostaining observations (Supplementary Fig. 7). This indicated that training regimen during dif-
ferentiation did not seem to noticeably disrupt the rate of phenotype specification or generation of the neural 
populations that generally result from the differentiation protocol (Table 1). This suggests that training regimens 
affected other functional pathways rather than altering the differentiation of populations. For further analysis, a 
more stringent threshold (p < 0.0005) was set to detect the most promising genes as key factors for the behavio-
ral changes seen in stimulated MEB cultures. This threshold resulted in 97 differentially expressed genes for the 
black cluster (Fig. 7b), 63 differentially expressed genes for the red cluster (Fig. 7c), 77 differentially expressed 
genes for the yellow cluster (Fig. 7d) and 71 differentially expressed genes for the blue cluster (Fig. 7e). From this 
pool, a thorough literature study was used to identify gene targets that had been reported to be related to known 
neural development and function (Table 2, Supplementary Fig. 9).  
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Discussion
Engineering of neural circuits is a critical step for biomedicine as well as various neuroengineering efforts. This 
work aimed to expand upon previous findings on achieving long term modulation of a neural network’s behav-
ior.10,13,16,39–42. Here, we showed a direct relation between changes in network function and development and 
training regimens implemented during neurogenesis and synaptogenesis. To our knowledge there has been no 
electrophysiological characterization of mESC-derived neural networks’ electrical response where a relationship 
between training during neurogenesis and synaptogenesis is examined. Furthermore these effects were correlated 
and supported by RNA-seq studies, where we showed that the training regimen affected targets related to network 
development, rather than affecting the differentiation of neural populations. In mESC-derived embryoid bodies, 
stimulation during neurogenesis has shown that the system enters a heightened state for neurite extension, which 
could be correlated to enhanced network formation. Furthermore, our study suggests that the presence of stimu-
lation during neurogenesis has caused the system to be more sensitive and responsive to external stimulation 

Figure 7.   RNA Sequencing shows differential expression as a result of optical stimulation during neurogenesis. 
a. Heat map of standard deviation of differential expression for genes with p < 0.05 (n = 749). Genes were 
primarily clustered for: (1) genes that would overexpress during differentiation and underexpressed due to 
stimulation, (2) genes that would overexpress during control differentiation and overexpressed further due to 
stimulation, (3) genes that would underexpress during control differentiation and stimulation minimized that 
underexpression and (4) genes that would underexpress during control differentiation and stimulation amplified 
that underexpression. (first color column in order: black, red, yellow, blue). Significantly differentially regulated 
genes, with p < 0.0005 (n = 307) were extracted as column plots for: b. black, c. red, d. yellow and e. blue clusters.
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after network formation, which could have implications on research studies where MEBs are integrated in in-vivo 
nerve tissues that have suffered injury. By implanting “trained” MEBs that have an enhanced responsiveness to 
stimulation, the therapeutic effects that have been observed could in turn be enhanced as well.3

Furthermore, spectral analysis proved to be a useful tool in order to quantify changes in network behavior 
that might be missed by simply comparing firing rates. While firing rate did not clearly reflect any alteration to 
the steady state, transforming the electrical signal to the frequency domain served as an informative descriptor 
of alterations in the network dynamics as a result of the training regimens. While spectral analysis has already 
been proven to be effective in characterizing neural signals43,44, the results of this study further elucidates its 
ability to detect modulations in the activity of neural networks that might not come across clearly from temporal-
based parameters. Using FFT to characterize the network’s firing patterns as a response to the training regimens 
during network formation complements various other network effects that have been observed in this study. 
For example, it has been shown that optogenetic stimulation is capable of causing a higher level of synchrony in 
cultures consisting of primarily excitatory neurons37. This would suggest a more structured firing in the form of 
a more consistent frequency profile across time, since synchronous behavior would be more viable in structured 
firing patterns versus a sporadically firing network. It is relevant to point out that the frequency profile in the S:S 
cultures while not significant on its own, confirms a modulation in the electrophysiological activity of this in-vitro 
model in response to the presence of the regimen across the development of the neural network. Furthermore, 
it serves as a proof of concept for the modulation of electrophysiological activity using this type of experimental 
setup. Following the results shown here, it would merit to explore further alterations to the network behavior 
using other analogous training regimens across the different developmental stages and using both spectral and 
temporal parameters to characterize what changes arise.

Another very notable observation regarding how the presence of training regimen implemented during 
neurogenesis resulted in long-term changes in the neural network was the difference of how the neural system 
responded to the stimulation during recording. During early culture on chip (D11-D15), stimulation would 
cause the system to enter a quiescent state following the forced state of rapid firing from the stimulation, yet this 
quiescent state was statistically significantly shortened for samples that had been stimulated during neurogen-
esis. Moreover, these distinctions extended beyond early stages of network formation, which also manifested as 
prolonged transient increases of network synchrony. This is relevant because, while tetanic stimulation has been 

Table 1.   Expression comparisons for phenotypic gene targets.

Gene Description log.FC D2 v NS FDR p log.FC NS v S FDR p

ESC—Pluripotency

OCT ¾—(POU5F1) POU domain, class 5, transcription factor 1 − 1,335.2 1.32E−08 − 1.01074 0.993303

NANOG Nanog homeobox transcription factor − 195.156 1.54E−08 1.291579 0.610174

SOX2 SRY (sex determining region Y)-box 2 − 1.1334 0.152156 − 1.15112 0.32166

Neuronal Population

Neurod6 Neurogenic differentiation 2 78.42929 2.04E−09 1.298647 0.378425

Fox-3 RNA binding protein, fox-1 homolog 3 77.39941 3.59E−10 − 1.17408 0.501273

NEF Neurofilament 92.5854 5.86E−13 − 1.02714 0.762375

Astrocytes

Aqp4 Aquaporin 4 N/A N/A N/A N/A

Gfap Glial fibrillary acidic protein 27.17674 1.39E−07 − 1.14314 0.766754

Fgfr-3 Fibroblast growth factor receptor 3 59.96818 2.87E−10 1.029678 0.917007

Oligodendrocytes

Mbp Myelin basic protein 10.7271 8.42 E−09 − 1.00645 0.984504

Olig2 Oligodendrocyte transcription factor 2 − 1.24175 0.006191 − 1.21048 0.094616

Mog Myelin oligodendrocyte glycoprotein 7.42182 5.11E−07 1.168882 0.60045

Motor Neurons

ChAT Choline acetyltransferase 46.15114 2.36E−06 1.55963 0.508302

MNX1 Motor neuron and pancreas homeobox 1 21.12197 5.35E−11 1.15419 0.234447

PAX6 Paired box 6 16.48545 2.91E−09 1.164541 0.454262

Glutamatergic Neurons

Slc17a6 Solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 6 7.715048 4.04E−08 − 1.07919 0.747595

ADORA2A Adenosine A2a receptor 5.181662 2.93E−05 − 1.10407 0.828501

Grina Glutamate receptor, ionotropic, N-methyl D-aspartat E-associated protein 1 (glutamate bind-
ing) 3.733777 2.21E−09 1.173808 0.900906

GABAergic Neurons

Slc6a1 Solute carrier family 6 (neurotransmitter transporter, GABA), member 1 68.94282 6.07E−11 1.07414 0.710842

GAD65 Glutamic acid decarboxylase 2 56.14012 3.24E−10 − 1.0758 0.764206

GABA Gamma-aminobutyric acid receptor associated protein 2.496022 1.11E−07 1.239422 0.064079
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correlated to potentiation, no change in baseline firing rate was observed. Therefore, if no long-term changes had 
been caused by training regimen during neurogenesis, there should have been no reason for the optogenetically 
evoked firing rate on chip to have shown any differences to the NS:S counterparts. This enhancement of response 
in samples that were subjected to training regimens during neurogenesis points to long-term systematic changes 
on how the system would respond to the stimulation during downstream stages of network development.

To further validate these observations, RNA sequencing was performed on MEBs showing that a large number 
of genes were found to have been differentially expressed as a result of the training regimen. To focus our find-
ings, the search was narrowed to genes showing a fold change with p < 0.0005 and key genes related to neural 
function were selected. Upon observation of this narrowed list, we found that following training regimen during 
neurogenesis the expression of key developmental genes Npdc1 and Crabp2 more closely resembles that of more 
mature tissue. Other differentially expressed genes implied an improved development of key neural aspects such 
as axonal and dendritic growth (Tuba1a) and nucleation of microtubules (Tubgcp4). Furthermore, stimulated 
MEBs seemed to overexpress important factors related to vesicular signaling such as Snap47, Vamp2, Reep2, and 
more importantly Cacng7. Furthermore, various genes are directly related to improved synaptic function and 
plasticity. For example, upregulation of Aplp1, Cnih2 and Insyn1 would be targets of interest that could account 
for the structured firing patterns and the changes in the network responses to evoked stimulation. Considering 
the change in expression of these genes related to vesicle transport, synaptic transmission and neural develop-
ment, the observations of shorter quiescent times post-stimulation for samples that underwent training regimens 
could suggest that the training regimen enhanced the network for a quicker recovery from synaptic fatigue, which 
is an activity-dependent temporary inability of neurons to transmit signals45. Moreover, it is worth noting that 
Cnih2 and Insyn1 are regulators of inhibitory signaling related to the slowing down of signal transmission to 
improve its reliability, yet a lot is unknown about how these targets affect larger scale pathways and neuronal 
function. While many factors responsible for regulating network plasticity have been discovered11,36,46–48, how 
these interconnect and result in a steady state firing pattern, and furthermore, how could this pattern be control-
lably shifted is still to be determined. By continuing plasticity studies which incorporate training with respect to 
developmental stages and coupling the changes observed in the electrophysiology behavior to changes in genetic 
expression, these questions might be better addressed. Moreover, expanding this study to obtain protocol-specific 
responses in gene expression would be crucial in understanding neural plasticity and learning mechanisms.

Nevertheless, the results presented in this study add a new dimension to neural circuit engineering, by taking 
advantage of the synergy between responses to stimulation during differentiation and the plasticity that emerges 

Table 2.   Significantly (p < 0.0005) differentially expressed genes reported in literature as regulators of neural 
development.

Gene Description Function References

Npdc1 Neural proliferation, differentiation and control 1 Responsible for regulating differentiation. Upregulated 
in adult brains compared to young brains

Qu, X. et al.38, Evrard, C. et al.39, Galiana, E. et al.40, 
Sansal, I. et al.41

Crabp2 Cellular retinoic acid binding protein II Upregulated in differentiated Motor Neurons, and 
downregulated in mature motor neurons Boucherie, C. et al., Chaerkady, R. et al., Zhang, Q. et al

Snap47 Synaptosomal-associated protein, 47 Involved in unique fusion machinery for postsynaptic 
and presynaptic function

Münster-Wandowski, A. et al. Holt, M. et al. Arora, 
S. et al

Tubgcp4 Tubulin, gamma complex associated protein 4 Important in the nucleation and polar orientation of 
microtubules Scheidecker, S. et al. Sánchez-Huertas, C. et al

Aplp1 Amyloid beta (A4) precursor-like protein 1

Supports maintenance of dendritic spines and basal 
synaptic transmission. High impact on synapse forma-
tion and synaptic plasticity. Is upregulated during 
synaptogenesis and is essential for proper synapse 
formation

Mayer, M. C. et al.42, Schilling, S. et al.43, Weyer, S. W. 
et al.44, Klevanski, M. et al.45, Kim, T.-W. et al.46

Cacng7 Calcium channel, voltag E-dependent, gamma subunit 
7

Critical to Neural communication for Ca-dependent 
fusion of two secretory organelles: synaptic vesicles 
(SV) and neuropeptide-filled dense-core vesicles 
(DCV). Regulates the trafficking and gating properties 
of AMPA-selective glutamate receptors (AMPARs)

Yang, L. et al., Kato, A. S. et al

Cnih2 Cornichon family AMPA receptor auxiliary protein 2
Influences the efficacy of excitatory synaptic transmis-
sion. Slows synaptic transmission for reliable and suc-
cessful transmission of a sugnal accros the synapse

Boudkkazi, S. et al., Boudkkazi, S. et al., Shi, Y. et al. 
Gu, X. et al

Insyn1 Inhibitory synaptic factor 1 Regulates postsynaptic inhibition and contributes to 
brain development Gamlin, C. R. et al., Uezu, A. et al

Vamp2 Vesicle-associated membrane protein 2
Involved in the dockin and/or fusion of synaptic vesi-
cles with the presynaptic membrane. It forms a distinct 
complex with synaptophysin

Russell, C. L. et al. Schwarz, T. L. Winkle, C. C. & Gup-
ton, S. L. Winkle, C. C. & Gupton, S. L. Koo, S. J. et al

Reep2 Receptor accessory protein 2 Expressed in neuronal exocytotic tissue Sjöstedt, E. et al. Esteves, T. et al. Hübner, C. A. & 
Kurth, I. Hurt, C. M. et al

Ngfr Nerve growth factor receptor (TNFR superfamily, 
member 16)

Receptor for member of signaling pathway activating 
neurothrophins, p75NTR

Huang, E. J. & Reichardt, L. F. Barrett, G. L. & Bartlett, 
P. F

Nptx1 Neuronal pentraxin 1 Key factor in synapse loss and neurite damage Omeis, I. A. et al., Abad, M. A. et al., Dodds, D. C. 
et al.,

Tuba1a Tubulin, alpha 1A [ Key factor in axon and dendritic growth and network 
development Belvindrah, R. et al. Aiken, J. et al
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during network formation, and correlation to gene expression. This solidifies our initial hypothesis that imple-
menting training regimens during early stages of neural circuit development should be considered as a critical 
factor for studying neural plastic phenomena. In order to further this study, improved training regimens and 
spatial stimulation patterns during neurogenesis and synaptogenesis could be used to further the characterization 
of the network response. Furthermore, this approach could be expanded to in-vivo systems in order to examine if 
these alterations in fact result in behavioral changes in a developing organism, and if the enhancement of mESC-
derived MEBs have an effect regeneration studies by enhancement recovery of nerve tissue injury.
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