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ABSTRACT: Machine learning and signal processing on the edge are poised
to influence our everyday lives with devices that will learn and infer from data
generated by smart sensors and other devices for the Internet of Things. The
next leap toward ubiquitous electronics requires increased energy efficiency of
processors for specialized data-driven applications. Here, we show how an in-
memory processor fabricated using a two-dimensional materials platform can
potentially outperform its silicon counterparts in both standard and
nontraditional Von Neumann architectures for artificial neural networks. We
have fabricated a flash memory array with a two-dimensional channel using
wafer-scale MoS2. Simulations and experiments show that the device can be
scaled down to sub-micrometer channel length without any significant impact
on its memory performance and that in simulation a reasonable memory window still exists at sub-50 nm channel lengths.
Each device conductance in our circuit can be tuned with a 4-bit precision by closed-loop programming. Using our physical
circuit, we demonstrate seven-segment digit display classification with a 91.5% accuracy with training performed ex situ and
transferred from a host. Further simulations project that at a system level, the large memory arrays can perform AlexNet
classification with an upper limit of 50 000 TOpS/W, potentially outperforming neural network integrated circuits based on
double-poly CMOS technology.
KEYWORDS: MoS2, two-dimensional semiconductors, two-dimensional materials, in-memory computing, nanoelectronics, beyond-Moore

INTRODUCTION

Modern processors perform many functions needed for the
operation of our electronic devices. This flexibility was initially
enabled by the separation of processing and memory units in
the von Neumann architecture.1 However, current data-driven
applications2−6 are imposing energy constraints on edge
devices due to intensive use of vector matrix-multiplications
and access to memory in deep neural networks.7 The back-
and-forth transfer of data between the memory and the
processor is now counting for one-third of all energy used in
scientific applications.8 However, the data transfer bottleneck
can be avoided by performing computation directly in the
memories’ physical layer through the combination of Kirchh-
off’s and Ohm’s laws. This type of in-memory processing can
benefit calculation-intensive applications such as solving linear
system equations,9 linear and logistic regression,10 solving
partial differential equations,11 image/signal processing and
compression,12,13 as well as in artificial neural networks
(ANN).14,15

While many material systems have been explored for in-
memory computing,16 the strong electrostatic sensitivity17 and

intrinsic optoelectronic behavior18 of two-dimensional (2D)
materials present a promising pathway toward reconfigurable
and low-power neuromorphic hardware.19,20 In particular,
monolayer transition metal dichalcogenides (TMDCs), such as
MoS2 have been attracting great attention due to their
potential to extend Moore’s law in advanced technological
nodes.21−24 Moreover, their use in emerging memory devices
has also been widely reported. They are being employed from
standard flash memories25−28 to emerging resistive29 and
ferroelectric memories.30

Memory devices based on 2D materials have recently been
gaining attention in the context of in-memory20 and neuro-
morphic computing. However, most of previous reports have
focused on a single device and extrapolated their behavior to
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system-level applications using models.31−33 Exceptions are
reports on vision processors based on 2D materials19,34 in
which arrays of photodetectors with programmable con-
ductance were used as artificial neural networks capable of
optical pattern recognition. These early examples also used in
situ training where the training for a neural network was
performed directly on the hardware, overcoming any hardware
imperfections and device-to-device variability. Although this
improves system accuracy for a given chip, training is the most
energy-consuming part in the use of artificial neural networks,
and it is not desirable to repeat it for every individual chip. In
order to conserve energy and time, it would be advantageous
to perform training once and transfer it to all the individual
processors of the same type. Moreover, a fully electrical
processor is preferred for general-purpose applications on the
edge since it requires only one excitation source.
Here, we present an in-memory, general purpose processor

fabricated on a 2D-material based technology platform. Our
processor is based on an array of floating-gate memories with
monolayer MoS2 as an active channel. Simulations predict no
significant performance loss as the channel and gate lengths are
scaled down to below 100 nm with the scaling trends being
experimentally confirmed for devices with gate lengths down to
180 nm, supporting the suitability of 2D materials for scaled in-
memory computing circuits. The conductance of the devices
can be programmed with a 4-bit precision, allowing them to
represent weights for standard dot-product operations needed
for in-memory calculations. Finally, we use the memory arrays
as artificial networks for seven-segment digit classification with
an experimental accuracy of up to 91.5% using transfer of
learning from a computer-trained model. Predictions show that
large arrays performing the ImageNet classification could

potentially outperform silicon counterparts, operating with an
upper limit of 50 000 TOpS/W (refs 35 and 36).

RESULTS AND DISCUSSION
Device Description and Characterization. Figure 1a

presents the three-dimensional schematic and the cross-
sectional view of our floating-gate memory array,20 based on
a gate stack composed of a 40 nm thick platinum (Pt) gate
(G), a 30 nm thick hafnium oxide (HfO2) blocking oxide layer,
5 nm Pt floating gate, and 7 nm HfO2 tunnel oxide, chosen to
give a good compromise between writing speed and retention.
Wafer-scale, continuous and large-grain monolayer MoS2
grown using metal−organic chemical vapor deposition
(MOCVD)37,38 is transferred on top of the gate stack and
contacted using titanium−gold (Ti/Au) drain (D) − source
(S) electrodes. The devices have a channel length and width of
1 and 12.5 μm, respectively. Individually addressable devices
are connected in parallel for performing in memory the
multiply−accumulate (MAC) operations using Kirchoff laws
for summation and Ohm’s law for multiplication (Figure 1a
inset). Raman spectroscopy and high-resolution transmission
electron microscopy (HRTEM) is used to ascertain the
material thickness and quality of the MoS2 film (Figures S1
and S3). Gate-stack and electrode fabrication were carried out
in a class 100 clean room using standard wafer-scale fabrication
tools (more details in the Methods). This combination of both
wafer-scale material growth and device fabrication allows
scaling toward smaller devices and more complex two-
dimensional nanocircuits. Figures S1 and S2 show the cross-
sectional TEM image of the fabricated memory gate stack. The
image shows a conformal deposition of all layers, including the
two-dimensional material. No visible defects and cracks were
observed in the material nor in the device, also confirmed by

Figure 1. Device structure and characterization. (a) 3D schematic representation of the MoS2 memory device array and the corresponding
circuit schematic for the multiplication-accumulation operation. (b) Optical image of an array of memories connected in parallel (scale bar:
50 μm). (c) IDS as a function of VG for constant drain-source voltage, VDS = 50 mV. (d) IDS as a function of VDS for different programming
voltages, showing the programmable conductance behavior. The device is read using VG

(READ) = 0 V and VDS = 50 mV.
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electrical measurements. The optical micrograph of a
fabricated memory array is shown on Figure 1b.
The operation of the previously described memory device is

based on charge transfer between the semiconductor channel
and the embedded metallic floating gate. The memory is
programmed by applying a control gate voltage such that it
bends the bands of the dielectric stack so that direct electron
tunnelling can occur through the oxide barrier, from the MoS2
channel to the platinum floating gate. The charge Q stored in
the floating gate causes a shift in the threshold voltage of the
MoS2 transistor ΔVTH = −Q/CCG−FG, where CCG−FG is the
capacitance between the control gate and the floating gate.39

For large gate voltage sweeps, the memory programming
operation results in a shift of the threshold voltage between the
forward and the reverse paths, creating a hysteresis cycle. The

experimental confirmation of the threshold voltage (VTH) shift
between the forward and reverse paths are seen in Figure 1d.
This creates a 11.2 V memory window that can be tuned
depending on the programming voltage that is applied to the
device gate. At a constant gate voltage used for reading the
memory state (VG

(READ) = 0 V), different values of VTH result
in different conductance (G) levels, allowing the memory to be
used as a programmable resistor.
Figure 1e shows this programmable conductance feature of

the floating-gate memory. Different slopes of linear IDS versus
VDS can be programmed, using different program and read
voltages. Linearity is an important characteristic since the
multiplication operation in our in-memory processor is based
on the physical relationship between current and voltage. The
different conductance states are also stable in a 5 h window

Figure 2. Device scaling. (a) Simulated hysteresis cycle as the device gate length is scaled from L = 1 μm to L = 50 nm. (b) Calculated
threshold voltage shift (for IDS = 10−10A·μm−1) as a function of programming time tPROG. (c) Calculated threshold voltage shift for different
channel lengths with a program time of 1 μs. (d) Experimental hysteresis cycle (IDS versus VG with VDS = 500 mV) of devices with 950, 430,
and 180 nm gate length. The curves shown were select as the median behavior from the experimental data set. (e) Experimental variation of
the ON current for different devices with gate lengths demonstrated in (d). Triangle: experimental data. Dot: average value. Error bar:
confidence interval with 95% certainty.
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without significant degradation. Additional device character-
istics are presented in Figure S4.
Device Simulation and Scaling. To advance our

understanding of the device behavior and to analyze its
performance in advanced technological nodes, we have
performed device simulations using a commercial CAD
software (Sentaurus by Synopsys, Inc.) by fitting the
experimental results for the long-channel floating-gate
memories. Figure 2a shows the hysteresis cycle of the transfer
characteristics for the simulated long channel device with a
channel and gate lengths L = 1 μm. The sweep rate is 3.6 V/
min. We obtain a good agreement between the simulated and
measured curves for this gate length; see Figure S5. The
longitudinal transport is simulated using a drift-diffusion model
with Fermi−Dirac statistics, Shockley−Read−Hall recombina-

tion, and thermionic Schottky contacts. Interface and intrinsic
traps are required to reproduce the gradual subthreshold slope
of the transfer characteristics. The charge injection into and
from the floating gate is responsible for the observed memory
window and is modeled using the Wentzel−Kramers−Brillouin
approximation for the electron tunnelling.
After having calibrated the model using the experimental

data, we have investigated the scalability of the memory device.
Figure 2a shows the simulated hysteresis cycles for gate

lengths L down to 50 nm. As the gate length is scaled down,
the hysteresis cycle is shifted toward lower gate voltages due to
electrostatic degradation, while the peak current increases due
to the higher longitudinal electric field in the channel. It is
evident from Figure 2a that the large programming window of
the long channel is almost maintained down to L = 50 nm. In

Figure 3. Closed-loop programming. (a) Block diagram explaining the closed-loop programming procedure. (b) Convergence map for
overshoot of the weight and progressively decreasing the weight until the correct value has been reached.
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order to investigate the programming speed, we have
performed transient simulations of IDS−VG characteristics
after the application of a programming pulse with an amplitude
VPROG = 15 V and variable width tPROG.
Figure 2b shows the shift of the threshold voltage, extracted

at a constant current of 10−10 A ·μm−1, for different values of
tPROG. The results show that a reasonable programming
window can be obtained with a program time of 1 μs but
also that the programming window is reduced as the gate
length is scaled down. The threshold voltage roll-off is due to
the increased semiconductor potential and reduced transverse
electric field across the tunnel oxide, which in turn induces a
lower tunnel injection into the floating gate. Simulations show
that a gate length of about 100 nm still maintains most of the
long channel memory window for pulse widths of at least 1 μs.
In addition, it is important to highlight that the memory
window measured from pulse programming is lower than the
one extracted from the hysteresis as discussed in detail in T.
Sasaki et al.40

In other to verify the simulated scaling of our floating-gate
memories, we fabricated scaled devices down to 180 nm; see
Figure S6 for the microscopy images of our devices.
Figure 2d shows the hysteresis cycle of devices with 950,

430, and 180 nm gate lengths. We show here experimental
curves corresponding with the median behavior of the devices.
In Figure S5, we show the full data set, indicating the device-
to-device variability of the scaled devices. From the IDS versus
VG curves, we can observe the threshold roll-off of the scaled
devices as a function of the gate length as predicted in the
simulations. The electrostatic degradation is more pronounced
at a gate length of 180 nm. To analyze the ON current
increase, we show the average behavior of a set of devices in
Figure 2e. As the gate length decreases, we observe an increase
in the ON current due to the increased horizontal fields, as
expected.
Closed-Loop Programming. Our individual devices show

promising behavior for advanced scaling. However, inevitable
process and device-to-device variations will affect the relation-
ship between the device conductance and the programming
voltage. In order to reliably perform in-memory the MAC
operations, we need to be able to accurately tune the
conductance of each device in the network to a predefined
conductance value while overcoming device−device variations.
The corresponding conductance is then used to map a precise
multiplication coefficient used inside filter kernels or as
synapse weights in artificial neural networks. In our work, we
base our programming technique on previously reported
pulsed tuning algorithms using depression and potentiation
pulses with a closed-loop convergence procedure.41 These
consist of providing stimuli on the input and probing the
device output until it reaches the desired value within a certain
tolerance.
First, we map the abstract values (input value: x, output

value: y, multiplication factor: w) to physical quantities (input
voltage: V, output current: I, memory conductance: G) using a
reference voltage, VDS

REF and trans-impedance and digital
gains, ATI and ADIGITAL. The reference voltage is used to
convert the input value x to the input voltage as V = VDS

REF·x.
For the reminder of the paper, we use VDS

REF = −1 V. We have
chosen a negative voltage to prevent reprogramming the
memory elements during their normal use. For scaling the
output current I back to the abstract value y, we transform the
current into voltage using a trans-impedance amplifier with a

gain ATI = 2.5 MΩ and rescale the obtained voltage with a
digital gain ADIGITAL = 10 as y = ADIGITAL·ATI·I. With this
mapping, the abstract multiplication coefficient w naturally
emerges when we set x = 1, y = w, allowing the conductance
value to be indirectly probed.
We start the algorithm by resetting the conductance value to

its highest level by applying a long (1 s) negative pulse (VRESET
= −8 V). We successively probe the experimental weight value
and compare it to the desired one. If the measured weight is
higher than the desired one, the programming pulses are
increased to VPULSE + VSTEP and applied up to N times.
Otherwise, in case that the measured value undershoots the
target, a short (10 ms) negative reset pulse (VRESET = −8 V) is
applied and VSTEP is halved. The next iteration starts until
either a maximum of M iterations is reached or the algorithm
converges to a desired conductance value, within a tolerance.
Our programming tolerance is defined by a discretization of
the weight range into 2Nbits values where Nbits is the number
of bits of the desired accuracy. Figure 3a shows a simplified
block diagram of the previously described algorithm, while the
extended block diagram is shown on Figure S4. We present in
Figure 3b the evolution of weights and applied voltage pulse
values VPULSE. During iterative programming and measurement
steps, the gate reading voltage is set to a negative value (≈ −5
V) in order to stabilize the programming values and prevent
unintentional reprogramming by operating the device in the
subthreshold regime.

Performing the Dot Product Using the In-Memory
Circuit. By tuning the conductance of each memory device, we
can define the weight vector [w1, w2]. Next, we demonstrate
the ability of our devices to perform simple multiplication-
accumulation operations. In order to do that, we connect two
devices in parallel as shown in Figure 4a. We test the
calculation for different pairs of x1 and x2 with values in the 0−
1 range. Parts b−e of Figure 4 show the surface planes
representing the results of the dot product operation for
different weight matrices. The experimental plots are the raw
data showing the linearity of the calculation. The overshoot
seen in one of the planes (Figure 4c, for x1 = x2 = 1) is due to
the intrinsic error in the programming of weights and read
noise.

Application to a Seven-Segment Display Classifica-
tion. Next, as a proof of concept, we demonstrate an artificial
neural network based on a circuit composed of seven memory
devices connected in parallel. We perform digit classification of
artificially generated inputs containing noise, corresponding to
a seven-segment LCD display, Figure 5. We show additional
details related to the physical layout of the memory accelerator
in Supporting Section 4. The seven memory devices are
reprogrammed to produce up to three different classification
outputs in a 7 × 3 perceptron layer. Figure 5a shows the seven-
segment display used to define our figure representation. This
display configuration was widely used in the past where
spurious signal variations cause a noisy representation of
numbers that standard classification methods have difficulty of
classifying. To perform a robust figure classification, we
construct a one-layer perceptron network with a SoftMax
activation function in the output layer. The dot-product
operation is performed in memory while the nonlinear
function is implemented numerically in the acquisition system,
for more information see Supporting Section 4. Figure 5b
presents the schematics of the one-layer network.
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We choose to train the synaptic weight values to each noise-
generated data set ex situ using the standard TensorFlow and
Keras python libraries and transfer the acquired learning to the
physical layer. The computer-trained values give an accuracy of
95.5% for an input signal with added white noise having a
standard deviation σ = 0.1, which we use as a baseline for
comparison with the measured accuracy of the circuit. This
approach performs training only ex situ, while the trained
weights are then transferred to different neural network
processors. This reduces the energy consumption of neuro-
morphic hardware since training is an extremely power-hungry
step in deep neural network algorithms.42 Figure 5c shows the
comparison between the theoretical weight maps, obtained by
backpropagation, and the experimental ones after transfer
using the previously described programming algorithm with 4-
bit precision. A sample of the acquired output signal after the
physical multiplication-accumulation operation without the
SoftMax function and with the digital gain used for scaling the
physical values to the abstract numbers of the neural network is
presented in Figure 5d. We achieve a maximum accuracy of
91.5%, compared to the 95.5% accuracy estimated in the
software model, classifying up to 10000 numbers/s. This
measurement is performed with 4-bit precision programming
and an input signal with added white noise having a standard
deviation σ = 0.1. We estimate a resistive power consumption
of the memory network of ∼74.4 pJ/classification, neglecting
the energy expended at the input-output interfaces and on
charging the line capacitors (Supporting Sections 5 and 6).

To further analyze the implemented network, we vary both
the noise in the input signal and the programming resolution
to evaluate their impact on the accuracy of in-memory
classification. Figure 5e presents the effect of the input noise
on the accuracy of the neural network. We can see that both
experimental and computational accuracies follow a linearly
decreasing trend as the noise at the input is increased. In
addition, the difference between the average experimental
values and the theoretically predicted accuracy, as well as the
spread of the values, remain similar as the noise standard
deviation increases, except for the case of σ = 0.5 where the
smaller spread is due to the saturation of the output analog-to-
digital converters. We expect that the spread in measured
accuracy is due to variations in each memory weight due to
imperfect programming and system noise. Since both
experimental and theoretical values are following the same
trend, we conclude that the expected behavior has been
observed. We show in Figure 5f the effect of the programming
resolution (Nbits) on the accuracy for a fixed input noise (σ =
0.1). A more relaxed programming resolution is expected to
decrease the precision since the error between the desired and
measured conductance value is large. Although this effect is
seen from 2-bit to 4-bit data, classification with 1-bit weight
programming resolution can be as accurate as for 4 bits. Since
the rest of the data follows the predicted behavior, we consider
the discrepancy of the 1-bit accuracy data to be due to chance.

Performance of Larger Neural Networks. Encouraged
by the promising performance of the demonstrated MoS2-
based artificial neural network accelerator, we evaluate complex
neural networks based on the realized FGFET devices. We
consider hardware implementations of deep neural networks in
which the most frequent large building block is an analogue
vector-matrix multiplier (VMM).43 A network of this type is
AlexNet, used for image classification of the large ImageNet
benchmark database.44

The considered analogue VMM circuit is shown in Figure
6a, where each floating gate memory is used as a program-
mable resistor. During inference, the control gate voltage is set
at VG, and the input vector is encoded in the voltage values
{Vin,1, ... , Vin,M}. If wij (i = 1, ... , M; j = 1, ... , N) is the
conductance of the floating gate memory, then the output
current Iout,j is given by the matrix multiplication of the voltage
vector with the weight matrix as shown in Figure 6a.
To analyze the circuit performance, we have first extracted

the SPICE model of the floating gate memory in inversion,
Figure 6b, and in the subthreshold region, Figure 6c. We then
evaluate the achievable effective number of bits (ENOB) as a
function of the gate voltage and of the input voltage full scale.
As seen in the previous section, a better linearity is obtained
with a lower gate voltage. We find that an ENOB of 5 bits is
achieved for a gate voltage of −3 V, which biases the memory
in subthreshold, and a maximum input voltage of 50 mV. A
system-level simulation of an analogue implementation of
AlexNet, performed using TensorFlow and Keras, shows that
for a signal-to-noise-and-distortion ratio of 32 dB, correspond-
ing to 5 effective bits, an error rate smaller than 20% can be
obtained in ImageNet classification. The difference from the
simulated VG

(READ) and the experimentally observed one for an
effective 4-bit programming can be understood in terms of the
variations of the threshold voltage due to variations in the
grown material.
The latency time can be computed with the optimistic

assumption that the slow time constants typically associated

Figure 4. In-memory dot product. (a) Realization of the dot-
product operation using two memories connected in parallel. (b−
d) Data surface showing the equivalent multiplication-sum planes
of a dot-product with the following weights: (b) w1 = 1, w2 = 0; (c)
w1 = 0.4, w2 = 0.6; (d) w1 = 0, w2 = 1.
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Figure 5. Classification of a seven-segment digit in memory. (a) Representation of a seven-segment display. (b) One-layer perceptron
network for seven-segment figure classification. (c) Transfer of learning of the theoretical weight matrix to proportional conductance values
of individual memories. (d) Sample of inference operations after different test signals are sent to the input layer and measured in one of the
neurons. (e) Effect of the signal noise on the classification accuracy. (f) Effect of the programming resolution on the classification accuracy.

Figure 6. System-level analysis. (a) Analogue vector-matrix multiplier circuit with floating gate memory devices. (b) Transfer characteristics
of the memory cells and of the extracted SPICE models in inversion. (c) Transfer characteristics of the memory cells and of the extracted
SPICE models in the subthreshold. (d) Achievable ENOB of the multiplier as a function of the cell voltage bias. (e) Error rate in Imagenet
classification for an analogue neural network as a function of the signal-to-noise-and-distortion ratio (SINAD) and of the number of bits.
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with devices based on 2D materials will be effectively removed
as fabrication technology reaches the industrial standards and
that therefore, transient behavior can be accurately predicted
based on quasi-static device models. With this assumption,
transient circuit simulations of the analogue VMM provide a
latency time of 100 ns and a record-high energy efficiency of
50 PetaOps/J, where each single operation is either a scalar
multiplication or a sum, as is usually assumed. This is a very
promising value, considering that the best published estimate is
1.3 PetaOps/J for neural network integrated circuits based on
double-poly CMOS technology.35 We must stress that for
estimating the energy consumption we have considered only
the analogue VMMs that are the main building blocks, whereas
in a full neural network one should also take into account the
energy consumption of peripheral circuits, such as the current-
to-voltage converters for each column, digital-to-analog and
analog-to-digital converters, and interlayer circuitry. While a
full implementation of the peripheral circuits is beyond the
scope of this work, it would not alter the order of magnitude of
the estimated energy efficiency.

CONCLUSION

We have demonstrated floating-gate memory devices based on
monolayer MoS2 with simulations showing no performance
degradation down to 100 nm gate length and a useable
memory window that persists to sub-50 nm channel lengths.
The conductance of each memory can be finely tuned with a 4-
bit precision using our closed-loop programming scheme,
being limited only by the speed of the experimental setup.
Circuits based on the MoS2 floating-gate devices were used to
perform in-memory dot-product calculations and inference.
We also realize a simple perceptron layer with weights
transferred from a simulated model onto the MoS2 circuit.
Our perceptron layer archives a maximum of 91.5%
experimental accuracy, comparing favorably to the modeled
95.5% base accuracy. Finally, we extended our circuit topology
to perform ImageNet classification based on the AlexNet
architecture. Our network shows an upper limit of
computation efficiency, excluding peripheral circuits, of 50
PetaOps/J, almost 2 orders of magnitude higher than for
previously reported accelerators. We believe that our findings
support the two-dimensional semiconductor material platform
for the next generation of in-memory processors where
machine learning implementations such as deep neural
networks can harness the full potential of this architecture.

METHODS
Material Growth. The continuous monolayer MoS2 film was

synthesized on 2-in. sapphire substrates using the metal−organic
chemical vapor deposition (MOCVD) method.37,38 Before growth,
the c-plane sapphire wafers were annealed at 1000 °C in air for 6 h
and treated with 3 wt % potassium hydroxide (KOH). A 0.2 mol/L
sodium chloride (NaCl) solution was spin-coated onto the wafers to
suppress nucleation and enlarge the grain size. During the growth
process, molybdenum hexacarbonyl (Mo(CO)6) and diethyl sulfide
((C2H5)2S) were used as precursors and carried into the quartz tube
by argon with carrier gas flow rates of 10 and 3 sccm, respectively.
Both precursors were kept in a water bath at 25 °C to maintain a
stable vapor pressure. Hydrogen and oxygen were delivered separately
into the growth chamber, with a ratio of 4:1, to balance the growth
and etching as well as to achieve the growth of a continuous, wafer-
scale monolayer. The reactions proceeded at a temperature of 870 °C
and at atmospheric pressure for 30 min.

TEM Imaging. The sapphire substrate with as-grown material was
spin-coated with PMMA and baked at 85 °C for 10 min. The MoS2/
PMMA film was detached from the sapphire substrate by submerging
it in water. Water surface tension promotes the separation of the
grown material from the substrate. Next, the film floating in water is
collected using a TEM grid and heated for 15 min at 85 °C. After the
transfer is completed, the TEM grid is left in acetone overnight and
annealed at 250 °C.

For aberration-corrected scanning transmission electron micros-
copy (STEM) imaging, an FEI Titan Themis microscope equipped
with double Cs corrector, monochromator, and Schottky X-field
emission gun was operated at an acceleration voltage of 80 kV. The
electron probe current was in the 17−20 pA range. The semi-
convergence angle of the probe was 21.2 mrad. High-angle annular
dark field detector (HAADF) was used to capture the images using
short dwell times (8 μs) with 512 × 512 pixels. The camera length
was set to 185 mm which corresponds to the 49−200 mrad collection
angle range. Focused ion beam (FIB, Zeiss Nvision40) was used to
prepare the cross-section lamella from the device. For the low-
resolution cross-sectional TEM imaging, a FEI Talos F200 S G2
microscope was used at 80 kV acceleration voltage.

Transfer Procedure. The MOCVD-grown material is first spin-
coated with PMMA A2 at 1500 rpm for 60 s and baked at 180 °C for
5 min. Next, we attach a Gel-pak elastomer film onto the MoS2
sample and detach it from sapphire in deionized water. After this, we
dry the film and transfer it onto the patterned substrate. Next, we bake
the stack at 55 °C for 1 hour. Finally, the sample is immersed in
acetone for 2 days and subsequently annealed at 200 °C in a high
vacuum to remove the polymer resist and increase adhesion to the
surface. For the scaled devices, we used a 130 °C thermal release tape
of instead of Gel-pak and removed it by heating on the hot plate.

Processor/Floating-Gate Memory Fabrication. We used a
silicon substrate with a 270 nm thick SiO2 insulating layer. The gate
electrodes were fabricated by photolithography using an MLA150
advanced maskless aligner with a bilayer LOR 5A/AZ 1512 resist. The
2 nm/40 nm Cr/Pt gate metals were evaporated using an e-beam
evaporator under high vacuum. After resist removal, DI water and O2
plasma are used to further clean and activate the surface for HfO2
deposition. The blocking oxide is further deposited by thermal atomic
layer deposition using TEMAH and water as precursors. The floating
gates were patterned using e-beam lithography in a standard double-
layer PMMA/MMA process. The floating-gate metal was deposited in
the same evaporator as the gate electrode. With the same atomic layer
deposition system, we deposit the 7 nm tunnel oxide layer. For
decreasing the e-beam exposure time, the drain-source electrodes are
deposited in two steps. First pads and big contacts are exposed using
the photolithography procedure described for the gate exposure and 2
nm/60 nm Ti/Au are evaporated in the same machine. After transfer
of MoS2 onto the substrate, patterning it with either e-beam/
photolithography and etching by O2 plasma. Next, the drain-source
contacts are patterned using e-beam lithography and 2 nm/100 nm of
Ti/Au are further evaporated. To increase adhesion of contact and the
MoS2 onto the substrate, a 200 °C annealing step is performed in high
vacuum. The devices have a W/L ratio of 12.5 μm/1 μm.

Fabrication of Scaled Devices Fabrication. We used a silicon
substrate with a 270 nm thick SiO2 insulating layer. The gate
electrodes were fabricated using e-beam lithography with standard
bilayer polymer PMMA/MMA. The 2 nm/40 nm Cr/Pt gate metals
were evaporated using an e-beam evaporator under high vacuum.
After resist removal, DI water and O2 plasma are used to further clean
and activate the surface for HfO2 deposition. The 30 nm blocking
oxide is further deposited by thermal atomic layer deposition using
TEMAH and water as precursors. The floating gates were patterned
using e-beam lithography in a standard double-layer PMMA/MMA
process. The floating-gate metal was deposited in the same evaporator
as the gate electrode. With the same atomic layer deposition system,
we deposit the 7 nm tunnel oxide layer. Next, we transfer MoS2 onto
the substrate, patterning it with negative tone resist (nLOF) using the
same MLA150 advanced maskless aligner and etching by O2 plasma.
To achieve sub-1 μm resolution for the drain-source contacts, we
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expose them by e-beam lithography with standard bilayer polymer
PMMA/MMA mentioned previously. Following the exposure, 2 nm/
20 nm Ti/Au are evaporated in the same machine. To increase
adhesion of contact and the MoS2 onto the substrate, a 200 °C
annealing step is performed in high vacuum.
Device Characterization. The devices were characterized in a

high-vacuum chamber after in situ annealing for removing any
adsorbents in the surface of the 2D materials which could degraded
mobility and induce non controllable memory effects from
contaminations. After this, we characterized the devices using an
Agilent E5270 Precision Measurement Mainframe.
Circuit Characterization. The electrical characterization of

circuits was performed in air with the chip closed with a lid to
avoid any light disturbance during the measurements. The device
under test (DUT) was connected using a custom device interface
board (DIB) described in the Supporting Information. The board
serves as a routing medium from both the input and output voltages
and has embedded amplifiers to boost voltage and provide current-to-
voltage conversion. The analogue voltages were generated and read
using a CompactDAQ system with NI-9205 and NI-9264 modules.
The CompactDAQ was connected to a host computer running a
LabVIEW software to perform the programming and inference of the
neural networks using the described closed loop programming
algorithm.
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