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Abstract

Motivation: A crucial problem in genome assembly is the discovery and correction of misassembly

errors in draft genomes. We develop a method called MISSEQUEL that enhances the quality of draft

genomes by identifying misassembly errors and their breakpoints using paired-end sequence

reads and optical mapping data. Our method also fulfills the critical need for open source computa-

tional methods for analyzing optical mapping data. We apply our method to various assemblies of

the loblolly pine, Francisella tularensis, rice and budgerigar genomes. We generated and used

stimulated optical mapping data for loblolly pine and F.tularensis and used real optical mapping

data for rice and budgerigar.

Results: Our results demonstrate that we detect more than 54% of extensively misassembled con-

tigs and more than 60% of locally misassembled contigs in assemblies of F.tularensis and between

31% and 100% of extensively misassembled contigs and between 57% and 73% of locally misas-

sembled contigs in assemblies of loblolly pine. Using the real optical mapping data, we correctly

identified 75% of extensively misassembled contigs and 100% of locally misassembled contigs in

rice, and 77% of extensively misassembled contigs and 80% of locally misassembled contigs in

budgerigar.

Availability and implementation: MISSEQUEL can be used as a post-processing step in combination

with any genome assembler and is freely available at http://www.cs.colostate.edu/seq/.

Contact: muggli@cs.colostate.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Comparing genetic variation between and within a species is a fun-

damental activity in biological research. For example, there is cur-

rently a major effort to sequence entire genomes of agriculturally

important plant species to identify parts of the genome variable in

a given breeding program and, ultimately, create superior plant

varieties. Robust genome assembly methods are imperative to these

large sequencing initiatives and other scientific projects (Haussler

et al. 2008; Ossowski et al. 2008; Robinson et al. 2011;

Turnbaugh et al. 2007) because scientific analyses frequently use

those genomes to determine genetic variation and associated biolo-

gical traits.

At present, the majority of assembly programs are based on the

Eulerian assembly paradigm (Idury and Waterman 1995; Pevzner

et al. 2001), where a de Bruijn graph is constructed with a vertex v

for every ðk� 1Þ-mer present in a set of reads and an edge ðv; v0Þ for

every observed k-mer in the reads with ðk� 1Þ-mer prefix v and

ðk� 1Þ-mer suffix v0. A contig corresponds to a non-branching path

through this graph. We refer the reader to Compeau et al. (2011) for

a more thorough explanation of de Bruijn graphs and their use in as-

sembly. SPAdes (Bankevich et al. 2012), IDBA (Peng et al. 2012),

Euler-SR (Chaisson and Pevzner 2008), Velvet (Zerbino and Birney

2008), SOAPdenovo (Li et al. 2010), ABySS (Simpson et al. 2009)

and ALLPATHS (Butler et al. 2008) all use this paradigm and follow

the same general outline: extract k-mers from the reads, construct a

de Bruijn graph from the set k-mers, simplify the graph and con-

struct contigs.

One crucial problem that persists in Eulerian assembly (and

genome assembly, in general) is the discovery and correction of mis-

assembly errors in draft genomes. We define a misassembly error as
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an assembled region that contains a significantly large insertion, de-

letion, inversion, or rearrangement that is the result of decisions

made by the assembly program. Identification of misassembly errors

is important because true biological variations manifest in similar

ways, and thus, these errors can be easily misconstrued as true gen-

etic variation (Salzberg 2005). This can mislead a range of genomic

analyses. We note that the exact definition of a misassembly error

can vary and adopt the standard definition used by QUAST

(Gurevich et al. 2013) and other tools. See Section 3.1 for this exact

definition. Once the existence and location of a misassembly are

identified, it can be removed by segmenting the contig at that

location.

We present a computational method for identifying misassembly

errors using a combination of short reads and optical mapping data.

Optical mapping is a system developed in 1993 (Schwartz et al.

1993) that can construct ordered, genome-wide, high-resolution re-

striction maps. The system works as follows (Aston and Schwartz

2006; Dimalanta et al. 2004): an ensemble of DNA molecules

adhered to a charged glass plate is elongated by fluid flow. An en-

zyme is then used to cleave them into fragments at loci where the

corresponding recognition sequence occurs. Next, the fragments are

highlighted with fluorescent dye and imaged under a microscope.

Finally, these images are analyzed to estimate the fragment sizes,

producing a molecular map. Since the fragments stay relatively sta-

tionary during the aforementioned process, the images capture their

relative order and size (Neely et al. 2011). Multiple copies of the

genome undergo this process, and a consensus map is formed that

consists of an ordered sequence of fragment sizes, each indicating

the approximate number of bases between occurrences of the recog-

nition sequence in the genome (Anantharaman and Mishra 2001).

Although optical mapping data have been used for discerning

structural variation in the human genome (Teague et al. 2010) and

for scaffolding and validating contigs for several large sequencing

projects—including those for various prokaryote species (Reslewic

et al. 2005; Zhou et al. 2002, 2004), rice (Zhou et al. 2007), maize

(Zhou et al. 2009), mouse (Church et al. 2009), goat (Dong et al.

2013), parrot (Howard et al. 2014) and Amborella trichopoda

(Chamala et al. 2013)—there are no publicly available tools for

using this data for misassembly detection using short read and op-

tical mapping data. In 2014, Mendelowitz and Pop (2014) further

this point stating that ‘There is, thus, a critical need for the contin-

ued development and public release of software tools for processing

optical mapping data, mirroring the tremendous advances made in

analytical methods for second- and third-generation sequencing

data’.

Our tool, which we call sc>/sc>, predicts which contigs are

misassembled and the approximate locations of the errors in the

contigs. It takes as input the paired-end sequence read data, con-

tigs, an ensemble of optical maps and the restriction enzymes used

to construct the optical maps. MISSEQUEL first uses the paired-end

read data to divide the contigs into two sets: those that are pre-

dicted to be correctly assembled and those that are not. Then the

set of contigs that are candidates for containing misassembly

errors are further divided into misassembled contigs and correctly

assembled contigs using optical mapping data. Fundamental to

the first step is the concept of a red–black positional de Bruijn

graph, which encapsulates recurring artifacts in the alignment

of the sequence read data to the contigs and their position in the

contig. The red vertices in this graph indicate if a contig is likely

to be misassembled and also flag the location where the misassem-

bly error occurs. These locations are called misassembly

breakpoints.

In the second stage of MISSEQUEL where optical mapping data

are used, the contigs conjectured to be misassembled are in silico di-

gested with the set of input restriction enzymes and aligned to the

optical map using Twin (Muggli et al. 2014). Based on the presence

or absence of alignment, a prediction of misassembly is made. The

in silico digestion process computationally mimics how each restric-

tion enzyme would cleave the segment of DNA defined by the con-

tig, returning ‘mini-optical maps’ that can be aligned to the optical

map for the whole genome. An important aspect of our work is that

it highlights the need to use another source of information, which is

independent of the sequence data but representative of the same gen-

ome, to identify misassembly errors. We show that optical mapping

data can be used as this information source.

We give results for the Francisella tularensis, loblolly pine, rice

and budgerigar genomes. Each genome was assembled using various

de Bruijn graph assemblers, and then misassembly errors were pre-

dicted. We present results for both real and simulated optical map-

ping data; simulated data were generated for the F.tularensis and

loblolly pine genomes, and real optical mapping data for the rice

and budgerigar genomes. Our results on F.tularensis show that

MISSEQUEL correctly identifies (on average) 86% and 80% of locally

and extensively misassembled contigs, respectively. This is a consid-

erable improvement on existing methods, which identified (on aver-

age) 26% and 16% of locally and extensively misassembled contigs,

respectively, in the same assemblies. The results on the loblolly pine

genome assemblies show similar improvement. Out of the 499 ex-

tensively and 3 locally misassembled contigs in the SOAPdenovo as-

sembly of rice, MISSEQUEL correctly identified 374 (75%) and 3

(100%) of them, respectively. Competing methods identified be-

tween 25% and 30% of these extensively misassembled contigs, and

none of these locally misassembled contigs. Lastly, we downloaded

the latest Illumina-454 hybrid assembly of budgerigar that was

released by Ganapathy et al. (2014), and predicted misassembly

errors using the accompanied Illumina paired-end data and optical

mapping data. MISSEQUEL correctly identified 10 777 of the 13 996

extensively misassembled contigs (77%) and 2350 (out of 2937)

locally misassembled contigs (80%). Hence, we tested our method

across four different genomes, which all vary in size and GC

content.

Our conclusions, based on these experimental results, are that

the specificity of MISSEQUEL significantly increases by incorporating

optical mapping data into the prediction of misassembly errors, and

the sensitivity of MISSEQUEL is substantially better in comparison to

competing methods that just use paired-end data. Therefore, we

show evidence that optical mapping data can be a powerful tool for

misassembly identification.

1.1 Related work
Amosvalidate (Phillippy et al. 2008), REAPR (Hunt et al. 2013) and

Pilon (Walker et al. 2014) are capable of identifying and correcting

misassembly errors. REAPR is designed to use both short insert and

long insert paired-end sequencing libraries; however, it can operate

with only one of these types of sequencing data. Amosvalidate,

which is included as part of the AMOS assembly package (Treangen

et al. 2011), was developed specifically for first generation sequenc-

ing libraries (Phillippy et al. 2008). iMetAMOS (Koren et al. 2014)

is an automated assembly pipeline that provides error correction

and validation of the assembly. It packages several open-source tools

and provides annotated assemblies that result from an ensemble of

tools and assemblers. Currently, it uses REAPR for misassembly

error correction. Pilon (Walker et al. 2014) detects a variety (includ-

ing misassembly) of errors in draft genomes and variant detection.
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Similar to REAPR, Pilon is specifically designed to use short insert

and long insert libraries but unlike REAPR and amosvalidate, it is

specifically designed for microbial genomes.

Many optical mapping tools exist and deserve mentioning,

including AGORA (Lin et al. 2012), SOMA (Nagarajan et al.

2008) and Twin (Muggli et al. 2014). AGORA (Lin et al. 2012)

uses the optical map information to constrain de Bruijn graph con-

struction with the aim of improving the resulting assembly. SOMA

(Nagarajan et al. 2008) uses dynamic programming to align in sil-

ico-digested contigs to an optical map. Twin (Muggli et al. 2014)

is an index-based method for aligning contigs to an optical map.

Because of its use of an index data structure, it is capable of align-

ing in silico-digested contigs orders of magnitude faster than com-

peting methods. Xavier et al. (2014) demonstrated misassembly

errors in bacterial genomes can be detected using proprietary

software.

Lastly, there are special purpose tools that have some relation

to MISSEQUEL in their algorithmic approach. Numerous assembly

tools use a finishing process after assembly, including Hapsembler

(Donmez and Brudno 2011), LOCAS (Klein et al. 2011),

Meraculous (Chapman et al. 2011) and the ‘assisted assembly’ al-

gorithm (Gnerre et al. 2009). Hapsembler (Donmez and Brudno

2011) is a haplotype-specific genome assembly toolkit that is de-

signed for genomes that are highly polymorphic. RACA (Kim et al.

2013) and SCARPA (Donmez and Brudno 2013) are two scaffold-

ing algorithms that perform paired-end alignment to the contigs as

an initial step and, thus, are similar to our algorithm in that

respect.

2 Methods

MISSEQUEL can be broken down into four main steps: recruitment of

reads to contigs, construction of the red–black positional de Bruijn

graph, misassembly error prediction and misassembly verification

using optical mapping data. We explain each of these steps in detail

in the following subsections.

2.1 Recruitment of reads and threshold calculation
MISSEQUEL first aligns reads to contigs to identify regions that con-

tain abnormal read alignments. Collapsed or expanded repeats will

present as the read coverage being greater or lower than the ex-

pected genome coverage in the region that has been misassembled.

Similarly, inversion and rearrangement errors will present as the

alignment of the mate-pairs being rearranged. Figure 1 illustrates

these concordant and discordant read alignments. More specific-

ally, this step consists of aligning all the (paired-end) reads to all

the contigs and then calculating three thresholds, DL, DU and C.

The range ½DL;DU� defines the acceptable read depth, and C defines

the maximum allowable number of reads whose mate-pair aligns

in an inverted orientation. To calculate these thresholds, we

consider all alignments of each read as opposed to just the best

alignment of each read since misassembly errors frequently

occur within repetitive regions where the reads will align to mul-

tiple locations. MISSEQUEL performs this step using BWA (version

0.5.9) in paired-end mode with default parameters (Li and Durbin

2009). Subsequently, after alignment, each contig is treated as a

series of consecutive 200-bp regions. These are sampled uniformly

at random ‘ times, and the mean (md) and the standard

deviation (rd) of the read depth and the mean (mi) and the standard

deviation (ri) of the number of alignments where a discordant

mate-pair orientation is witnessed are calculated from these

sampled regions. DL is set to the maximum of f0;ld � 3rdg, DU is

set to ld þ 3rd and C is set to li þ 3ri. The default for ‘ is 1
20th of

the contig length, and this parameter can be changed in the input

to MISSEQUEL.

2.2 Construction of the red–black positional de Bruijn

graph
After threshold calculation, the red–black positional de Bruijn graph

is constructed. For clarity, we begin by describing the positional de

Bruijn graph, given by Ronen et al. (2012) and then define the red–

black positional de Bruijn graph. Although the edges in the

traditional de Bruijn graph correspond to k-mers, the edges in the

positional de Bruijn graph correspond to k-mers and their inferred

positions on the contigs (positional k-mers). Hence, the positional

de Bruijn graph Gk;U is defined for a multiset of positional k-mers

and parameter U and is constructed in a similar manner to the trad-

itional de Bruijn graph using an A-Bruijn graph framework

from (Pevzner et al. 2004). Given a k-mer sk, let prefixðskÞ be the

first k� 1 nucleotides of sk, and suffixðskÞ be the last k� 1 nucleo-

tides of sk. Each positional k-mer ðsk; pÞ in the input multiset corres-

ponds to a directed edge in the graph between two positional

ðk� 1Þ-mers, ðprefixðskÞ;pÞ and ðsuffixðskÞ; pþ 1Þ. After all edges

are formed, the graph undergoes a gluing operation. A pair of pos-

itional ðk� 1Þ-mers, ðsk�1; pÞ and ðsk�1
0; p0Þ, are glued together into

a single vertex if sk�1 ¼ sk�1
0 and p 2 ½p0 �U; p0 þ U�. Two pos-

itional ðk� 1Þ-mers are glued together if their sequences are the

same and their positions are within U from each other. We refer to

Correct assembly
A R CR A R CR

 Inversion
A R CR

mate-pair 1 mate-pair 2 mate-pair 3 mate-pair 1 mate-pair 2 mate-pair 3mate-pair 1 mate-pair 2 mate-pair 3

 Rearrangment

A R CR
v

Correct assembly (read depth)
A R C

v

Collapsed repeat Expanded repeat:
A R CRR

v

(a) (b) (c)

(d) (e) (f)

Fig. 1. An illustration about the systematic alterations that occur with rearrangements, inversions, collapsed repeats and expanded repeats. (a) Proper read align-

ment where mate-pair reads have the correct orientation and distance from each other. A rearrangement or inversion will present itself by the orientation of the

reads being incorrect and/or the distance of the mate-pairs being significantly smaller or significantly larger than the expected insert size. This is shown in (b) and

(c), respectively. (d) The proper read depth, which is uniform across the genome. (e) A collapsed repeat, which results in the read depth being greater than ex-

pected. (f) A expanded repeat, which results in the read depth being lower than expected
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the multiplicity of a positional ðk� 1Þ-mer ðsk�1; pÞ as the number

of occurrences where sk�1 clustered at position p.

MISSEQUEL constructs the red–black positional de Bruijn graph

from the alignment of the reads to the contigs. The red–black pos-

itional de Bruijn graph contains positional k-mers and is constructed

in an identical way as the positional de Bruijn graph with the add-

ition that each vertex (ðk� 1Þ-mer) has an associated red or black

color attributed to it that is defined using DL, DU and C. In addition

to the multiplicity of each positional ðk� 1Þ-mer, the number of

positional ðk� 1Þ-mers that originated from a read whose mate-pair

did not align in the conventional direction is stored at each vertex.

When the multiplicity is less than DL or greater than DU or if the

observed frequency of discordant mate-pair orientation is greater

than C, then the vertex is red; otherwise it is black.

2.3 Misassembly conjecture and breakpoint estimation
A red–black positional de Bruijn graph is constructed for each con-

tig, and misassembly errors in each contig are detected by searching

for consecutive red vertices in the corresponding graph. Depth-first

search is used for the graph traversal. If there are greater than 50

consecutive red vertices, then the contig is conjectured to be misas-

sembled. The breakpoint in the contig can be determined by recover-

ing the position of the corresponding red vertices (e.g. the positional

ðk� 1Þ-mers). The number of consecutive red vertices needed to

consider it misassembled can be changed via a command line param-

eter in MISSEQUEL. Our experiments were performed with the default

(e.g. 50), which corresponds to a region in the contig that has length

�50 bp. After this stage of the algorithm, we take contigs having

regions exceeding that threshold as a set of contigs that are conjec-

tured to be misassembled and their transitions in and out of those re-

gions as breakpoints.

2.4 Misassembly verification
Lastly, we use optical mapping data to verify whether a contig that

is conjectured to be misassembled indeed is. Verification is based on

the expectation that, after in silico digestion, a correctly assembled

contig has a sequence of fragment sizes that is similar to that in the

optical map at the corresponding locus in the genome. In other

words, an in silico-digested contig should align to some region of the

optical map since both are derived from the same region in the gen-

ome. Conversely, as misassembled contigs are not faithful recon-

structions of any part of the genome, when in silico digested, their

sequence of fragments will likewise not have a corresponding locus

in the optical map to which it aligns.

Optical maps contain measurement error at each fragment size,

so some criteria is needed to decide whether variation in fragment

size of an in silico-digested contig and that of an optical map at a

particular locus is due to variation in the size of the physical frag-

ments or a consequence of optical measurement error. Because of

this ambiguity, and the necessary tolerances to ensure correctly

assembled contigs align to the locus in the optical map, misas-

sembled contigs may also align to loci in the optical map, which by

coincidence have a fragment sequence similar to the contig within

the threshold margin of error. Although there are various sophisti-

cated approaches to determining statistical significance of an align-

ment, such as by Sarkar et al. (2012), we use a v2 model discussed

by Nagarajan et al. (2008) and take the cumulative density function

�0.85 as evidence of alignment, which we found to work well

empirically.

In addition, a misassembled contig only fails to align to the op-

tical map if the enzyme recognition sequence, and thus the cleav-

age sites, exist in the contig in a manner that disrupts a good

alignment (e.g. a misassembled contig with an inverted segment

may still align if cleavage sites flank the inverted segment). This

implies that (i) some enzymes produce optical maps that have

greater performance in identifying misassembly errors and

(ii) alignment to the optical map is not as strong evidence for cor-

rect assembly as non-alignment to the optical map is for misassem-

bly. This leads to the conclusion that an ensemble of optical maps

(each made with a different enzyme) has a greater chance at reveal-

ing misassembly errors than a single optical map. As acquiring

three optical maps for one genome is reasonably accessible for

many sequencing projects, the process of in silico digestion and

alignment is repeated for three enzymes. A contig is deemed to be

misassembled if it fails to align to any one of the three optical

Fig. 2. An example illustrating the red black positional de Bruijn graph (k ¼ 4;D ¼ 1), the positional de Bruijn graph and the de Bruijn graph on a set of aligned

reads, with their corresponding sets of k-mers and positional k-mers. There exists a region in the genome that extremely high coverage, which would suggest a

possible misassembly error. Namely, the positional k-mers (GCCA, 111), (CCAT, 112) and (CATT, 113) have multiplicity 10, whereas all other positional k-mers

have multiplicity 5. In the de Bruijn graph where the position is not taken into account, all k-mers have multiplicity of 10 and there is no evidence of a misas-

sembled region. We note that in this example no vertex gluing operations occur but in more complex instances, vertex gluing will occur when equal k-mers align

at adjacent positions
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maps. The alignment is performed using Twin (Muggli et al. 2014)

(with default parameters) and then these results are filtered accord-

ing to the v2 model mentioned above. For our experiments, optical

maps were simulated by in silico digesting reference genomes, add-

ing normally distributed noise with a 150 bp standard deviation

and discarding fragments smaller than 700 bp.

3 Analyses

3.1 Datasets using simulated optical mapping data
Our first dataset consisted of approximately 6.9 million paired-

end 101 bp reads from the prokaryote genome F.tularensis,

generated by Illumina Genome Analyzer (GA) IIx platform. It was

obtained from the NCBI Short Read Archive [accession

number (SRA:SRR063416)]. The reference genome was

also downloaded from the NCBI website [Reference genome

(RefSeq:NC_006570.2)]. The F.tularensis genome is 1 892 775 bp

in length with a GC content of 32%. As a measure of quality assur-

ance, we aligned the reads to the F.tularensis genome using BWA

(version 0.5.9) (Li and Durbin 2009) with default parameters. We

call a read mapped if BWA outputs an alignment for it and

unmapped otherwise. Analysis of the alignments revealed that

97% of the reads mapped to the reference genome representing an

average depth of approximately 367�.

Our second dataset consisted of approximately 31.3 million

paired-end 100 bp reads from the loblolly pine (Pinus taeda)

genome (Neale et al. 2014), which has GC contact of 38%. We

downloaded the reference genome from the pine genome website

(http://pinegenome.org/pinerefseq) and simulated reads from the

largest five hundred scaffolds from the reference using ART (Huang

et al. 2012) (‘art illumina’). ART was ran with parameters that

simulated 100 bp paired end reads with 200 bp insert size and 50x

coverage. The data for this experiment are available on the

MISSEQUEL website. We simulated an optical map using the reference

genome for F.tularensis and loblolly pine since there is no publicly

available one for these genomes.

We assembled both sets of reads with a wide variety of state-of-

the-art assemblers. The versions used were those that were publicly

available before or on September 1, 2014: SPAdes (version 3.1)

(Bankevich et al. 2012); Velvet (version 1.2.10) (Zerbino and Birney

2008); SOAPdenovo (version 2.04) (Li et al. 2010); ABySS (version

1.5.2) (Simpson et al. 2009) and IDBA-UD (version 1.1.1) (Peng

et al. 2012). SPAdes outputs two assemblies: before repeat reso-

lution and after repeat resolution—we report both. Some of the

assemblers emitted both contigs and scaffolds. We considered con-

tigs only but note that all scaffolds had a greater number of misas-

sembly errors. We emphasize that our purpose here is not to

compare the various assemblers, but instead it is to demonstrate that

all assemblers produce misassembly errors, which are in need of con-

sideration and correction.

We used QUAST (Gurevich et al. 2013) in default mode to

evaluate the assemblies. Hence, our experiments use the published

reference genomes as being ground truth and use the published ref-

erences to identify misassembly errors in the other assemblies

through QUAST. We note that this is imperfect since the reference

genomes are likely not error-free. QUAST defines misassembly

error as being extensive or local. An extensively misassembled con-

tig is defined as one that satisfies one following conditions: (i) the

left flanking sequence aligns over 1 kb away from the right flank-

ing sequence on the reference; (ii) flanking sequences overlap on

more than 1 kb and (iii) flanking sequences align to different

strands or different chromosomes, whereas a local misassembled

contig is one that satisfies the following conditions: (i) two or more

distinct alignments cover the breakpoint; (ii) the gap between left

and right flanking sequences is less than 1 kb and the left and right

flanking sequences both are on the same strand of the same

chromosome of the reference genome. We made a minor alteration

to QUAST to output which contigs contain local misassembly

errors. A contig can contain both extensive and local misassembly

errors. Any correctly assembled contig is one that does not contain

either type of error.

3.1.1 Detection of misassembly errors in F.tularensis

Table 1 gives the assembly statistics corresponding to this experi-

ment. Comparable assembly results on this data were reported by

Ilie et al. (2014), though in some cases we used more recent software

releases (e.g. for SPAdes). Note that the number of locally misas-

sembled contigs and the number of extensively misassembled contigs

is not disjoint. A contig can be locally and extensively misassembled.

Thus, Table 1 gives the number of contigs having at least one exten-

sive misassembly error and the number of contigs having at least one

local misassembly error.

Table 2 shows the results for (i) MISSEQUEL with paired-end data

only; (ii) MISSEQUEL with optical mapping data only and (iii)

MISSEQUEL with both optical mapping and paired-end data to dem-

onstrate the benefit of combining both types of data. As demon-

strated by these results, using short paired-end data alone produced

a high false-positive rate (FPR) due to ambiguous read mapping in

Table 1. The performance comparison between major assembly tools on the F.tularensis dataset, which has a genome length of

1 892 775 bp and 6 907 220 number of 101 bp reads, using QUAST in default mode (Gurevich et al. 2013)

Assembler No. contigs (no. unaligned) N50 Largest (bp) Total (bp) MA local MA MA (bp) GF (%)

Velvet 358 (3þ 35 part) 7377 39 381 1 762 202 11 36 84 965 92.09

SOAPdenovo 307 (3þ 31 part) 8767 39 989 2 018 158 10 35 96 258 92.05

ABySS 96 (1 part) 27 975 88 275 1 875 628 64 32 1 330 684 95.87

SPAdes (�rr) 102 (2þ 11 part) 25 148 87 449 1 788 634 11 30 258 309 92.81

SPAdes (þrr) 100 (2þ 17 part) 26 876 87 891 1 797 197 23 31 497 356 93.75

IDBA 109 (1þ 10 part) 23 223 87 437 1 768 958 10 31 221 087 92.64

All statistics are based on contigs no shorter than 500 bp. N50 is defined as the length for which the collection of all contigs of that length or longer contains at

least half of the sum of the lengths of all contigs and for which the collection of all contigs of that length or shorter also contains at least half of the sum of the

lengths of all contigs. The no. unaligned is the number of contigs that did not align to the reference genome, or they were only partially aligned (part). Total is

sum of the length of all contigs. MA is the number of (extensively) misassembled contigs. Local MA is the total number of contigs that had local misassemblies.

MA (bp) is the total length of the MA contigs. GF is the genome fraction percentage, which is the fraction of genome bases that are covered by the assembly.

�rr and þþrr denotes before and after repeat resolution, respectively.
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locations that contain repetitive regions. This is an inherent short-

coming of short paired-end data and demonstrates that to decrease

the FPR, another source of information must be used in combin-

ation. Optical mapping data have a much lower FPR and when used

in combination with paired-end data, produces optimal results. The

lowest FPR was witnessed when both optical mapping and paired-

end data were used. In some cases, the reduction in the FPR was

dramatic: from 87% (ABySS, paired-end data) to 13% (ABySS,

paired-end and optical mapping data). The true-positive rate (TPR)

of locally misassembled contigs was between 77% and 100% when

both paired-end and optical mapping data were used. Lastly, TPR of

extensively misassembled contigs was between 55% and 100%

when both paired-end and optical mapping data were used.

In our experiments, we iterate through combinations of three

enzymes from the REBASE enzyme database (Roberts et al. 2010)

and use the set of enzymes that performed best. Our results

demonstrate that with a good enzyme choice over half of all exten-

sively misassembled contigs and over 75% of locally misassembled

contigs can be identified with only a 9–22% false discovery rate.

3.1.2 Detection of misassembly errors in loblolly pine

Table 3 gives the assembly statistics corresponding to this experi-

ment. The results for the loblolly pine are listed in Table 4. Both

Velvet and SOAPdenovo produced zero misassembled contigs on

this dataset, so we do not include them in Table 4. MISSEQUEL cor-

rectly identifies between 31% and 100% of extensively misas-

sembled contigs and between 57% and 73% of locally

misassembled contigs. The FPR was between 0.6% and 43%.

Although REAPR has a lower FPR (between 3% and 11%), it is

only capable of identifying a small number of extensively misas-

sembled contigs (between 2% and 14%) and a small number of lo-

cally misassembled contigs (between 2% and 27%). Similar to the

Table 2. The performance comparison of our method on the F.tularensis dataset

Correction method Assembler MA TPR local MA TPR FPR

misSEQuel (paired-end data only) Velvet 100% (11/11) 100% (36/36) 58% (180/312)

SOAPdenovo 100% (10/10) 100% (35/35) 63% (165/263)

ABySS 100% (64/64) 100% (32/32) 87% (20/23)

SPAdes (�rr) 100% (11/11) 100% (30/30) 83% (52/63)

SPAdes (þþrr) 100% (23/23) 100% (31/31) 86% (49/57)

IDBA 100% (10/10) 100% (31/31) 38% (57/149)

misSEQuel (optical mapping data only) Velvet 55% (6/11) 69% (25/36) 24% (76/312)

SOAPdenovo 80% (8/10) 63% (22/35) 29% (77/263)

ABySS 69% (44/64) 88% (28/32) 13% (3/23)

SPAdes (�rr) 91% (10/11) 87% (26/30) 21% (13/63)

SPAdes (þþrr) 87% (20/23) 81% (25/31) 16% (9/57)

IDBA 90% (9/10) 77% (24/31) 10% (15/149)

misSEQuel (paired-end and optical mapping data) Velvet 55% (6/11) 100% (36/36) 22% (68/312)

SOAPdenovo 80% (8/10) 84% (21/35) 20% (53/263)

ABySS 69% (44/64) 88% (28/32) 13% (3/23)

SPAdes (2rr) 91% (10/11) 87% (26/30) 19% (12/63)

SPAdes (11rr) 97% (20/23) 81% (25/31) 16% (9/57)

IDBA 90% (9/10) 77% (24/31) 9% (14/149)

REAPR Velvet 55% (6/11) 11% (4/36) < 1% (2/312)

SOAPdenovo 20% (2/10) 14% (5/35) 2% (6/263)

ABySS 13% (8/64) 13% (4/32) 4% (1/23)

SPAdes (�rr) 27% (3/11) 27% (8/30) 5% (3/63)

SPAdes (þþrr) 0% (0/23) 19% (6/31) 11% (6/57)

IDBA 40% (4/10) 13% (4/31) 4% (6/149)

Pilon Velvet 27% (3/11) 3% (1/36) < 1% (3/312)

SOAPdenovo 10% (1/10) 9% (3/35) 2% (5/263)

ABySS 3% (2/64) 6% (2/32) 4% (3/23)

SPAdes (�rr) 0% (0/11) 3% (1/30) 5% (5/63)

SPAdes (þþrr) 0% (0/23) 10% (3/31) 12% (7/57)

IDBA 0% (0/10) 10% (3/31) 4% (5/149)

The TPR in this context is a contig that is misassembled and is predicted to be so. The FPR is a correctly assembled contig that was predicted to be misas-

sembled. The TPR and FPR are given as percentages with the raw values given in brackets. Bold values emphasize the benefit of using both data sources.

Table 3. The performance comparison between major assembly tools on Loblolly pine genome dataset (62 647 324 bp, 31.3 million reads,

100 bp) using QUAST in default mode (Gurevich et al. 2013)

Assembler No. contigs (no. unaligned) N50 Largest (bp) Total (bp) MA local MA MA (bp) GF (%)

Velvet 13 327 (0) 1740 10 823 51 851 131 0 0 0 62.21

SOAPdenovo 16 126 (0þ 1 part) 7950 63 004 57 205 817 0 0 0 90.01

ABySS 4586 (16þ 89 part) 37 089 201 382 63 349 408 127 715 1 391 565 98.17

SPAdes (�rr) 20 671 (4þ 10 part) 4809 44 993 45 079 764 7 11 65 079 81.30

SPAdes (þrr) 8607 (7þ 102 part) 16 957 108 442 59 730 939 299 57 3 734 609 94.57

IDBA 22 409 (3þ 31 part) 3990 40 213 49 765 854 61 200 292 769 79.03
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results of F.tularensis, Pilon had a lower FPR but also lower TPRs

than REAPR. This is unsurprising since ‘it is optimized to use both

fragment (or small) and long (or large) insert libraries’ and was cre-

ated for microbial genomes (Walker et al. 2014).

Again, the restriction enzymes used in our experiments were

chosen to be optimal by considering the set of all possible enzymes

in the aforementioned database. Nonetheless, we note that if the en-

zyme combination was chosen at random, then the expected FPR

and TPR would decrease by a small fraction for majority of the

assemblies considered. The Supplementary Material shows proto-

typical ROC curves and heat-maps illustrating the density of enzyme

combinations at various detection rates.

3.2 Datasets using real optical mapping data
We evaluated the performance of MISSEQUEL on rice and budgerigar.

These genomes were chosen because they have available sequence and

optical mapping data, are diverse in size and have undergone a signifi-

cant level of verification. Rice and budgerigar have genome sizes of

430 Mb and 1.58 Gbp, respectively (Kawahara et al. 2013; Tiersch

and Wachtel 1991). The size of budgerigar is only predicted (Tiersch

and Wachtel 1991). The validated genomic regions will allow us to

use QUAST to determine FPR and TPR, as in Subsection 3.1.

3.2.1 Performance on rice genome

The sequence dataset consists of approximately 134 million 76-bp

paired-end reads for rice from the japonica cultivar Nipponbare,

generated by Illumina, Inc. on the Genome Analyzer (GA) IIx plat-

form (Kawahara et al. 2013). These reads were obtained from the

NCBI Short Read Archive (accession SRX032913). The optical map

for this same cultivar of rice was constructed by Zhou et al. (2007)

using SwaI as the restriction enzyme. This optical map was

assembled from single molecule restriction maps into 14 optical

map contigs, labeled as 12 chromosomes, with chromosome labels 6

and 11 both containing two optical map contigs. Both the sequence

and optical mapping data were generated as part of a larger project

that produced a ‘revised, error-corrected, and validated assembly of

the Nipponbare cultivar of rice’ (Kawahara et al. 2013). This refer-

ence genome, termed Os-Nipponbare-Reference-IRGSP-1.0 is pub-

licly available on the Rice Annotation Project (http://rice.

plantbiology.msu.edu/annotation_pseudo_current.shtml)

The paired-end data were assembled using SOAPdenovo using

default parameters. This assembly consists of 11 440 contigs larger

than 500 bp, cove 81.3% of the reference genome (22 317 126 in

size, 43.7% GC content). It has an N50 statistic of 1 680 499 exten-

sively misassembled contigs and 3 locally misassembled contigs. We

ran MISSEQUEL with default parameters and the SOAPdenovo assem-

bly, optical map and paired-end data as input. Similarly, we ran

REAPR with default parameters, and the SOAPdenovo assembly,

and paired-end data as input. Out of the 499 extensively misas-

sembled contigs, MISSEQUEL identified 374 of them (75%), whereas

REAPR identified 30 (6%) and Pilon identified 25 (5%). Out of the

three locally misassembled contigs, MISSEQUEL identified all three,

but REAPR and Pilon identified none. Lastly, MISSEQUEL deemed

that 821 of the correctly assembled contigs were misassembled

(<1% FPR), whereas REAPR and Pilon deemed that 800 and 522

were deemed misassembled (<1% FPR), respectively. We further

note that both MISSEQUEL and REAPR agreed on 472 of these cor-

rectly assembled contigs; i.e. both REAPR and MISSEQUEL predicted

that 472 correctly assembled contigs are misassembled. This could

suggest that a broadened definition of misassembly by QUAST

would also deem these contigs to be misassembled.

3.2.2 Misassembly errors in the draft genome of budgerigar

A concerted effort has been in understanding the biodiversity of

many bird species (Jarvis et al. 2014)—including the budgerigar

genome—and thus, a significant amount of data have been gener-

ated for budgerigar. Pacific Biosciences (PacBio) data, short read

Illumina data, 454 and optical mapping data have been generated

and used for the assembly of this genome. The sequence and op-

tical map data for the budgerigar genome were generated for the

Assemblathon 2 project of Bradnam et al. (2013). Budgerigar has a

GC content of approximately 43.8% (Jarvis et al. 2014) and con-

tains GC-rich (� 75%) regions (Howard et al. 2014). Sequence

data consist of a combination of Roche 454, Illumina and PacBio

reads, providing 16�, 285� and 10� coverage, respectively, of the

genome. All sequence reads are available at the NCBI Short Read

Archive (accession ERP002324). For our analysis, we consider the

assembly generated using CABOG (Miller et al. 2008), which was

completed by the CBCB team (Koren and Phillippy) as part of

Assemblathon 2 (Bradnam et al. 2013). The optical mapping data

were created by Zhou, Goldstein, Place, Schwartz and Bechner

using the SwaI restriction enzyme and consists of 92 separate

pieces.

Ganapathy et al (2014) released three hybrid assemblies; namely,

(i) budgerigar 454-Illumina hybrid v6.3 using the CABOG (Miller

et al. 2008) assembler; (ii) budgerigar PacBio corrected reads (PBcR)

Table 4. The performance comparison of our method on the loblolly pine dataset

Correction method Assembler MA TPR local MA TPR FPR

misSEQuel ABySS 31% (40/127) 57% (405/715) 43% (1604/3754)

SPAdes (2rr) 100% (7/7) 73% (8/11) <1% (135/20 653)

SPAdes (1rr) 67% (199/299) 67% (38/57) 38% (3117/8254)

IDBA 52% (32/61) 73% (145/200) 19% (4258/22 150)

REAPR ABySS 7% (9/127) 2% (12/715) 3% (112/3754)

SPAdes (�rr) 14% (1/7) 27% (3/11) 6% (1323/20 653)

SPAdes (þrr) 7% (21/299) 5% (3/57) 5% (424/8254)

IDBA 2% (1/61) 6% (12/200) 11% (2354/22 150)

Pilon ABySS 7% (8/127) 2% (11/715) 2% (70/3754)

SPAdes (�rr) 14% (1/7) 18% (2/11) 4% (923/20 653)

SPAdes (þrr) 5% (16/299) 5% (3/57) 5% (388/8254)

IDBA 2% (1/61) 5% (12/200) 8% (1823/22 150)

Again, a true positive in this context is a contig that is misassembled and is predicted to be so. A false positive is a correctly assembled contig that was predicted

to be misassembled. Bold values highlight MISSEQUEL results.
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hybrid using the CABOG assembler and (iii) budgerigar Illumina-

454 hybrid using the SOAPdenovo (version 2.04) (Li et al. 2010) as-

sembler. We downloaded the PBcR assembly (ii), the Illumina-454

hybrid assembly (iii), in addition to the optical mapping data and

pair-end data. The Illumina-454 assembly has 212 203 contigs

(54 829 contigs � 500 bp), N50 of 51 034 and largest contig of

500 974 (Howard et al. 2014). The PBcR assembly has 77 556 con-

tigs, average, N50 of 102 885 and largest contig of 849 044

(Howard et al. 2014). We ran QUAST to evaluate the Illumina-454

hybrid assembly (all contigs � 500 bp), using the PBcR assembly as

the reference genome. It reported 13 996 extensively misassembled

contigs and 2937 locally misassembled contigs. Thus, there are

39 394 contigs that contain no misassembly error. We ran

MISSEQUEL on the Illumina-454 hybrid assembly on this using the

paired-end and optical mapping. MISSEQUEL correctly identified

10 777 (out of 13 996) extensively misassembled contigs (77% MA

TPR) and 2350 (out of 2937) locally misassembled contigs (80%

local MA TPR); however, it incorrectly identified 4023 (out of the

39 394) as being misassembled (10%).

3.3 Practical considerations: memory and time
We evaluated the memory and time requirements of MISSEQUEL.

Since MISSEQUEL is a multi-threaded application, its wall-clock time

depends on the computing resources available to the user.

MISSEQUEL required a maximum of 8 threads, 16 GB and 1.5 h on all

assemblies of F.tularensis and a maximum of 20 GB and 2.5 h to

complete on all assemblies of loblolly pine. Most genome assemblers

require an incomparably greater amount of time and memory and

thus, from a practical perspective, the requirements of MISSEQUEL

are not a significant increase. The difference in the resource require-

ments of MISSEQUEL in comparison to modern assemblers is since it

operates contig-wise rather than genome-wise and therefore, only

deals with a significantly smaller portion of the data at a single time.

We conclude by mentioning that MISSEQUEL is not optimized for

memory and time and both could be further reduced but reimple-

menting the red–black positional de Bruijn graph using memory-

and time-succinct data structures.

4 Discussion and conclusions

This article describes the first non-proprietary computational

method for identifying misassembly errors using short read sequence

data and optical mapping data. Our results demonstrate (i) a sub-

stantial number of misassembly errors can be identified in draft gen-

omes of prokaryote and eukaryote species; (ii) our method works on

genomes that vary by GC-content and size; (iii) it can be used in

combination with any assembler and thus, making it a viable post-

processing step for any assembly and (iv) addresses the need for

methods to analyze optical mapping data.

One of our main contributions is the demonstration that optical

mapping can have significant benefit for misassembly error detec-

tion. A high FPR will result using paired-end data alone because of

ambiguous read mapping. Furthermore, superior results were al-

ways witnessed using paired-end data and optical mapping data. In

some cases, the improvement of using both datasets over a single

dataset was substantial. For example, the Velvet assembly of

F.tularensis had 312 correctly assembled contigs; 76 of these 312

were deemed to be misassembled when MISSEQUEL was ran with op-

tical mapping data alone, whereas this improved to 68 out of 312

when both paired-end and optical mapping data were used.

Similarly, when MISSEQUEL was ran on this same assembly, 69%

(25/36) of locally misassembled contigs were identified, whereas this

improved to 100% (36/36) when both datasets were used.

Lastly, we point out two areas that warrant future work. One

area that merits investigation is to develop methods that will distin-

guish between structural variation heterozygosity and paralogous

variation and misassembly errors. MISSEQUEL is not able to detect

the difference between structural variation and misassembly

errors—and in fact, the high FPR might be due to this type of vari-

ation—however, methods that do so could be very valuable for fin-

ishing draft genomes. Lastly, we conclude by suggesting that

efficient algorithmic selection of enzymes that will yield such in-

formative optical maps in a de novo scenario is an area for interest-

ing and important future work.
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