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Abstract 43 

Introduction: Scalp electroencephalography (EEG) is a cornerstone in the diagnosis and treatment of 44 

epilepsy, but routine EEG is often interpreted as normal without identification of epileptiform activity 45 

during expert visual review. The absence of interictal epileptiform activity on routine scalp EEGs can 46 

cause delays in receiving clinical treatment. These delays can be particularly problematic in the diagnosis 47 

and treatment of people with drug-resistant epilepsy (DRE) and those without structural abnormalities 48 

on MRI (i.e., MRI negative). Thus, there is a clinical need for alternative quantitative approaches that can 49 

inform diagnostic and treatment decisions when visual EEG review is inconclusive. In this study, we 50 

leverage a large population-level routine EEG database of people with and without focal epilepsy to 51 

investigate whether normal interictal EEG segments contain subtle deviations that could support the 52 

diagnosis of focal epilepsy. 53 

Data & Methods: We identified multiple epochs representing eyes-closed wakefulness from 19-channel 54 

routine EEGs of a large and diverse neurological patient population (N=13,652 recordings, 12,134 unique 55 

patients). We then extracted the average spectral power and phase-lag-index-based connectivity within 56 

1-45Hz of each EEG recording using these identified epochs. We decomposed the power spectral density 57 

and phase-based connectivity information of all the visually reviewed normal EEGs (N=6,242) using 58 

unsupervised tensor decompositions to extract dominant patterns of spectral power and scalp 59 

connectivity. We also identified an independent set of routine EEGs of a cohort of patients with focal 60 

epilepsy (N= 121) with various diagnostic classifications, including focal epilepsy origin (temporal, 61 

frontal), MRI (lesional, non-lesional), and response to anti-seizure medications (responsive vs. drug-62 

resistant epilepsy). We analyzed visually normal interictal epochs from the EEGs using the power-spectral 63 

and phase-based connectivity patterns identified above and evaluated their potential in clinically 64 

relevant binary classifications. 65 

Results: We obtained six patterns with distinct interpretable spatio-spectral signatures corresponding to 66 

putative aperiodic, oscillatory, and artifactual activity recorded on the EEG. The loadings for these 67 

patterns showed associations with patient age and expert-assigned grades of EEG abnormality. Further 68 

analysis using a physiologically relevant subset of these loadings differentiated patients with focal 69 

epilepsy from controls without history of focal epilepsy (mean AUC 0.78) but were unable to differentiate 70 

between frontal or temporal lobe epilepsy. In temporal lobe epilepsy, loadings of the power spectral 71 

patterns best differentiated drug-resistant epilepsy from drug-responsive epilepsy (mean AUC 0.73), as 72 

well as lesional epilepsy from non-lesional epilepsy (mean AUC 0.67), albeit with high variability across 73 

patients. 74 

Significance: Our findings from a large population sample of EEGs suggest that normal interictal EEGs of 75 

patients with epilepsy contain subtle differences of predictive value that may improve the overall 76 

diagnostic yield of routine and prolonged EEGs. The presented approach for analyzing normal EEGs has 77 

the capacity to differentiate several diagnostic classifications of epilepsy, and can quantitatively 78 

characterize EEG activity in a scalable, expert-interpretable, and patient-specific fashion. Further 79 

technical development and clinical validation may yield normal EEG-derived computational biomarkers 80 

that could augment epilepsy diagnosis and assist clinical decision-making in the future. 81 

Keywords: normal interictal EEGs, quantitative EEG analysis, spectral power, phase lag index, focal 82 

epilepsy, non-lesional epilepsy, drug-resistant epilepsy, unsupervised learning, tensor decomposition 83 
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1. Introduction 84 

Epilepsy is a neurological disorder characterized by recurrent, unprovoked seizures and is estimated to 85 

affect ~50 million people worldwide1. A scalp electroencephalogram (EEG) non-invasively records the 86 

electrical activity of the brain, and its findings play a critical role in the clinical diagnosis and 87 

management of epilepsy2–4. The diagnostic yield of a short 20–40-minute routine EEG is determined by 88 

the presence of spontaneous transient interictal epileptiform discharges (IEDs)5–7. However, ~30-55% of 89 

routine EEGs of patients with epilepsy and 9-10% of prolonged video EEGs show no evidence of IEDs and 90 

delay the diagnosis of epilepsy12–17. 91 

In newly diagnosed epilepsy, anti-seizure medications (ASMs) are the first choice of therapy. However, 92 

despite a successful diagnosis, about half the patients do not respond to their first ASM, and about a 93 

third continue to have uncontrolled seizures despite multiple ASM trials14,15. Therefore, the 94 

determination of drug-resistant epilepsy (DRE) can take several months or years, while the patients 95 

continue to experience seizures and comorbidities. Thus, the early identification of DRE is essential to 96 

reduce disease burden and to initiate evaluations for additional therapies such as resective surgery and 97 

electrical brain stimulation. In focal epilepsy, magnetic resonance imaging (MRI) scans of the brain can 98 

help clarify the disease etiology by identifying structural abnormalities that lead to seizures16. In MRI 99 

negative, i.e., non-lesional, epilepsy patients, normal EEGs can cause further delays in identifying the 100 

epileptogenic brain regions for treatment. Broadly, the inability to identify interictal epileptiform activity 101 

during visual review of routine EEGs can delay the initiation of ASMs, increase healthcare costs18, and put 102 

the patient at an increased risk of seizure-related injuries and comorbidities18,19. 103 

As such, there is a clear need for alternative approaches that can assist with early diagnosis and 104 

treatment planning when traditional routine EEG tests are inconclusive. Our goal in this study is to 105 

develop a quantitative approach to explore automatic analysis of normal interictal EEGs, which could 106 

provide early, objective, and inexpensive clinical decision support. Emerging evidence suggests that 107 

quantitative approaches based on expert EEG features and black-box machine learning models have the 108 

potential to improve the diagnostic value of routine EEGs and augment decision-making in epilepsy17–24. 109 

However, expert-defined features may not sufficiently capture the complexity of multivariate EEG activity 110 

and black-box models face significant robustness and interpretability issues. Building on prior work, here 111 

we take a data-driven and interpretable approach -- leveraging a large population database using 112 

unsupervised tensor decompositions -- to identify spectral power and connectivity patterns of normal 113 

interictal EEG and evaluate their potential in differentiating various focal epilepsy classifications. 114 

In this study, we retrospectively analyzed a large dataset of 13,652 routine EEGs from a diverse 115 

neurological population of 12,134 adults and a cohort of 121 adults with confirmed focal epilepsy. 116 

Patterns of power spectral density and phase-based connectivity in eyes-closed wakefulness were 117 

extracted from the 6,242 normal EEGs in the population dataset using canonical polyadic tensor 118 

decomposition. We examined the spatial and frequency distributions of these patterns and investigated 119 

their association with age and clinically assigned EEG grades. Then, pattern loadings were computed to 120 

quantitatively characterize the normal EEG activity (i.e., interictal non-epileptiform) of patients with focal 121 

epilepsy. With these loadings, we studied group differences and conducted classification analyses to 122 

explore the use of normal EEGs in epilepsy diagnosis and treatment planning. 123 

We found that data-driven decomposition of spectral power and connectivity of normal EEGs yields 124 

patterns that are interpretable in terms of known scalp electrophysiology and sensitive to physiological 125 
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and pathological changes. Furthermore, the quantification of normal interictal EEG activity using these 126 

patterns revealed relevant group differences in focal epilepsy. These results suggest that quantitative 127 

characterization of normal interictal EEGs of focal epilepsy patients has the potential to augment visual 128 

EEG review and assist clinical decision-making in epilepsy. Future efforts will focus on validating these 129 

findings using a larger out-of-sample epilepsy cohort with data collected from an external site. 130 

 131 

2. Data & Methods 132 

 133 

Figure 1: Cohort selection process flow starting from the overall clinical population dataset. Patients with 134 

focal epilepsy and controls without epilepsy were triaged using clinically assigned EEG grades, electronic 135 

health record notes/reports, and case reviews. Epochs extracted from their EEGs were reviewed for 136 

interictal abnormalities and excessive artifacts. Clinically graded normal EEGs comprise the population 137 

set for tensor decomposition. 138 

Clinical population dataset and expert EEG review: Our study utilized 13,652 routine clinical EEG 139 

recordings obtained from 12,134 adult patients (18 or older) at Mayo Clinic, Rochester, MN, USA 140 

between 2016 and 202225. This study was approved by the Mayo Clinic institutional review board and 141 

patients provided informed consent. The EEGs were recorded using the XLTEK EMU40EX headbox 142 

manufactured by Natus Medical Incorporated, Oakville, Ontario, Canada. All EEGs followed the standard 143 

10–20 electrode placement system26 and were sampled at 256Hz. The patient population comprises 144 

individuals presenting with a diverse array of conditions including epilepsy, cognitive impairment, 145 

episodic migraines, syncope, and functional spells, among others. Overall, this dataset represents the 146 

patient population typically referred for routine EEG assessments at the Mayo Clinic in Rochester, MN, 147 

USA. All EEG records were visually reviewed by board-certified epileptologists and graded based on the 148 

Mayo Clinic internal EEG grading protocol. EEGs within normal limits and without visible abnormalities 149 

were graded as normal. EEGs with asymmetry, persistent delta frequency slowing, and intermittent 150 

abnormalities were classified either as Dysrhythmia 1 (mild, non-specific slowing or excess of fast 151 

activity), Dysrhythmia 2 (moderate to severe intermittent slowing), or Dysrhythmia 3 (e.g. epileptiform 152 

abnormalities, triphasic waves, intermittent rhythmic delta frequency activity). Normal EEGs comprise 153 
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the population set used for tensor decompositions. Note that patients corresponding to these normal 154 

EEGs may present with the aforementioned conditions including epilepsy. 155 

Focal epilepsy cohort and matched control subjects without epilepsy: Figure 1 depicts the process flow 156 

for constructing the epilepsy and control cohorts. Patients with EEGs containing focal epileptiform 157 

abnormalities (i.e., Dysrhythmia grade 3) were used to triage focal epilepsy cases in the overall patient 158 

population. Based on further review of those patients, we identified a total of 121 focal epilepsy patients 159 

(frontal=21; temporal=100; 125 EEGs) who had a confirmed diagnosis of frontal or temporal lobe 160 

epilepsy and had no prior history of any cranial surgery. The drug response status and MRI findings of 161 

patients with temporal lobe epilepsy were determined by reviewing electronic health records and 162 

diagnostic MRI reports available within a year of their EEG assessments, respectively. Cases where 163 

clinical evidence was either not available or insufficient were excluded from clinical sub-group 164 

classifications. Patients with frontal lobe epilepsy were not considered for these sub-group classifications 165 

due to low sample size. An age- and sex-matched control cohort of 76 subjects with normal EEGs and 166 

without diagnosis of epilepsy or other major neurological disorder was selected for comparisons from 167 

the overall set of normal EEGs. Data of patients in focal epilepsy and matched control sets were excluded 168 

from the population set during subsequent analyses to prevent statistical data leakage. 169 

  170 

 171 

Figure 2: Overall analytic workflow of the study. (A) Multiple eyes-closed awake interictal epochs from 172 

each EEG recording are identified for data analysis. The average power spectral density (PSD) and phase-173 

based connectivity (PC) between each channel pair are computed and stacked across recordings to obtain 174 
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3-d PSD and PC tensors (recordings x channels or channel pairs x frequencies). (B) PSD and PC population 175 

tensors are decomposed separately in an unsupervised fashion to obtain multiple interpretable spatio-176 

spectral patterns (i.e., factors). (C) Normal interictal EEG data from focal epilepsy patients are projected 177 

on each population-level factor to obtain patient-specific factor loadings. Differences in drug-resistant 178 

and non-lesional MRI focal epilepsy are investigated by using these loadings in statistical group/sub-179 

group comparisons and predictive analyses. 180 

The complete analytical workflow of this study from processing of raw EEGs to results is illustrated in 181 

Figure 2. Below we describe the methods used in this workflow. 182 

EEG preprocessing and epochs selection: All routine EEGs were preprocessed as follows: 1) selection 183 

and ordering of the 19 EEG channels arranged according to the 10-20 system (i.e., Fp1, F3, F7, C3, T7, P3, 184 

P7, O1, Fp2, F4, F8, C4, T8, P4, P8, O2, Fz, Cz, and Pz), 2) resampling to ensure a sampling rate of 256 Hz, 185 

3) band-pass filtering between 0.1-45Hz, and 4) transformation to common average reference. Artifact 186 

rejection was not performed in this pipeline as we hoped to recover population patterns specific to 187 

artifacts in a data-driven manner using tensor decompositions. Next, we applied a heuristic algorithm27 188 

to select a maximum of six 10-second EEG epochs from the full recording representing eyes-closed 189 

wakefulness. The algorithm relies on sleep staging28, eye blinks, sample entropy, and occipital alpha 190 

power to select candidate epochs. These selected epochs are not guaranteed to be contiguous. After 191 

preprocessing, all EEG recordings were represented by at most six EEG epochs representing eyes-closed 192 

resting-state wakefulness. Preprocessing was done using the numpy29 and MNE30 Python libraries. 193 

Epochs selection used the MNE-features31 and YASA32 libraries. 194 

Additional review of EEG epochs extracted from focal epilepsy and control patients: From the extracted 195 

EEG epochs of focal epilepsy patients, a board-certified epileptologist visually reviewed and selected 196 

ones containing normal interictal activity.  Abnormal epochs containing seizures, epileptiform spikes, 197 

epileptiform sharp waves, temporal intermittent rhythmic delta activity (TIRDA), and excessive artifacts 198 

were excluded from the study. Polymorphic, intermittent delta and theta frequency slowing (0.1 - <8 Hz) 199 

events, however, could not be excluded due to their pervasive presence in some EEGs. Similarly, epochs 200 

from non-epileptic controls with excessive artifacts were also excluded. We note that this additional 201 

review of epochs extracted using the automated algorithm was conducted only for epilepsy and control 202 

EEGs. 203 

Constructing tensors of spectral power: Power spectral density (PSD) of EEG data was estimated for all 204 

19 EEG channels using Welch’s algorithm33, yielding log-power values at all integer frequencies between 205 

1-45Hz. We then averaged the PSD measures of each EEG recording across all the identified epochs to 206 

obtain a single PSD vector for each channel. The PSD measures of each EEG recording can now be 207 

represented as a matrix with shape 19 × 45 (19 channels and 45 frequencies). Stacking this average PSD 208 

matrix across recordings produces a 3-d power-spectral tensor (“PSD-tensor”) of the form: N recordings x 209 

19 channels x 45 frequencies. The population PSD-tensor is globally min-max scaled between [0, 1] to 210 

maintain non-negativity for subsequent tensor decomposition. Focal epilepsy and control PSD-tensors 211 

are scaled similarly but are stacked together first to preserve group differences for downstream analyses. 212 

Constructing tensors of phase-based connectivity: An estimate of phase-based connectivity (PC) 213 

between a pair of channels (𝑖, 𝑗) is computed using the weighted Phase Lag Index34 (wPLI) measure 214 

defined as: 215 
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𝑤𝑃𝐿𝐼(𝑖, 𝑗) =
|𝐸[ℐ(𝑋𝑖𝑗)]|

𝐸[|ℐ(𝑋𝑖𝑗)|]
 216 

where 𝑋𝑖,𝑗  denotes the cross-spectral density of channels 𝑖 and 𝑗, ℐ(. ) is the imaginary part of the cross-217 

spectrum, and 𝐸[. ] represents a mean over the selected eyes-closed epochs. wPLI values range between 218 

[0, 1]. A positive value reflects an imbalance between leading and lagging relationships, with 1 indicating 219 

a perfect lead or lag relationship. At each integer frequency between 1-45Hz, wPLI provides a 220 

connectivity value for each of the 171 unique channel pairs. Thus, we obtain a 3-d phase-based 221 

connectivity tensor (“PC-tensor”) of the form: N recordings x 171 channel pairs x 45 frequencies. 222 

Representing the normal EEGs as 3-d population tensors: We utilized the clinically graded normal EEGs 223 

in the overall population dataset (N=6,242 out of 13,652) to extract population-level EEG patterns. We 224 

estimated the PSD and PC measures for these normal EEGs using their automatically extracted epochs 225 

and formed the population PSD-tensor and PC-tensor of shape (6,242 x 19 x 45) and (6,242 x 171 x 45), 226 

respectively. 227 

Decomposition of 3-d tensors into factors: The canonical polyadic (CP) decomposition35,36 (also known 228 

as the PARAFAC decomposition37) approximates a given tensor as a sum of 𝑅 rank-1 tensors, where 𝑅 is 229 

the decomposition rank, i.e., the resulting number of factors obtained from decomposing the tensor. The 230 

CP decomposition of a 3-dimensional tensor Τ with rank 𝑅 is defined as: 231 

Τ ≈ ∑ 𝐴𝑟 ⊗ 𝐵𝑟 ⊗ 𝐶𝑟

𝑅

𝑟=1

 232 

where ⊗ denotes an outer product and 𝐴𝑟, 𝐵𝑟, and 𝐶𝑟  are vectors with shapes matching each of the 233 

three dimensions of Τ (recording, channel, frequency). Each term in the summation, i.e., a combination 234 

of 𝐴𝑟, 𝐵𝑟 , and 𝐶𝑟 , is a rank-1 tensor and is referred to as a factor. The 𝐴, 𝐵, and 𝐶 factor matrices 235 

(containing 𝐴𝑟, 𝐵𝑟 , and 𝐶𝑟 vectors as columns, respectively) are optimized with a non-negativity 236 

constraint using the hierarchical alternating least squares37,38 approach.  237 

Determining the initialization and rank for CP decomposition: We provided a physiologically meaningful 238 

initialization and rank derived from PSD characteristics of healthy subjects to initialize the decomposition 239 

of the PSD-tensor. For this, we fit a parametric model of the EEG PSD, named FOOOF39 (“fitting 240 

oscillations and one over f”), to the eyes-closed trials in the MPI Leipzig Mind-Brain-Body dataset36 241 

(N=207, 8 trials per subject, 60s trial duration). The FOOOF model segments the observed morphology of 242 

an EEG PSD into superimposed aperiodic (𝐿) and oscillatory components (𝐺𝑛): 243 

𝑃𝑆𝐷 = 𝐿 + ∑ 𝐺𝑛

5

𝑛=1

 244 

Each 𝐺𝑛 is a Gaussian peak corresponds putatively to a canonical brain oscillation (delta, theta, alpha, 245 

beta, or gamma) and is parameterized by height, mean or center frequency, and a standard deviation. 𝐿 246 

is a function of the form L(𝐹) = 10𝑏 ∗
1

(𝑘+𝐹χ)
 whose parameters 𝑏, 𝑘, and 𝒳 capture aperiodic 1/f-like 247 

nature of the 𝑃𝑆𝐷. We refer readers to Donoghue et. al. (2020) for additional model details. We fit this 248 

six-component model to healthy PSDs in the MPI-Leipzig dataset. The fitted versions of 𝐺𝑛 and 𝐿 formed 249 

the frequency initializations 𝐵𝑟 of the decomposition solution and informed the choice of rank 𝑅 = 6.  250 
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Decomposing the population tensors: Factor matrix 𝐵 (containing 𝐵𝑟  vectors as columns) was initialized 251 

with the six spectral “priors” described above. CP decomposition with non-negativity constraints and 252 

𝑅=6 was applied on the min-max scaled population PSD-tensor. The resultant 𝐵 was then used as an 253 

immutable initialization for the subsequent CP decomposition of the population PC-tensor. In other 254 

words, only factor matrices 𝐴 and 𝐶 were optimized in the PC-tensor decomposition. The use of 𝐵, i.e., 255 

frequency patterns extracted from the PSD-tensor, in PC factors ensured that interpretations were 256 

aligned across both decompositions. Tensor analyses were done using the tensortools40 Python library. 257 

Visualization of factors derived from the normal EEG population: The 𝐴𝑟, 𝐵𝑟, and 𝐶𝑟  vectors resulting 258 

from both CP decompositions represent semantically coherent components: 𝐴𝑟  contains factor’s 259 

loadings per recording, 𝐵𝑟  holds the factor’s channel activations, and 𝐶𝑟  holds the factor’s frequency 260 

activations. The recording loadings are visualized as histograms, channel activations as topographical 261 

distributions over the scalp, and frequency activations as power spectral profiles. Note that we obtain 𝐴𝑟  262 

and 𝐶𝑟  separately from the PSD-tensor and PC-tensor decompositions, while 𝐵𝑟  is shared between both 263 

as described above. We refer to values in 𝐴𝑟  as “PSD loadings” or “PC loadings” depending on the tensor 264 

they are associated with. 265 

Computing factor loadings for the focal epilepsy cohort: We computed population factor loadings for 266 

the focal epilepsy cohort using a projection operation41. Consider the basis matrix 𝑃 containing 267 

vectorized versions of the spatio-spectral factors 𝐵𝑟  ⊗ 𝐶𝑟. Thus, matrix P has 𝑅 rows and 𝐶*𝐹 columns, 268 

where 𝐶 and 𝐹 is the length of the channel dimension and frequency dimension of the tensor, 269 

respectively. Then, for a new EEG recording 𝑥𝑛𝑒𝑤 ∈ 𝑅𝐶×𝐹, its loadings are computed by 270 

𝑃+ × vectorized(𝑥𝑛𝑒𝑤), where 𝑃+ is the pseudo-inverse of 𝑃. The results of this operation are weights 271 

or loadings representing how strongly each factor is expressed in the new recording. Note that this 272 

operation does not guarantee non-negative loadings. 273 

Associations and statistical testing: Pearson’s correlation coefficient and Spearman’s rank correlation 274 

coefficient were used to quantify associations of factor loadings with patient age and ranked degree of 275 

slowing, respectively. The corresponding p-values test the null hypothesis that the distributions 276 

underlying the samples are uncorrelated. The Mann-Whitney-Wilcoxon two-sided test24 was used for 277 

group-level comparisons with Bonferroni correction25 for multiple comparisons. The test was performed 278 

using the stat-annot26 Python library. 279 

Predictive modeling: Patient-specific loadings were robustly scaled (subtract median, scale by 280 

interquartile range) and used as features in a logistic regression binary classifier. We explored three sets 281 

of features: PSD loadings, PC loadings, and both concatenated together. Nested k-fold cross-validation 282 

(CV) was done to assess variability of model performance on different held-out sets (outer CV loop, 10-283 

fold) and to tune the ElasticNet regularization strength45 hyperparameter for each training set (inner CV 284 

loop, 5-fold). Grid for the hyperparameter search ranged between [0, 1] with increments of 0.1. Both CV 285 

loops used disjoint patient splits with target stratification. Loss values were weighted using target class 286 

proportions to handle class imbalance. For each outer CV fold, a classifier was trained using the best 287 

hyperparameter setting found by the inner CV loop and evaluated on the corresponding outer test fold. 288 

We used the area under receiver operating characteristic curve (AUC) to evaluate model performance 289 

across the outer CV folds. Predictive modeling was performed using the scikit-learn46 Python library. 290 

Data, code, and factor availability: Summary data and code can be made available by the corresponding 291 

authors upon reasonable request. 292 
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 293 

3. Results 294 

3.1 Characteristics of the Neurological Population, Focal Epilepsy Cohort, and Controls 295 

Table 1 provides an overview of the population-level routine EEG dataset. This dataset included 13,652 296 

recordings from 12,134 unique patients. Expert visual review of these EEG recordings based on the Mayo 297 

Clinic grading criteria resulted in 45.7% (N=6,242) normal EEGs, 24.9% (N=3,395) EEGs with mild slowing 298 

(Dysrhythmia grade 1), 13.2% (N=1,800) EEGs with moderate to severe slowing (Dysrhythmia grade 2), 299 

and 16.2% (N=2,215) EEGs with epileptiform abnormalities (Dysrhythmia grade 3). From the population 300 

of Dysrhythmia grade 3 EEGs, we identified 121 focal epilepsy patients with clinically confirmed epilepsy 301 

in either the frontal (N=21) or temporal (N=100) region. In addition, a set of 76 matched non-epileptic 302 

controls with normal EEGs and without a diagnosis of any neurological disease were identified for group 303 

comparisons. Table 2 summarizes the characteristics of the confirmed epilepsy patients and controls. 304 

 305 

Data Property Summary Statistics 

Routine EEG recordings Total recordings: 13,652 
Unique patients: 12,134 

Age Range: 18-103.7 
Mean: 50.9 (± 19.4) 
Age groups:  
18 – 30: 2,639 
30 – 50: 3,785 
50 – 70: 4,563 
>70: 2,665 

Sex Female = 6,464 (53.3%) 

EEG Grade (based on expert visual 
review) 

Normal: 6,242 (45.7%) 
Dysrhythmia 1: 3,395 (24.9%) 
Dysrhythmia 2: 1,800 (13.2%) 
Dysrhythmia 3: 2,215 (16.2%) 

Table 1: Characteristics of the overall neurologic clinical population. 306 

Study Cohort Summary Statistics 

Temporal Lobe Epilepsy (TLE) Unique records: 100 
Unique participants: 100 
Age: 52.5 (19.9) 
Sex: 50 (50%) Female 
Drug response status:  

44 Drug-resistant 
28 Drug-responsive 
28 Unknown 

MRI status:  
36 Non-lesional 
43 Lesional 
21 Unknown 
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Frontal Lobe Epilepsy (FLE) Unique records: 25 
Unique participants: 21 
Age: 37.6 (13.6) 
Sex:  12 (57.1%) Female 

Non-epileptic Controls (CTL) Unique records: 76 
Unique participants: 76 
Age: 49.2 (19.3) 
Sex: 41 (53.9%) Female 

Table 2: Characteristics of epilepsy cohort and controls used in this study. 307 

3.2 Tensor Decomposition Extracts Interpretable Spatio-spectral Patterns from Normal EEGs 308 
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 309 
Figure 3: Data-driven population-level patterns of eyes-closed awake EEG data extracted from 6,242 310 

normal EEGs. Three-dimensional tensors containing spatio-spectral information were decomposed using 311 

non-negative Canonical Polyadic Decomposition to yield six factors. Each row corresponds to a 312 

combination of a power spectral and connectivity-based factors, which is defined by the common 313 

spectral profile, the spatial power distribution over the 19 channels, the pair-wise channel connectivity, 314 

and loadings of EEG recordings in the PSD-tensor and PC-tensor. Recording loadings are visualized as 315 

histograms, spatial activations are visualized as scalp topographical distributions, and spectral 316 

activations are visualized as power spectral density. Note that the PSD-tensor was decomposed first, and 317 
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the resulting frequency factors were kept frozen during the decomposition of the PC-tensor to align 318 

interpretation of the factors. (a.u. refers to absolute units.) 319 

Figure 3 shows the factors obtained by decomposing the normal EEGs in the population dataset, i.e., the 320 

population PSD-tensor and PC-tensor. The frequency profiles are largely distinct, except in the case of 321 

factors 2 and 6, where their spatial distributions uniquely characterize the overall pattern. 322 

Factor 1 shows the characteristic 1/f frequency profile with minor deviations around the oscillatory 323 

bands and spatial activations in the fronto-temporal and posterior regions, characterizing the 324 

background non-oscillatory (i.e., aperiodic) brain activity. Factor 2 shows high frequency activations 325 

(>25Hz) in the prefrontal region, suggesting eye-movement-related artifacts. Factor 3 predominantly 326 

contains high-theta/low-alpha activity (6-9Hz) in fronto-parietal regions, possibly indicating the high 327 

theta rhythm or slow alpha rhythm. Factor 4 shows occipital activations in 8-13Hz, resembling the 328 

characteristic posterior dominant rhythm. Factor 5 shows centro-parietal activations in 13-25Hz, 329 

capturing the Rolandic beta activity. Lastly, factor 6 shows high-frequency activations (>25Hz) in the 330 

temporal regions, which may represent muscle artifacts. The analyses and findings presented in the 331 

remaining text focus on the four putatively physiologic factors (1, 3, 4, and 5). 332 

3.3 Patient Loadings Show Sensitivity to Aging and EEG Dysrhythmia Grades 333 

 334 
Figure 4: Associations of PSD and PC loadings of the four putatively physiologic factors (1, 3, 4, and 5) 335 

with physiological (aging) and pathological (slowing, epileptiform activity) variables. Factor numbers 336 

correspond to those in Figure 3. Loadings describe activity found in eyes-closed awake EEG segments 337 
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selected from expertly graded routine EEGs in the population-level dataset. (A) Correlations of PSD and 338 

PC loadings of normal EEGs with patient age. (B) Correlations of PSD and PC recording loadings with 339 

expert-assigned severity of slowing. The ranked severity levels are 0 (normal EEG, no slowing), 1 340 

(Dysrhythmia 1 EEG, mild slowing), and 2 (Dysrhythmia 2 EEG, moderate to severe slowing (C) 341 

Correlations of PSD and PC recording loadings with the presence of epileptiform activity (Dysrhythmia 3 342 

EEGs abbreviated as “Dys3”). Significance levels correspond to the Mann-Whitney-Wilcoxon test. Loading 343 

values along y-axes are in arbitrary units. * indicates a significant correlation with p < 0.05 and **** 344 

indicates a significant correlation with p < 1e-4. 345 

 346 

Figure 4 shows the associations between the loadings of population EEGs for factors 1, 3, 4, and 5 347 

against patient age and expert-assigned EEG grades 348 

Trends with patient age (Fig. 4A): Factor 3 is positively correlated with age (p<1e-4), while factors 1 (PSD: 349 

p<1e-4, PC: p<0.01) and 4 (p<1e-4) are negatively correlated. Although the correlation strength varies 350 

between the PSD and PC loadings of the same factor, they are directionally consistent. Correlations of 351 

factor 5 are either marginally significant (PSD: p<0.05) or not significant (PC). 352 

Trends with expert-ranked degree of slowing (Fig. 4B): Factor 1 is positively correlated with severity of 353 

slowing (p<1e-4), while factor 4 is negatively correlated (p<1e-4). Correlation of factor 3 is either low 354 

(PSD: p<0.05) or not significant (PC). The correlation of factor 5, although significant (p<1e-4), is 355 

directionally divergent between the PSD and PC loadings. 356 

Differences in presence of epileptiform activity (Fig. 4C): Here, loadings of EEGs with epileptiform activity 357 

were compared against those of normal EEGs. PSD loadings of factor 1 increase under presence of 358 

epileptiform activity, while those of factors 4 and 5 decrease (p<1e-4 in every case). Factor 3 PSD 359 

loadings show no significant change. PC loadings of factors 1 and 4 show trends consistent with 360 

corresponding PSD loadings (p<1e-4 in both cases). However, the PC loadings of factors 3 and 5 show 361 

slight increases (p<1e-4). 362 

3.4 Quantitative Analysis of Normal Interictal EEG Reveals Differences in Focal Epilepsy 363 
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 364 
Figure 5: Differentiation of focal epilepsy and epileptogenic. (A-B) PSD and PC loadings of focal epilepsy 365 

patients (FOCAL-EPI) are compared to those of non-epileptic controls (CTL) across the four physiologic 366 

population factors. Loading values along y-axes are in arbitrary units. * indicates a significant difference 367 

with p < 0.05 and **** indicates a significant difference with p < 1e-4 in the Mann-Whitney-Wilcoxon 368 

test. (C) PSD and PC loadings are used as features to classify focal epilepsy vs. non-epileptic controls 369 

within a binary classification framework. (D-E) The same classification is broken down by temporal (TLE) 370 

and frontal (FLE) sub-types of focal epilepsy. (F) Differential diagnosis of the epileptogenic lobe, i.e., TLE 371 

vs. FLE, within the focal epilepsy cohort. Note that all classifications used only the four putative 372 

physiologic factors (1, 3, 4, and 5) and were conducted with three sets of features/loadings - only those 373 

of PSD factors (“PSD only”), only those of PC factors (“PC only”), or both concatenated (“PSD + PC”). 374 

Figure 5 shows results for group differences and binary classifications between non-epileptic controls 375 

and the focal epilepsy cohort using patient-specific PSD and PC loadings of the physiologic factors. We 376 

find focal epilepsy patients to have elevated factor 1 (p<0.001) and factor 3 (p<0.05). in both PSD and PC 377 

comparisons (Figure 5A-B). In addition, we find PC loadings for factor 5 (p<0.05) significantly different in 378 

focal epilepsy relative to non-epileptic controls. Factor 4 loadings do not show significant differences in 379 

either the PSD or PC comparisons. 380 

Figure 5C shows classification of focal epilepsy vs. non-epileptic patients is possible above chance levels, 381 

with PC loadings providing the largest contribution to the average classification performance (AUC=0.76). 382 

This performance is marginally improved by using a combination of PSD and PC loadings (AUC=0.78). All 383 

feature sets show high variability in performance across the held-out folds (0.09-0.13). Figures 5D-E 384 

show results for the classification of frontal (FLE) and temporal lobe epilepsy (TLE) against non-epileptic 385 

controls. TLE is better differentiated from non-epileptic patients than FLE (top mean AUC=0.8 vs. 0.7). 386 

TLE is best differentiated by combined PSD and PC loadings (AUC=0.80), with PC loadings contributing 387 
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the most to classifier performance (AUC=0.77). FLE is best differentiated using PC loadings alone 388 

(AUC=0.70), and the addition of PSD loadings slightly worsens the performance (AUC=0.68). Variability in 389 

AUC performance across folds ranges from 0.05-0.19. Lastly, Figure 5F shows the classification of TLE vs 390 

FLE based on factor loadings derived from normal interictal epochs. Results indicate that none of the 391 

feature sets can differentiate the epileptogenic lobe (i.e., temporal vs. frontal) in focal epilepsy above 392 

chance levels (AUCs range between 0.47-0.55) based on normal interictal epochs. 393 

3.5 Quantitative Loadings of Normal Interictal EEG Exhibit Capacity for Differentiation in Drug-394 

Resistant and Non-lesional Epilepsy 395 

 396 
Figure 6: Differentiation of drug-resistant and non-lesional temporal lobe epilepsy (TLE) patients using 397 

four physiologic pattern loadings (factors 1, 3, 4, and 5). (A) Loadings are compared between non-398 

epileptic controls (CTL), TLE patients that are drug resistant (TLE-resis) and those that are drug responsive 399 

(TLE-respon). (B) Binary classifications of drug resistant vs. responsive patients using the same feature 400 

sets as Figure 5. (C-D) Analyses similar to (A) and (B) are conducted for lesional (TLE-les) and non-lesional 401 

(TLE-nonles) TLE sub-groups. Loading values in (A) and (C) along y-axes are in arbitrary units. * indicates 402 

a significant difference with p < 0.05 and **** indicates a significant difference with p < 1e-4 in the 403 

Mann-Whitney-Wilcoxon test with Bonferroni correction. 404 

Figure 6A shows differences in loadings of non-epileptic controls (CTL), drug-responsive (TLE-respon), 405 

and drug-resistant (TLE-resis) temporal epilepsy patients. Only the PSD loadings for factor 5 show 406 

differences between the two sub-groups (p<0.05), while the others show differences only relative to 407 

controls. None of the PC loadings show significant differences between the two sub-groups. PC loadings 408 

other than those of factor 1 show no differences between non-epileptic controls and both sub-groups. 409 

Figure 6B shows the classification performance of different sets of factor loadings in classifying drug 410 
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resistance. PSD loadings provided the best average performance (AUC=0.73) while PC loadings 411 

performed marginally better than chance (AUC=0.58). Variability in model performance ranged from 412 

0.07 to 0.13 AUC points. 413 

Figure 6C shows differences in normal interictal EEG loadings between non-epileptic controls (CTL), non-414 

lesional (TLE-nonles), and lesional (TLE-les) temporal lobe epilepsy. While PSD loadings of factors 1, 3, 415 

and 4 show significant differences relative to non-epileptic controls for both groups, only factor 4 shows 416 

a significant difference between non-lesional and lesional patients (p<0.05). Trends seen in factors 1 and 417 

3 are similar between the PSD and PC loadings. However, none of the PC loadings differed significantly 418 

between the MRI sub-groups. Figure 6D shows the classification between lesional and non-lesional 419 

patients. PSD loadings best differentiate the two groups of patients with an AUC of 0.67. PC loadings, 420 

either alone or in addition to PSD loadings, significantly worsened the average classification 421 

performance. However, all models exhibited high variability in AUC performance (0.11-0.22 AUC points). 422 

 423 

4. Discussion 424 

The goal of this study was to explore whether normal interictal EEGs of people with focal epilepsy 425 

contain subtle signals that could be used to augment epilepsy diagnosis and treatment planning, 426 

especially in patients with drug-resistant and MRI normal epilepsy. We proposed a scalable, physiology-427 

informed, and data-driven tensor decomposition approach that extracts spatio-spectral patterns from a 428 

large population of normal routine EEGs. Each pattern had a distinct signature in the EEG channel 429 

(spatial) and frequency (spectral) dimensions. We obtained patient-specific pattern loadings or 430 

“features” that allowed us to study group differences through statistical comparisons and binary 431 

classifications. Our findings suggest that quantitative description and analysis of visually reviewed 432 

normal routine EEGs has the potential to provide additional value to clinical decision-making in epilepsy. 433 

Tensor Decomposition with Spectral Priors Recovers Interpretable Patterns 434 

This study hypothesized that the information content of normal EEGs can be explained by a 435 

parsimonious number of latent patterns. To test this hypothesis, we decomposed the spectral and 436 

connectivity contents of a population of normal routine EEGs into several meaningful patterns (i.e., 437 

factors) using a canonical polyadic tensor decomposition. In general, determining the exact number of 438 

factors, i.e., the presumed rank of the population tensor, is challenging and involves trial-and-error47. 439 

However, prior work has demonstrated that the morphological content of the scalp EEG PSD can be 440 

sufficiently explained by six physiological components, namely one aperiodic 1/f pattern and five 441 

oscillatory bands39. We used this spectral parameterization model to construct six corresponding 442 

frequency priors that, in turn, provided the spectral initialization as well as an appropriate rank for the 443 

decomposition. Furthermore, we fixed the spectral patterns extracted from PSD-tensor during the 444 

decomposition of PC-tensor to recover semantically consistent patterns from both the tensor types. 445 

Several prior works have explored data-driven or unsupervised recovery of spatial, spectral, or temporal 446 

profiles of oscillatory sources and background patterns comprising spontaneous EEG activity48–52. In this 447 

study, we presented an approach that quantifies spatio-spectral EEG patterns with the goal of decision 448 

support when clinical EEGs are normal on expert visual review. Beyond the use of spectral-prior-based 449 
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initialization, our approach did not place any assumptions on the statistical nature or morphology of the 450 

latent EEG patterns and can be applied without sophisticated artifact removal. 451 

The population patterns (Fig. 3) can be loosely interpreted to reflect dominant and overlapping 452 

physiological processes whose linear superposition (summation) yields the original EEG trace. We then 453 

interpreted the identified patterns based on clinical domain knowledge. The putative interpretations of 454 

these patterns are supported by their sensitivity to patient age and severity of pathology (Fig. 4). 455 

Augmenting Epilepsy Diagnosis and Treatment Planning 456 

Scalp EEG is an indispensable tool in epilepsy that can non-invasively record brain electrical activity with 457 

excellent temporal resolution. Due to this unique resolution, scalp EEG tests can capture transient 458 

interictal epileptiform discharges (IEDs) such as epileptiform spikes or sharp waves associated with 459 

epilepsy53. In current clinical practice, the expert identification and characterization of IEDs on routine 460 

scalp EEG is crucial for epilepsy diagnosis. Routine EEGs are also useful in measuring the efficacy of 461 

ongoing ASM trials54. In the case of drug-resistant epilepsy, the distribution of IEDs identified on scalp 462 

EEGs can help localize the seizure onset zone, especially in patients with no visible lesion on MRI. Thus, 463 

the identification of IEDs is central to the clinical value of scalp EEGs in current practice. 464 

Recent studies have shown significant interest in the automated identification of IEDs to augment expert 465 

visual review 24,55,56. However, the diagnostic yield of a single routine scalp EEG is limited, with only 29-466 

55% of them capturing epileptiform abnormalities57. Multiple EEGs may increase epileptiform yield up to 467 

~75%58,59, but the expected gain sharply drops after the third normal EEG. As such, normal interictal EEGs 468 

can cause treatment delays in multiple stages of epilepsy care. Previous studies that explored biomarkers 469 

of interictal non-epileptiform EEG support the possibility of augmenting decision support in epilepsy 470 

using spectral and connectivity-based EEG features17–19,27,60–64. Drawing inspiration from these smaller 471 

scale studies, we explored data-driven recovery of spectral features using a large population dataset of 472 

normal EEGs and analyzed their differences in epilepsy. 473 

Our findings in Figures 5 and 6 suggest that normal interictal EEG activity of focal epilepsy patients 474 

contains significant differences in putative physiologic oscillations (factors 3, 4, and 5) as well as 475 

aperiodic 1/f(Hz) activity (factor 1). Increases in expression of 1/f and theta frequency activity, coupled 476 

with a decrease in alpha frequency may represent general intermittent slowing of the EEG background. 477 

Although we identified differences in factor 5, the differences in beta frequency rhythm may arise due to 478 

the presence of ASMs. The factors exhibited relatively lower performance in detecting FLE (Fig. 5E) and 479 

in differentiating FLE vs TLE (Fig. 5F). We believe that this may be due to either the lower sample size of 480 

the FLE cohort compared to the TLE cohort (Fig. 5D) or the global/symmetric nature of the population 481 

patterns. 482 

Understanding Subtle Variation in Visibly Normal EEGs through their Quantitative Descriptors 483 
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 484 
Figure 7: Variability in EEG power and phase characteristics based on factor loading values. (A) Variability 485 

in the power spectra of EEGs whose PSD loadings score in the bottom 10-percentile (low), between 40-486 

60-percentile (medium), and top 10-percentile (high). Examples are shown for factors 3, 4, and 5. (B) 8-487 

Hz-filtered EEG traces of the weakest (top) and strongest (bottom) channel pairs for an example EEG that 488 

scored in the top 10-percentile for factor 3 (whose spectral power peaks at 8Hz). Overlapping EEG traces 489 

reveal phase relationships, i.e., time lags that maximize correlation within the channel pairs. These lags 490 

or phase differences are visualized in polar coordinates (right). 491 

Our results (Figure 5) indicate that factor loadings extracted from normal EEG segments have the 492 

potential to classify focal epilepsy above chance levels (best mean AUC=0.78).  We analyzed the changes 493 

in actual power spectral and timeseries data corresponding to the changes in factor loadings to further 494 

illuminate the factor interpretations. 495 

Fig. 7A shows the full power spectra of normal EEG segments whose loadings fall in the bottom 10-496 

percentile (low), between 40-60-percentile (medium) and top 10-percentile (high) of a particular 497 

physiologic oscillatory factor. We find that EEGs that score high in factors 3, 4, and 5 have higher power 498 

in high-theta/low-alpha, alpha, and beta bands, respectively. 499 

Effects of the phase-lag-based connectivity (i.e., wPLI) at a particular frequency can be observed by 500 

leading/lagging relationships in the time-domain EEG signal filtered at that frequency. Fig. 7B focuses on 501 

factor 3 whose spectral power peaks at 8Hz, with the weakest edge connecting Fp1 and Fp2, and the 502 

strongest edge connecting P4 and P8 (shown in Figure 3). We visualize the phase relationships using an 503 

example EEG segment whose loading value was in the top 10-percentile for factor 3 after filtering its EEG 504 

trace around 8-Hz to. We find that the strongest channel pair (Fig 7B, bottom) has a consistent non-zero 505 

phase difference, while the weakest channel pair (Fig 7B, top) has no phase difference. These phase 506 

differences can be quantified by the time lag that maximizes timeseries correlation within the channel 507 

pair and are visualized in polar coordinates (Fig 7B, right). 508 

These illustrations highlight that the quantitative loading values provided by this tensor-based 509 

framework are interpretable based on physiologically relevant concepts such as signal power and phase 510 

and offer sensitivity to subtle changes in the EEG signal. These subtle changes in normal EEGs are likely 511 

to be missed during traditional expert visual review, which focuses mostly on transient abnormalities in 512 

the time domain. 513 
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Influence of Sample Size and Selected EEG Epochs on Study Findings 514 

 515 
Figure 8: Repeated CTL vs TLE classifications using two bootstraps to evaluate bias introduced by the 516 

dataset selection process. Strategy A (left) uses either the first or last three of the six EEG epochs from a 517 

subset of TLE patients (N=41). Strategy B (right) uses at most 3 epochs that are randomly chosen but uses 518 

all available TLE patients (N=100).  519 

The routine EEG protocol contained diverse patient states (eyes-closed, eyes-open, awake, drowsy, 520 

asleep) and provocative maneuvers65 (photic stimulation, hyperventilation, sleep deprivation), making it 521 

necessary to select EEG epochs corresponding to a fixed patient state for data analysis. Such data 522 

selection may introduce bias in our findings since we selected only a maximum of six EEG epochs from 523 

each recording for our analyses. 524 

To evaluate whether a bias exists, we repeated the controls vs TLE classification (result in Fig. 5D) with 525 

two bootstrapping strategies, whose results are shown in Figure 8. In strategy A (Fig. 8A), we considered 526 

TLE patients (N=41) with exactly six normal interictal EEG epochs and showed differences in classification 527 

performance depending on which 50% data are used for classification (i.e., first three epochs or last 528 

three epochs). Mean performance was higher when the first 3 epochs were used (AUC=0.65) than last 3 529 

epochs (AUC=0.59). In strategy B (Fig. 8B), we maintained the sample size of the original TLE cohort 530 

(N=100) but used at most three randomly picked EEG epochs per recording to perform classification. For 531 

patients with >3 epochs available, 3 epochs were randomly chosen and for those patients with <=3 532 

epochs, all epochs were chosen. Our results did not show any significant differences between those two 533 

sampling approaches and the overall performance closely matched that using all available epochs. 534 

These results suggest that: 1) our findings may be sensitive to low cohort size but are less likely to be 535 

biased by the algorithmic selection of EEG epochs within a recording, and 2) even as few as three normal 536 

interictal EEG epochs (30 seconds) are sufficient to derive a pretest measure of TLE. 537 

Study Limitations  538 

Our goal in this study was to evaluate whether a quantitative analysis of normal EEG segments of 539 

epilepsy patients can indicate the possible presence of focal epilepsy. To test this hypothesis, we 540 

analyzed non-epileptiform interictal segments identified by a board-certified epileptologist within EEG 541 

recordings containing epileptiform abnormalities at other times (i.e., Dysrhythmia grade 3). However, an 542 
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analysis using entirely normal EEGs of epilepsy patients will be necessary to evaluate the true potential 543 

of our results. However, identification of such EEGs requires extensive review of patient records, which 544 

we hope to accomplish in a follow-up study. Furthermore, eyes-closed wakefulness was determined by a 545 

heuristic algorithm validated in previous studies27,66. Events markers or comments added by EEG 546 

technologists70 during the EEG study could help to identify the patient’s behavioral state more reliably. 547 

Extension of our analysis to different sleep states will be pursued in future studies.  548 

The estimation of connectivity could benefit from EEG source modeling to avoid volume conduction71 549 

and active reference72 effects on the scalp. However, the lower spatial density of clinical EEGs prevented 550 

source/inverse modeling efforts, as previous studies have shown that EEG source modeling with fewer 551 

than 64 channels is highly error-prone68–70. Phase-based connectivity, and wPLI in particular, was chosen 552 

to suppress spurious zero-lag correlations and partially alleviate the effects of volume conduction67,68. 553 

Due to absence of patient-specific head models, average referencing was chosen to mitigate reference-554 

related effects on connectivity better than alternatives like Cz and linked mastoids69. 555 

Our classification analyses demonstrated a high level of variance between cross-validation folds (Fig. 5 556 

and Fig. 6). Such variance could be a result of low sample size and the potential effects of 557 

comorbidities70,71 and medications72.  The effects of these confounders may be mitigated either by 558 

comprehensive patient review to identify a clinically homogeneous set of focal epilepsy patients or with 559 

the use of larger epilepsy and matched control cohorts. Given that the EEG background patterns 560 

identified in this study are not specific to epilepsy, apparent differences in factor loadings must be 561 

interpreted within the appropriate clinical context. Additionally, validations using normal interictal EEGs 562 

from an external site are needed to assess the generalizability of the presented findings. 563 

 564 

5. Conclusion 565 

Normal interictal EEGs recorded from epilepsy patients can lead to delays in neurological care, especially 566 

in patients with drug-resistant and normal MRI epilepsy. This study explored the value of quantitative 567 

analysis of normal interictal EEGs in supporting a focal epilepsy diagnosis. Application of this 568 

unsupervised learning approach could benefit treatment planning in the future. We presented a 569 

scalable, interpretable, data-driven approach based on canonical polyadic decomposition that recovered 570 

physiologically meaningful spectral power and phase-based connectivity patterns from a population-571 

scale dataset of normal EEGs and provided patient-specific loadings for each pattern. These loadings 572 

demonstrated value in classifying focal epilepsy and, in temporal lobe epilepsy, drug resistance and 573 

absence of lesions. These findings suggest that normal routine EEGs may contain subtle abnormalities 574 

that can be captured using a quantitative approach and be potentially used to augment decision-making 575 

in clinically challenging scenarios. 576 
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