
sensors

Article

ESCOVE: Energy-SLA-Aware Edge–Cloud Computation
Offloading in Vehicular Networks

Leila Ismail 1,2,* and Huned Materwala 1,2

����������
�������

Citation: Ismail, L.; Materwala, H.

ESCOVE: Energy-SLA-Aware

Edge–Cloud Computation Offloading

in Vehicular Networks. Sensors 2021,

21, 5233. https://doi.org/10.3390/

s21155233

Academic Editor: Peter Han

Joo Chong

Received: 31 May 2021

Accepted: 29 July 2021

Published: 2 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Intelligent Distributed Computing and Systems (INDUCE) Research Laboratory, Department of Computer
Science and Software Engineering, College of Information Technology, United Arab Emirates University,
Al Ain, Abu Dhabi 15551, United Arab Emirates; huned.m@uaeu.ac.ae

2 National Water and Energy Center, United Arab Emirates University,
Al Ain, Abu Dhabi 15551, United Arab Emirates

* Correspondence: leila@uaeu.ac.ae

Abstract: The vehicular network is an emerging technology in the Intelligent Smart Transportation era.
The network provides mechanisms for running different applications, such as accident prevention,
publishing and consuming services, and traffic flow management. In such scenarios, edge and cloud
computing come into the picture to offload computation from vehicles that have limited processing
capabilities. Optimizing the energy consumption of the edge and cloud servers becomes crucial.
However, existing research efforts focus on either vehicle or edge energy optimization, and do
not account for vehicular applications’ quality of services. In this paper, we address this void by
proposing a novel offloading algorithm, ESCOVE, which optimizes the energy of the edge–cloud
computing platform. The proposed algorithm respects the Service level agreement (SLA) in terms
of latency, processing and total execution times. The experimental results show that ESCOVE is
a promising approach in energy savings while preserving SLAs compared to the state-of-the-art
approach.

Keywords: cloud computing; computation offloading; deadline; edge computing; energy-efficiency;
latency; service level agreement; quality of service; queuing theory; vehicular network

1. Introduction

Ever-increasing vehicular traffic has led to several global issues, such as increasing
incidents of road accidents, time-consuming traffic congestions, inefficient fuel utilization,
and environmental impact (for example, global warming). To make travel more efficient
and safe, vehicular ad hoc networks (VANETs) [1] have been introduced. Mobile vehicles,
acting as network nodes, are equipped with computation and communication resources.
This enables vehicles to process computational tasks aiding traffic control, efficient fuel
utilization, and infotainment services. However, the computational and communication
capabilities of mobile vehicles are often limited. Consequently, the performance of compute-
intensive services that require real-time responses is compromised. To address this, a
cloud-based vehicular network has been introduced.

Cloud computing [2] enables on-demand provisioning of computation and communi-
cation resources to the vehicles over the Internet. The vehicles’ requests tap into the scalable
cloud computing resources to improve the quality-of-service (QoS), such as total execution
time, processing time, throughput, and latency. However, the cloud servers located at the
end of the vehicular network degrade requests’ performance due to introduced network
latency. Consequently, the guarantee of QoS becomes questionable. The delay in the
request-response can be life threatening in vehicular networks. For instance, a delay in the
response might lead to an accident in autonomous driving. To meet the requirements of
real-time and compute-intensive requests in vehicular networks, mobile edge computing

Sensors 2021, 21, 5233. https://doi.org/10.3390/s21155233 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0946-1818
https://orcid.org/0000-0002-3176-245X
https://doi.org/10.3390/s21155233
https://doi.org/10.3390/s21155233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21155233
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21155233?type=check_update&version=2

Sensors 2021, 21, 5233 2 of 20

(MEC) [3] has been introduced. MEC provides computing capabilities at the edge of the
radio access network close to the mobile vehicles.

MEC pushes the applications and the related services from the distant cloud to the
proximity of the vehicles at the edge of the network. MEC servers, deployed within the
roadside units (RSUs) in a vehicular network, lead to improved QoS of the vehicles’ requests.
This is because the communication latency between the MEC servers (also known as edge
servers) and the vehicles is lower compared to that between the cloud servers and the
vehicles. However, the edge servers are often becoming bottlenecks with the increasing and
rapid services’ demands from the vehicles. This is due to the limited capabilities of the edge
servers compared to the cloud ones. Therefore, it becomes necessary to offload requests to
edge or cloud servers so that the performance of requests is not compromised [4].

Several works in the literature have proposed computation-offloading algorithms for
vehicular networks. However, very few works focus on optimizing energy consumption.
These works focus on optimizing the energy of either the IoT or the edge nodes while
offloading tasks. It is important to focus on the energy efficiency of the edge and the cloud
servers. This is because the energy consumption of these servers, serving computationally
intensive and time-critical applications, is continuously increasing [5]. To the best of our
knowledge, no work in the literature has focused on the energy consumption of the edge
and cloud servers, simultaneously, while proposing an offloading algorithm.

In this paper, we propose the Energy-SLA-Aware Edge–cloud Computation Offloading
in Vehicular Networks (ESCOVE) algorithm. The algorithm schedules a vehicle’s request
either on the edge server, to which the request has been submitted, or to one of the cloud
servers. The offloading decision is made in a way that the energy consumption for a
request’s execution is minimized, while the request’s service level agreement (SLA) is
respected. In this paper, we consider requests’ latencies, processing times, and deadlines
(i.e., total execution time) as measures for the SLA. To respect the SLA, requests should be
executed within the maximum tolerable latency, processing time, and deadline.

The rest of the paper is organized as follows. Section 2 presents an overview of
related work. We describe the edge–cloud computing system model for vehicular networks
in Section 3. Section 4 presents our proposed energy-efficient edge–cloud computation
offloading algorithm in vehicular networks (ESCOVE). We describe the experimental
environment, experiments, and analysis of our results in Section 5. Section 6 concludes the
paper.

2. Related Work

Several works in the literature proposed computation offloading algorithms in edge–
cloud vehicular networks [6–13]. However, very few works have focused on the optimiza-
tion of energy consumption while considering the SLA requirements [10–13].

Ning et al. [10] proposed a computation offloading framework to partially offload
computational requests to edge servers. A request is either executed on the edge server to
which it has been submitted or is offloaded to other edge servers. The offloading decision
is made in a way that the energy consumption of the edge servers is minimized while
satisfying the requests’ deadline requirements. The total delay for processing a request
is calculated as the summation of the request transmission time from vehicle to RSU, the
execution time on the RSU (waiting + service), and the request transmission time among
RSUs. The energy consumption is calculated as the summation of the energy consumed
for request execution, transmission among RSUs, and transmission of response from RSU
to the vehicle. Huang et al. [11] proposed an offloading algorithm to process requests
either locally on the vehicle or to offload them to the edge server. The offloading decision
is made in a way that the vehicle’s energy consumption is minimized while respecting
the request’s deadline. The speed of the vehicle and the type of request is considered
while computing the deadline and energy consumption. Request delay for local computing
is calculated as the execution time required to process a request by the vehicle. The
delay for edge computing is computed as the summation of the request transmission

Sensors 2021, 21, 5233 3 of 20

time between the vehicle and the edge, the processing time at the edge, and the response
transmission time between the edge and the vehicle. The energy consumption for local
computing is computed for processing by the vehicle and, for offloading, is computed for
the transmission of the request and the response.

Huang et al. [12] proposed an offloading scheme to process requests either locally on
the vehicle or to schedule them to an edge server. The offloading decision considers the
energy consumption of the vehicles in terms of computation and request transmission,
and the packet drop rate. Pu et al. [13] proposed an offloading algorithm to process the
request either locally on the vehicle, or by a group of communicating vehicles, or by the
edge server. The proposed algorithm focuses on optimizing the energy consumption
of the vehicles involved in the computation process. The optimization is constrained
to the request’s deadline and the incentives received by the vehicles for sharing their
computational resources.

However, these works [10–13] focus on two-tiered architectures, which consist of
vehicles as one tier and the MEC-enabled RSUs as the second tier. Moreover, the offloading
algorithm proposed in [10] focuses only on the energy optimization of the edge servers,
whereas the ones proposed in [11–13] focus on the energy optimization of the vehicles
alone. Furthermore, no work considers more than one SLA requirement.

To the best of our knowledge, no work in the literature focuses on energy-efficient
computation offloading in a three-tiered (vehicle–edge–cloud) heterogeneous vehicular
network while respecting the SLA. In this paper, we propose ESCOVE to offload the
vehicles’ requests either to the edge or to the cloud server. The proposed algorithm
schedules requests in a way that the energy consumption of a request is minimized while
satisfying the SLA requirements. In this paper, we consider request latency, processing
time, and deadline as measures for SLA.

3. System Model

Figure 1 shows an edge–cloud system model for vehicular networks. It consists of
several vehicles (1, 2, 3, . . . , n), heterogeneous edge servers (1, 2, 3, . . . , o), and hetero-
geneous cloud servers (1, 2, 3, . . . , p). The network involves bidirectional traffic flow.
The RSUs, with a limited coverage range, are placed along the road. The MEC server
within the RSU processes vehicles’ requests. A vehicle can communicate with an RSU
only if it is in the coverage range of that RSU. The distance between two RSUs is DR. The
processing capabilities and storage capacities of the cloud servers are higher than those
of the edge servers are. However, the edge servers ensure low latency compared to the
cloud servers, enabling real-time processing. This is due to the proximity between edge
and vehicles compared to that between cloud and vehicles. Considering the processing
and latency tradeoffs between edge and cloud, an offloading algorithm is required. The
underlying edge and cloud servers consume a high amount of energy while executing
the computationally intensive and time-critical requests from vehicles. Consequently, it
becomes crucial to address the issue of edge and cloud energy consumptions.

In our system model, each vehicle sends a request to the communicating
RSU for execution. A request i (1 ≤ i ≤ m) is sent to the RSU as a request
message, rmi. The request message is represented as a tuple, rmi ={

Li, Sizei, CPUi, Tmax
i , Lmax

i , Prmax
i , Speedj,

(
xsource

i,j , ysource
i,j

)
,
(

xdestination
i,j , ydestination

i,j

)}
. Li

is the length of the request i in terms of million instructions (MI), Sizei is the size of re-
quest i in terms of bits, CPUi is the CPU utilization of i, Speedi is the speed of the vehicle,
j (1 ≤ j ≤ n).

(
xsource

i,j , ysource
i,j

)
is the location (longitude, latitude), which we denote by

the source of the vehicle j when submitting the request i, and
(

xdestination
i,j , ydestination

i,j

)
is

the location of the vehicle’s destination. Tmax
i is the maximum tolerable deadline for the

execution of i, Lmax
i is the maximum tolerable latency, and Prmax

i is the maximum tolerable
processing time.

Sensors 2021, 21, 5233 4 of 20

Figure 1. Edge–cloud system model for vehicular networks.

Each edge server consists of two queues, (1) scheduling and (2) processing, as shown
in Figure 2. A vehicle’s request, when submitted, enters the scheduling queue of the
connected RSU’s edge server. The scheduling queue decides to either execute the request
locally on the server itself or offload it to one of the cloud servers. The offloading decision
is made in such a way that the energy consumption of the request execution is minimized
while respecting the SLA. If the decision is made to execute the request locally, then the
request is submitted to the processing queue of the edge, else to the processing queue of
the selected cloud server.

Figure 2. Request offloading and execution using scheduling and processing queues.

Sensors 2021, 21, 5233 5 of 20

4. ESCOVE: Energy-SLA-Aware Edge–Cloud Computation Offloading in Vehicular
Networks

In this section, we present our Energy-SLA-Aware Edge–cloud Computation Offload-
ing in Vehicular Networks (ESCOVE) algorithm, which optimizes the energy consumption
of vehicles’ requests while respecting requests’ SLA requirements. Consequently, ESCOVE
decides whether to execute a request on an RSU’s edge server or one of the cloud servers.

ESCOVE consists of four steps: (1) calculating a request’s total execution time, latency,
and processing time on edge and cloud servers, (2) calculating the corresponding energy
consumptions on the servers, (3) scheduling requests to optimal servers in terms of energy
while respecting the SLA, and (4) delivering request’s response to the submitter vehicle.
This section describes the steps’ methods of computation.

4.1. Total Execution Time, Latency, and Processing Time Computation

In this step, ESCOVE computes a request’s total execution times, latencies, and pro-
cessing times in case the request runs on the submitted edge server or one of the cloud
servers. It then selects the server(s) where SLA is respected, i.e., the total execution time for
request i is below Tmax

i , latency is below Lmax
i , and the processing time is below Prmax

i .

4.1.1. Total Execution Time, Latency, and Processing Time for Local (Edge) Computing

In this case, the scheduling queue of the edge server k (1 ≤ k ≤ o) decides to process
a request i locally. Consequently, the total execution time Ttotal

ik
for request i when executed

locally on the edge server k is computed using Equation (1).

Ttotal
ik = Tcom

ij,k
+ Texec

ik + Tcom
r(i)k,l

+ Tcom
r(i)l,k+h

+ Tcom
r(i)k+h,j

(1)

where Tcom
ij,k

is the communication time required to transfer the request message rmi by
the vehicle j to the edge server k (Equation (2)). Tcom

r(i)k,l
is the communication time needed

to transfer the response of request i from edge server k to a cloud server l (1 ≤ l ≤ p)
(Equation (3)). Tcom

r(i)l,k+h
is the communication time to transfer the response of the request i

from l to the edge server k + h (Equation (3)). Tcom
r(i)k+h,j

is the communication time to transfer

the response of the request i from k + h to j (Equation (4)). Texec
ik

is the time required to
execute the request i by the edge server k (Equation (5)). After submitting the request i to
the edge server k, the vehicle j might move outside k’s range depending on the destination
and speed of j. Consequently, the location of j, while it will receive the response of i, is
estimated by ESCOVE. The vehicle j will be under the range of RSU k + h while receiving
the response, i.e., hth RSU after k on the source to destination path. The estimation of h is
explained in Section 4.4

Tcom
ij,k

=
Sizermi

Bj,k
(2)

Tcom
r(i)k,l

= Tcom
r(i)l,k+h

=
Sizer(i)

Bk,l
(3)

Tcom
r(i)k+h,j

=
Sizer(i)

Bk+h,j
(4)

where Bj,k is the communication bandwidth between vehicle j and RSU k, Bk,l is the
communication bandwidth between the RSU k and the cloud server l, and Bk+h,j is the com-
munication bandwidth between RSU k + h and vehicle j. A heterogeneous communication
bandwidth between an RSU and the cloud servers is considered.

The time required by the edge server to execute the request is calculated using
Equation (5).

Texec
ik = Tsched

ik + Tproc
ik

(5)

Sensors 2021, 21, 5233 6 of 20

where Tsched
ik

is the time required to schedule the request i by the scheduling queue of edge

server k. Tproc
ik

is the time required to execute the request i by the processing queue of

k. Tsched
ik

is calculated using Equation (6),

Tsched
ik = Twaitsched

ik
+ Tprocsched

ik
= Twaitsched

ik
+ c (6)

where Twaitsched
ik

is the waiting time of i in the scheduling queue of the edge server

k (Equation (7)) and Tprocsched
ik

is the processing time required to make the offloading decision

by the scheduling queue. The value of Tprocsched
ik

is considered constant in the infrastructure
under study. The waiting time in the scheduling queue is calculated as follows.

Twaitsched
ik

=

{
0, i = 1

max
(

0, Tsched
(i−1)k

− IATsched
(i, i−1)k

)
, i > 1

(7)

where IATsched
(i, i−1)k

is the inter-arrival time between the requests i and i− 1 at the scheduling
queue of the edge server k.

The processing time of request i at the processing queue of edge server k is calculated
using Equation (8),

Tproc
ik

= T
waitproc
ik

+ T
procproc
ik

(8)

where T
waitproc
ik

is the waiting time of i in the processing queue of edge server

k (Equation (9)) and T
procproc
ik

is the request execution time in the processing queue of
edge server k (Equation (10)). Consequently

T
waitproc
ik

=

{
0, i = 1

max
(

0, Tproc
(i−1)k

−
[

Tsched
ik

− Tsched
i−1k

])
, i > 1

(9)

T
procproc
ik

=
Li
Sk

(10)

where Sk is the processing speed of the edge server k in million instructions per second
(MIPS).

The latency of the request in the case of local computing is calculated using
Equation (11) and the processing time is calculated using Equation (12).

Lik = Tcom
ij,k

+ Tcom
r(i)k+h,j

(11)

Prik = Tproc
ik

(12)

4.1.2. Total Execution Time, Latency, and Processing Time for Cloud Computing

In this case, the scheduling queue of edge server k decides to offload the request i to
the cloud and process it on the cloud server l. The total execution time Ttotal

il
for request

i when offloaded and executed on l is computed using Equation (13).

Ttotal
il = Tcom

ij,k
+ Texec

ik,l
+ Tcom

r(i)l,k+h
+ Tcom

r(i)k+h,j
(13)

where Texec
ik,l

is the time required to execute the request i on l when offloaded by the edge
server k (Equation (14)).

Texec
ik,l

= Tsched
ik + Tproc

il
(14)

Sensors 2021, 21, 5233 7 of 20

where Tproc
il

is the time required to execute i by the processing queue of l. It is calculated
using Equation (15).

Tproc
il

= T
waitproc
il

+ T
procproc
il

(15)

where T
waitproc
il

is the waiting time of i in the processing queue of l (Equation (16)) and

T
procproc
il

is the request execution time in the processing queue of l (Equation (17)).

T
waitproc
il

=

{
Tcom

ik,l
, i = 1

max
(

0, Tproc
(i−1)l

−
[

Tsched
ik

− Tsched
i−1k

])
+ Tcom

ik,l
, i > 1

(16)

T
procproc
il

=
Li
Sl

(17)

where Tcom
ik,l

is the communication time required to transfer the request message of i from
edge server k to l (Equation (18)) and Sl is the processing speed of the cloud server l in
MIPS.

Tcom
ik,l

=
Sizermi

Bk,l
(18)

The latency of the request when offloaded to the cloud is calculated using
Equation (19) and the processing time is calculated using Equation (20).

Lil = Tcom
ij,k

+ Tcom
r(i)k+h,j

(19)

Pril = Tproc
il

(20)

4.2. Energy Consumption Computation

In this step, ESCOVE computes the energy consumption of a request’s execution on
the servers where the SLA is respected. The energy consumptions for making the offloading
decision and for the communication of request and response are not considered in this
paper. The energy consumed for processing request i is given by Equation (21).

Eproc
ix

= Pproc
ix
× T

procproc
ix

x ∈ {k ∪ {1, 2, 3, . . . , p}} s.t. Ttotal
ix
≤ Tmax

i , Lix ≤ Lmax
i , and Prix ≤ Prmax

i

(21)

where Pproc
ix

is the power consumed by server x while processing the request i. We use
locally corrected linear regression (LC-LR) [14] to estimate the power consumption of
server x while executing request i. LC-LR is the summation of the classical linear regression
model and an error correction term as stated in Equation (22).

Pproc
ix

= P′CPUix
+ ØCPUix

(22)

where P′CPUix
is the predicted power consumption for request i using the linear regression

power model (Equation (23)) for the server x and ØCPUix
is the error correction term for

i on server x (Equation (24)). In this paper, we consider a power prediction model based
only on the CPU utilization of the server. This is because the CPU is considered to be the
most dominant power consumer in a computing server [5].

P′CPUix
= αx + (βx × CPUi) (23)

where αx and βx are the regression coefficients of the linear regression model for server
x. The coefficients’ values for a server x are obtained using a training dataset consisting
of the CPU utilization values and the corresponding power consumption values. The

Sensors 2021, 21, 5233 8 of 20

error correction term corresponding to CPUi is calculated, as stated in Equation (24), by
constructing a linear line between the CPU utilization values CPU′ and CPU′′ from the
training dataset such that CPU′ ≤ CPUi ≤ CPU′′ .

ØCPUix
= eCPU′ +

(eCPU′′ − eCPU′)(CPUi − CPU′)
(CPU′′ − CPU′)

(24)

where eCPU′ is the intercept and (eCPU′′ −eCPU′)
(CPU′′−CPU′) is the slope of the constructed linear model.

4.3. Request Scheduling and Execution

In this step, ESCOVE will schedule a request to the server having the minimum
request execution energy consumption (Equation (21)) among those where the request’s
SLA is respected. The request will be executed on the scheduled server. If no server can
satisfy the request’s SLA requirements, then the request is processed on the server where
the total execution time is minimized.

4.4. Request-Response Delivery

In this step, ESCOVE will send a request-response back to the vehicle after a request
has been executed. The algorithm first estimates the position of the vehicle j while receiving
the request-response. The vehicle can be in the range of RSU k where the request was
submitted (Figure 3a) or it can be out of the range of k (Figure 3b). To determine the position
of j, the server x executing the request will calculate: (1) the distance dj,k that j traveled in
the range of k before submitting the request i (Equation (25)), and (2) distance di,j traveled
by j during the time the request is being executed (Equation (26)).

dj,k =

{
xsource

i,j − xle f t
k , xsource

i,j < xdestinaion
i,j

xright
k − xsource

i,j , xsource
i,j > xdestinaion

i,j

(25)

di,j = Speedj × Ttotal
ik (26)

Figure 3. (a) Request-response delivery when the vehicle is in the range of the RSU to which the request was
submitted. (b) Request-response delivery when the vehicle is not in the range of the RSU to which the request was
submitted.

The vehicle j will be in the range of server k if dj,k + di,j ≤ DR, otherwise, it will be
outside the range of k. If j is in the range of k and i is executed by k, then the request-
response will be directly transmitted from k to j. If j is in the range of k and i is executed
by l, then the request-response will be transmitted from l to k and then from k to j. If
j is outside the range of k, then the algorithm will determine the value of h, such that the

Sensors 2021, 21, 5233 9 of 20

vehicle will be in the range of RSU k + h while receiving the response. The value of h is
computed using Equation (27).

h = d
di,j −

(
DR − dj,k

)
DR

e (27)

The objective of the ESCOVE algorithm is thus defined as the minimization of the
energy consumption (Equation (28)) subject to the following constraints: (1) the total
execution time of the request should be less than or equal to the maximum permissible
delay (deadline) (Equation (29)), (2) the request’s latency should be less than or equal to
the maximum permissible latency (Equation (30)), and (3) the request’s processing time
should be less than or equal to the maximum permissible processing time (Equation (31)).

Objective:
Minimize

(
Eproc

ix

)
, x ∈ {k ∪ {1, 2, 3, . . . , p}} (28)

Constraints:
Ttotal

ix
≤ Tmax

i (29)

Lix ≤ Lmax
i (30)

Prix ≤ Prmax
i (31)

where Tmax
i is the maximum delay for request i to be serviced, Lmax

i and Prmax
i are the

maximum latency and processing required for QoS respectively.
ESCOVE algorithm offloads vehicle’s requests as follows:

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

 If there exists a group of servers satisfying the constraints, then the edge server com-
putes the energy consumption for processing the request on each of the selected serv-
ers in the group.

 The edge server then offloads the request to the server that has the minimum energy
consumption.

 The server which is processing the request estimates the location of the vehicle at the
time the vehicle receives the response. It then sends the response to the vehicle’s cor-
responding RSU.
Figure 4 shows the Gantt chart of offloading requests using ESCOVE. In this example,

the vehicular network consists of one edge and three cloud servers. The specifications of
requests are stated in Table 1. In the example, the latency, processing time, and deadline
requirements for requests are considered as 1 s, 5 s, and 10 s respectively. The power con-
sumption values of requests on the edge and cloud servers are presented in Table 2.

Table 1. Specifications of requests used in the example.

Request Arrival Time (s) CPU Utilization (%) Length (MI) Size (bits)
1 0 75.17% 8332.5 2.59
2 0.009894565 82.46% 9152.1 12.33
3 0.216261766 20.15% 2142.9 4.97
4 0.225322547 83.07% 9220.4 8.45
5 0.271152309 60.58% 6691.2 2.65

Table 2. Power consumption values of requests on the edge and cloud servers used in the example.

Request
Power Consumption (watts)

Edge Server Cloud Server 1 Cloud Server 2 Cloud Server 3
1 171.5796508 1199.940949 169.7789491 480.6048427
2 174.9743293 1257.967833 225.3900649 505.1290714
3 146.8080155 625.4940858 101.270207 254.6198867
4 175.2569607 1262.639527 227.2102055 507.131226
5 164.7331494 1065.769649 163.5307232 430.0605889

When a vehicle submits request 1 to the edge server, a request enters the scheduling
queue of the server. The server computes the latency, processing and total execution times
of the request on itself and all the cloud servers. A group of servers is then selected where
the SLA requirements are satisfied, i.e., cloud server 1, cloud server 2, and cloud server 3,
as represented in Figure 4. The edge server then computes the energy consumption of
processing the request on the selected group. The request is then offloaded to the server
where the energy consumption is minimized, i.e., the cloud server 2 (Figure 4). The time
to make the offloading in the scheduling queue of the edge server is considered 0.5 s.
Requests 2, 3, 4, and 5 are offloaded similarly.

As shown in the figure, request 1 is offloaded to the cloud server 2 at 0.5 s after the
offloading decision is made by the edge server. The processing of request 1 on cloud server
2 ends at 3.39 s. When request 2 arrives at the scheduling queue of the edge server at 0.01
s, it waits in the queue as request 1 is being processed. The offloading decision for request
2 is made at 0.99 s by the edge server, and the request is offloaded to cloud server 3. The
processing of request 2 ends at 3.8 s. Similarly, request 3 is offloaded at 1.27 s by the edge
server to cloud server 2. As request 1 is still being processed at cloud server 2, request 3
will wait in the processing queue of the server. Once the processing of request 1 completes,
the one for request 3 starts at 3.39 s and lasts till 4.21 s. Request 4 is offloaded to cloud
server 1 by the edge server at 1.55 s. Request 5 is offloaded to cloud server 2 at 1.78 s.
Request 5 waits in the processing queue of the cloud server 3 till requests 1 and 2 are
processed.

A vehicle submits a request to the RSU which is in the vehicle’s range.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

 If there exists a group of servers satisfying the constraints, then the edge server com-
putes the energy consumption for processing the request on each of the selected serv-
ers in the group.

 The edge server then offloads the request to the server that has the minimum energy
consumption.

 The server which is processing the request estimates the location of the vehicle at the
time the vehicle receives the response. It then sends the response to the vehicle’s cor-
responding RSU.
Figure 4 shows the Gantt chart of offloading requests using ESCOVE. In this example,

the vehicular network consists of one edge and three cloud servers. The specifications of
requests are stated in Table 1. In the example, the latency, processing time, and deadline
requirements for requests are considered as 1 s, 5 s, and 10 s respectively. The power con-
sumption values of requests on the edge and cloud servers are presented in Table 2.

Table 1. Specifications of requests used in the example.

Request Arrival Time (s) CPU Utilization (%) Length (MI) Size (bits)
1 0 75.17% 8332.5 2.59
2 0.009894565 82.46% 9152.1 12.33
3 0.216261766 20.15% 2142.9 4.97
4 0.225322547 83.07% 9220.4 8.45
5 0.271152309 60.58% 6691.2 2.65

Table 2. Power consumption values of requests on the edge and cloud servers used in the example.

Request
Power Consumption (watts)

Edge Server Cloud Server 1 Cloud Server 2 Cloud Server 3
1 171.5796508 1199.940949 169.7789491 480.6048427
2 174.9743293 1257.967833 225.3900649 505.1290714
3 146.8080155 625.4940858 101.270207 254.6198867
4 175.2569607 1262.639527 227.2102055 507.131226
5 164.7331494 1065.769649 163.5307232 430.0605889

When a vehicle submits request 1 to the edge server, a request enters the scheduling
queue of the server. The server computes the latency, processing and total execution times
of the request on itself and all the cloud servers. A group of servers is then selected where
the SLA requirements are satisfied, i.e., cloud server 1, cloud server 2, and cloud server 3,
as represented in Figure 4. The edge server then computes the energy consumption of
processing the request on the selected group. The request is then offloaded to the server
where the energy consumption is minimized, i.e., the cloud server 2 (Figure 4). The time
to make the offloading in the scheduling queue of the edge server is considered 0.5 s.
Requests 2, 3, 4, and 5 are offloaded similarly.

As shown in the figure, request 1 is offloaded to the cloud server 2 at 0.5 s after the
offloading decision is made by the edge server. The processing of request 1 on cloud server
2 ends at 3.39 s. When request 2 arrives at the scheduling queue of the edge server at 0.01
s, it waits in the queue as request 1 is being processed. The offloading decision for request
2 is made at 0.99 s by the edge server, and the request is offloaded to cloud server 3. The
processing of request 2 ends at 3.8 s. Similarly, request 3 is offloaded at 1.27 s by the edge
server to cloud server 2. As request 1 is still being processed at cloud server 2, request 3
will wait in the processing queue of the server. Once the processing of request 1 completes,
the one for request 3 starts at 3.39 s and lasts till 4.21 s. Request 4 is offloaded to cloud
server 1 by the edge server at 1.55 s. Request 5 is offloaded to cloud server 2 at 1.78 s.
Request 5 waits in the processing queue of the cloud server 3 till requests 1 and 2 are
processed.

The RSU’s edge server computes the latency, processing and total execution times of
the request on itself and all the cloud servers.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

 If there exists a group of servers satisfying the constraints, then the edge server com-
putes the energy consumption for processing the request on each of the selected serv-
ers in the group.

 The edge server then offloads the request to the server that has the minimum energy
consumption.

 The server which is processing the request estimates the location of the vehicle at the
time the vehicle receives the response. It then sends the response to the vehicle’s cor-
responding RSU.
Figure 4 shows the Gantt chart of offloading requests using ESCOVE. In this example,

the vehicular network consists of one edge and three cloud servers. The specifications of
requests are stated in Table 1. In the example, the latency, processing time, and deadline
requirements for requests are considered as 1 s, 5 s, and 10 s respectively. The power con-
sumption values of requests on the edge and cloud servers are presented in Table 2.

Table 1. Specifications of requests used in the example.

Request Arrival Time (s) CPU Utilization (%) Length (MI) Size (bits)
1 0 75.17% 8332.5 2.59
2 0.009894565 82.46% 9152.1 12.33
3 0.216261766 20.15% 2142.9 4.97
4 0.225322547 83.07% 9220.4 8.45
5 0.271152309 60.58% 6691.2 2.65

Table 2. Power consumption values of requests on the edge and cloud servers used in the example.

Request
Power Consumption (watts)

Edge Server Cloud Server 1 Cloud Server 2 Cloud Server 3
1 171.5796508 1199.940949 169.7789491 480.6048427
2 174.9743293 1257.967833 225.3900649 505.1290714
3 146.8080155 625.4940858 101.270207 254.6198867
4 175.2569607 1262.639527 227.2102055 507.131226
5 164.7331494 1065.769649 163.5307232 430.0605889

When a vehicle submits request 1 to the edge server, a request enters the scheduling
queue of the server. The server computes the latency, processing and total execution times
of the request on itself and all the cloud servers. A group of servers is then selected where
the SLA requirements are satisfied, i.e., cloud server 1, cloud server 2, and cloud server 3,
as represented in Figure 4. The edge server then computes the energy consumption of
processing the request on the selected group. The request is then offloaded to the server
where the energy consumption is minimized, i.e., the cloud server 2 (Figure 4). The time
to make the offloading in the scheduling queue of the edge server is considered 0.5 s.
Requests 2, 3, 4, and 5 are offloaded similarly.

As shown in the figure, request 1 is offloaded to the cloud server 2 at 0.5 s after the
offloading decision is made by the edge server. The processing of request 1 on cloud server
2 ends at 3.39 s. When request 2 arrives at the scheduling queue of the edge server at 0.01
s, it waits in the queue as request 1 is being processed. The offloading decision for request
2 is made at 0.99 s by the edge server, and the request is offloaded to cloud server 3. The
processing of request 2 ends at 3.8 s. Similarly, request 3 is offloaded at 1.27 s by the edge
server to cloud server 2. As request 1 is still being processed at cloud server 2, request 3
will wait in the processing queue of the server. Once the processing of request 1 completes,
the one for request 3 starts at 3.39 s and lasts till 4.21 s. Request 4 is offloaded to cloud
server 1 by the edge server at 1.55 s. Request 5 is offloaded to cloud server 2 at 1.78 s.
Request 5 waits in the processing queue of the cloud server 3 till requests 1 and 2 are
processed.

The edge server selects a group of the servers where the request’s constraints, i.e.,
latency, processing time, and deadline, are satisfied. If no server satisfies the con-
straints, then the request will be offloaded for execution to the server resulting in the
minimum total execution time.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

 If there exists a group of servers satisfying the constraints, then the edge server com-
putes the energy consumption for processing the request on each of the selected serv-
ers in the group.

 The edge server then offloads the request to the server that has the minimum energy
consumption.

 The server which is processing the request estimates the location of the vehicle at the
time the vehicle receives the response. It then sends the response to the vehicle’s cor-
responding RSU.
Figure 4 shows the Gantt chart of offloading requests using ESCOVE. In this example,

the vehicular network consists of one edge and three cloud servers. The specifications of
requests are stated in Table 1. In the example, the latency, processing time, and deadline
requirements for requests are considered as 1 s, 5 s, and 10 s respectively. The power con-
sumption values of requests on the edge and cloud servers are presented in Table 2.

Table 1. Specifications of requests used in the example.

Request Arrival Time (s) CPU Utilization (%) Length (MI) Size (bits)
1 0 75.17% 8332.5 2.59
2 0.009894565 82.46% 9152.1 12.33
3 0.216261766 20.15% 2142.9 4.97
4 0.225322547 83.07% 9220.4 8.45
5 0.271152309 60.58% 6691.2 2.65

Table 2. Power consumption values of requests on the edge and cloud servers used in the example.

Request
Power Consumption (watts)

Edge Server Cloud Server 1 Cloud Server 2 Cloud Server 3
1 171.5796508 1199.940949 169.7789491 480.6048427
2 174.9743293 1257.967833 225.3900649 505.1290714
3 146.8080155 625.4940858 101.270207 254.6198867
4 175.2569607 1262.639527 227.2102055 507.131226
5 164.7331494 1065.769649 163.5307232 430.0605889

When a vehicle submits request 1 to the edge server, a request enters the scheduling
queue of the server. The server computes the latency, processing and total execution times
of the request on itself and all the cloud servers. A group of servers is then selected where
the SLA requirements are satisfied, i.e., cloud server 1, cloud server 2, and cloud server 3,
as represented in Figure 4. The edge server then computes the energy consumption of
processing the request on the selected group. The request is then offloaded to the server
where the energy consumption is minimized, i.e., the cloud server 2 (Figure 4). The time
to make the offloading in the scheduling queue of the edge server is considered 0.5 s.
Requests 2, 3, 4, and 5 are offloaded similarly.

As shown in the figure, request 1 is offloaded to the cloud server 2 at 0.5 s after the
offloading decision is made by the edge server. The processing of request 1 on cloud server
2 ends at 3.39 s. When request 2 arrives at the scheduling queue of the edge server at 0.01
s, it waits in the queue as request 1 is being processed. The offloading decision for request
2 is made at 0.99 s by the edge server, and the request is offloaded to cloud server 3. The
processing of request 2 ends at 3.8 s. Similarly, request 3 is offloaded at 1.27 s by the edge
server to cloud server 2. As request 1 is still being processed at cloud server 2, request 3
will wait in the processing queue of the server. Once the processing of request 1 completes,
the one for request 3 starts at 3.39 s and lasts till 4.21 s. Request 4 is offloaded to cloud
server 1 by the edge server at 1.55 s. Request 5 is offloaded to cloud server 2 at 1.78 s.
Request 5 waits in the processing queue of the cloud server 3 till requests 1 and 2 are
processed.

If there exists a group of servers satisfying the constraints, then the edge server
computes the energy consumption for processing the request on each of the selected
servers in the group.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

 If there exists a group of servers satisfying the constraints, then the edge server com-
putes the energy consumption for processing the request on each of the selected serv-
ers in the group.

 The edge server then offloads the request to the server that has the minimum energy
consumption.

 The server which is processing the request estimates the location of the vehicle at the
time the vehicle receives the response. It then sends the response to the vehicle’s cor-
responding RSU.
Figure 4 shows the Gantt chart of offloading requests using ESCOVE. In this example,

the vehicular network consists of one edge and three cloud servers. The specifications of
requests are stated in Table 1. In the example, the latency, processing time, and deadline
requirements for requests are considered as 1 s, 5 s, and 10 s respectively. The power con-
sumption values of requests on the edge and cloud servers are presented in Table 2.

Table 1. Specifications of requests used in the example.

Request Arrival Time (s) CPU Utilization (%) Length (MI) Size (bits)
1 0 75.17% 8332.5 2.59
2 0.009894565 82.46% 9152.1 12.33
3 0.216261766 20.15% 2142.9 4.97
4 0.225322547 83.07% 9220.4 8.45
5 0.271152309 60.58% 6691.2 2.65

Table 2. Power consumption values of requests on the edge and cloud servers used in the example.

Request
Power Consumption (watts)

Edge Server Cloud Server 1 Cloud Server 2 Cloud Server 3
1 171.5796508 1199.940949 169.7789491 480.6048427
2 174.9743293 1257.967833 225.3900649 505.1290714
3 146.8080155 625.4940858 101.270207 254.6198867
4 175.2569607 1262.639527 227.2102055 507.131226
5 164.7331494 1065.769649 163.5307232 430.0605889

When a vehicle submits request 1 to the edge server, a request enters the scheduling
queue of the server. The server computes the latency, processing and total execution times
of the request on itself and all the cloud servers. A group of servers is then selected where
the SLA requirements are satisfied, i.e., cloud server 1, cloud server 2, and cloud server 3,
as represented in Figure 4. The edge server then computes the energy consumption of
processing the request on the selected group. The request is then offloaded to the server
where the energy consumption is minimized, i.e., the cloud server 2 (Figure 4). The time
to make the offloading in the scheduling queue of the edge server is considered 0.5 s.
Requests 2, 3, 4, and 5 are offloaded similarly.

As shown in the figure, request 1 is offloaded to the cloud server 2 at 0.5 s after the
offloading decision is made by the edge server. The processing of request 1 on cloud server
2 ends at 3.39 s. When request 2 arrives at the scheduling queue of the edge server at 0.01
s, it waits in the queue as request 1 is being processed. The offloading decision for request
2 is made at 0.99 s by the edge server, and the request is offloaded to cloud server 3. The
processing of request 2 ends at 3.8 s. Similarly, request 3 is offloaded at 1.27 s by the edge
server to cloud server 2. As request 1 is still being processed at cloud server 2, request 3
will wait in the processing queue of the server. Once the processing of request 1 completes,
the one for request 3 starts at 3.39 s and lasts till 4.21 s. Request 4 is offloaded to cloud
server 1 by the edge server at 1.55 s. Request 5 is offloaded to cloud server 2 at 1.78 s.
Request 5 waits in the processing queue of the cloud server 3 till requests 1 and 2 are
processed.

The edge server then offloads the request to the server that has the minimum energy
consumption.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

 If there exists a group of servers satisfying the constraints, then the edge server com-
putes the energy consumption for processing the request on each of the selected serv-
ers in the group.

 The edge server then offloads the request to the server that has the minimum energy
consumption.

 The server which is processing the request estimates the location of the vehicle at the
time the vehicle receives the response. It then sends the response to the vehicle’s cor-
responding RSU.
Figure 4 shows the Gantt chart of offloading requests using ESCOVE. In this example,

the vehicular network consists of one edge and three cloud servers. The specifications of
requests are stated in Table 1. In the example, the latency, processing time, and deadline
requirements for requests are considered as 1 s, 5 s, and 10 s respectively. The power con-
sumption values of requests on the edge and cloud servers are presented in Table 2.

Table 1. Specifications of requests used in the example.

Request Arrival Time (s) CPU Utilization (%) Length (MI) Size (bits)
1 0 75.17% 8332.5 2.59
2 0.009894565 82.46% 9152.1 12.33
3 0.216261766 20.15% 2142.9 4.97
4 0.225322547 83.07% 9220.4 8.45
5 0.271152309 60.58% 6691.2 2.65

Table 2. Power consumption values of requests on the edge and cloud servers used in the example.

Request
Power Consumption (watts)

Edge Server Cloud Server 1 Cloud Server 2 Cloud Server 3
1 171.5796508 1199.940949 169.7789491 480.6048427
2 174.9743293 1257.967833 225.3900649 505.1290714
3 146.8080155 625.4940858 101.270207 254.6198867
4 175.2569607 1262.639527 227.2102055 507.131226
5 164.7331494 1065.769649 163.5307232 430.0605889

When a vehicle submits request 1 to the edge server, a request enters the scheduling
queue of the server. The server computes the latency, processing and total execution times
of the request on itself and all the cloud servers. A group of servers is then selected where
the SLA requirements are satisfied, i.e., cloud server 1, cloud server 2, and cloud server 3,
as represented in Figure 4. The edge server then computes the energy consumption of
processing the request on the selected group. The request is then offloaded to the server
where the energy consumption is minimized, i.e., the cloud server 2 (Figure 4). The time
to make the offloading in the scheduling queue of the edge server is considered 0.5 s.
Requests 2, 3, 4, and 5 are offloaded similarly.

As shown in the figure, request 1 is offloaded to the cloud server 2 at 0.5 s after the
offloading decision is made by the edge server. The processing of request 1 on cloud server
2 ends at 3.39 s. When request 2 arrives at the scheduling queue of the edge server at 0.01
s, it waits in the queue as request 1 is being processed. The offloading decision for request
2 is made at 0.99 s by the edge server, and the request is offloaded to cloud server 3. The
processing of request 2 ends at 3.8 s. Similarly, request 3 is offloaded at 1.27 s by the edge
server to cloud server 2. As request 1 is still being processed at cloud server 2, request 3
will wait in the processing queue of the server. Once the processing of request 1 completes,
the one for request 3 starts at 3.39 s and lasts till 4.21 s. Request 4 is offloaded to cloud
server 1 by the edge server at 1.55 s. Request 5 is offloaded to cloud server 2 at 1.78 s.
Request 5 waits in the processing queue of the cloud server 3 till requests 1 and 2 are
processed.

The server which is processing the request estimates the location of the vehicle at
the time the vehicle receives the response. It then sends the response to the vehicle’s
corresponding RSU.

Figure 4 shows the Gantt chart of offloading requests using ESCOVE. In this example,
the vehicular network consists of one edge and three cloud servers. The specifications of
requests are stated in Table 1. In the example, the latency, processing time, and deadline
requirements for requests are considered as 1 s, 5 s, and 10 s respectively. The power
consumption values of requests on the edge and cloud servers are presented in Table 2.

When a vehicle submits request 1 to the edge server, a request enters the scheduling
queue of the server. The server computes the latency, processing and total execution times
of the request on itself and all the cloud servers. A group of servers is then selected where
the SLA requirements are satisfied, i.e., cloud server 1, cloud server 2, and cloud server
3, as represented in Figure 4. The edge server then computes the energy consumption of
processing the request on the selected group. The request is then offloaded to the server
where the energy consumption is minimized, i.e., the cloud server 2 (Figure 4). The time
to make the offloading in the scheduling queue of the edge server is considered 0.5 s.
Requests 2, 3, 4, and 5 are offloaded similarly.

Sensors 2021, 21, 5233 10 of 20

Figure 4. Gantt chart representing the offloading of requests using ESCOVE.

Table 1. Specifications of requests used in the example.

Request Arrival Time (s) CPU Utilization (%) Length (MI) Size (Bits)

1 0 75.17% 8332.5 2.59
2 0.009894565 82.46% 9152.1 12.33
3 0.216261766 20.15% 2142.9 4.97
4 0.225322547 83.07% 9220.4 8.45
5 0.271152309 60.58% 6691.2 2.65

Table 2. Power consumption values of requests on the edge and cloud servers used in the example.

Request Power Consumption (Watts)

Edge Server Cloud Server 1 Cloud Server 2 Cloud Server 3

1 171.5796508 1199.940949 169.7789491 480.6048427
2 174.9743293 1257.967833 225.3900649 505.1290714
3 146.8080155 625.4940858 101.270207 254.6198867
4 175.2569607 1262.639527 227.2102055 507.131226
5 164.7331494 1065.769649 163.5307232 430.0605889

As shown in the figure, request 1 is offloaded to the cloud server 2 at 0.5 s after the
offloading decision is made by the edge server. The processing of request 1 on cloud server
2 ends at 3.39 s. When request 2 arrives at the scheduling queue of the edge server at 0.01 s,
it waits in the queue as request 1 is being processed. The offloading decision for request
2 is made at 0.99 s by the edge server, and the request is offloaded to cloud server 3. The
processing of request 2 ends at 3.8 s. Similarly, request 3 is offloaded at 1.27 s by the edge
server to cloud server 2. As request 1 is still being processed at cloud server 2, request 3 will
wait in the processing queue of the server. Once the processing of request 1 completes, the
one for request 3 starts at 3.39 s and lasts till 4.21 s. Request 4 is offloaded to cloud server 1

Sensors 2021, 21, 5233 11 of 20

by the edge server at 1.55 s. Request 5 is offloaded to cloud server 2 at 1.78 s. Request 5
waits in the processing queue of the cloud server 3 till requests 1 and 2 are processed.

Figure 5 shows the latency, processing and total execution times for the five requests
used in the example. In addition, the latency, processing time, and deadline requirements
are also represented. The figure shows that all the three SLA requirements are satisfied
using the ESCOVE algorithm.

Figure 5. Latency, processing and total execution times of requests using ESCOVE.

5. Performance Evaluation

In this section, we describe the experimental environment and the experiments per-
formed to evaluate our proposed algorithm, ESCOVE. We then analyze and give insights
on the obtained numerical results. We evaluate the performance of ESCOVE in a heteroge-
neous edge–cloud vehicular network in terms of energy consumption, latency, processing
time, execution time, and percentage of SLA violations (SLAVs).

5.1. Experimental Environment

To evaluate the performance of ESCOVE, we create a heterogeneous edge–cloud
vehicular network consisting of 10 RSUs (edge servers) of 3 different types and 20 cloud
servers of 3 different types. The network is implemented using MATLAB 2020a [15]. The
specifications of the servers’ types are presented in Table 3. Servers 1 and 2 from the edge
servers are part of our Intelligent Distributed Computing and Systems (INDUCE) research
laboratory at the College of Information Technology of the United Arab Emirates University.
The specifications of servers 3–6 are taken from the SPEC Power benchmark suite [16] in a
way that they belong to the same family of the servers present in the laboratory, but with
different architectures and resource capabilities.

Table 3. Specifications of the servers’ types used in the experiments.

Location Server Description MIPS

edge

1
Sun Fire Intel_Xeon CPU core of 2.80 GHz, Dual-core,
with 512 KB of cache and 4 GB of memory for each core,
CPU voltage rating 1.5 V, OS version CentOS 6.8(i686)

1000

2

Sun Fire X4100 with AMD_Operaton252 CPU of
2.59 GHz, dual CPU, single-core, with 1 MB of cache
and 2 GB of memory for each core, CPU voltage rating
of 3.3–2.9 V, OS version Red Hat Enterprise Linux
Server release 7.3 (Mapio)

1200

3

Dell Inc. PowerEdge R260 with Intel Xeon E5-2670
CPU core of 2.6 GHz CPU, 8 cores, with 2 MB cache,
4 GB 2Rx8 PC3L10600E-9 ECC memory, and 1 × 100
GB SATA SSD disk drive [17]

1450

Sensors 2021, 21, 5233 12 of 20

Table 3. Cont.

Location Server Description MIPS

cloud

4

SGI Rackable C2112-4G10 with AMD Opteron
6276 CPU core of 2.30 GHz, 16 cores, 4 GB 2Rx8
PCL-10600R memory and 1 × 120 GB 2.5” SSD SATA
disk drive [18]

2750

5

Hewlett Packard Enterprise ProLiant DL360 Gen9 with
Intel Xeon E5-2699 v3 CPU core of 2.30 GHz, 18 cores,
with 45 MB L3 Cache, 8 GB 2Rx8 PC4-2133P memory,
and 1 × 400 GB SSD SATA disk drive [19]

3000

6

Acer Incorporated Acer AR585 F1 with AMD Opteron
6238 CPU core of 2.60 GHz, 12-core, with 16 MB L3
cache, 4 GB 2Rx8 PC3L-10600E memory, and
1 × 500 GB SATA2 7200 RPM 3.5” HDD disk drive [20]

3500

To develop the LC-LR power model for each server type, we use a dataset consisting
of CPU utilization values of a server and the corresponding power consumption. For
servers 1 and 2, we run CPU Load Generator [21] to stress the CPU and measure the values
of CPU utilization and corresponding power consumption. CPU Load Generator is a tool
that allows generating a fixed CPU load for a finite user-defined duration. To measure the
values of power consumption, we use a 4-channel digital oscilloscope, Tektronix—TBS2000
100 MHz with 1 GS/s of sampling [22]. We connect the oscilloscope to a current probe [23]
and a voltage probe [23] to measure the server’s current and voltage respectively. The
current and voltage values are extracted from the oscilloscope using the LabVIEW pro-
gram [24]. The power consumption is then computed as the product of current and voltage.
For servers 3–6, the values of CPU utilization and corresponding power consumption are
obtained from SPEC Power.

To obtain the position of vehicles in the simulated network, we use the Vehicle-Crowd
Interaction (VCI)—DUT dataset [25]. We use the x_est and y_est columns of the dataset,
representing the estimated vehicles’ position, as the source location of the vehicles in our
experiments. Table 4 shows the experimental parameters. The value for RSU transmission
power for the MEES algorithm is based on the literature [10]. The latency requirement [26]
and the processing time and deadline requirements [27] for the request are based on the
literature.

Table 4. Experimental parameters.

Parameter Value

number of vehicles (n) 1000
number of edge servers (o) 10
number of cloud servers (p) 20
request’s minimum CPU utilization 10%
request’s maximum CPU utilization 90%
minimum request length 1000 MI
maximum request length 10,000 MI
request latency 500 milliseconds
request processing time 5 s
request deadline 6 s
vehicle—RSU bandwidth 350 megabits/second
RSU—cloud bandwidth uniform (500, 1000) megabits/second
request’s men arrival rate 10 requests/second
RSU transmission power uniform(0.01, 1) watts

Sensors 2021, 21, 5233 13 of 20

5.2. Experiments

The set of experiments performed to obtain the CPU utilization and power consump-
tion datasets for servers 1 and 2, and to simulate the edge–cloud vehicular network for
implementing ESCOVE are explained in this section.

To obtain the datasets for serves 1 and 2, we stress the CPU load generator on each
server to generate a CPU load between 0–100% for five minutes at an interval of 10%. We
measure the CPU utilization and the corresponding power consumption values for each
generated CPU load at every second and write them to a file. The values are then averaged.
We repeat the experiment for each CPU load five times and average all the averages.
Table 5 shows the values of CPU utilization and corresponding power consumption for
servers 1–6.

Table 5. CPU utilization and corresponding power consumption for the servers used in the experi-
ments.

CPU
Utilization

(%)

Power Consumption (Watts)

Server 1 Server 2 Server 3 Server 4 Server 5 Server 6

0 138.2685 204.2420 54.1 265 45 127
10 142.2829 204.9672 78.4 531 83.7 220
20 146.7379 205.9185 88.5 624 101 254
30 151.1429 206.6314 99.5 718 118 293
40 155.3824 207.5923 115 825 133 339
50 159.9734 208.5179 126 943 145 386
60 164.4558 209.1885 143 1060 162 428
70 169.1667 210.2377 165 1158 188 463
80 173.8268 211.1731 196 1239 218 497
90 178.4852 211.8091 226 1316 248 530

100 181.7913 214.9755 243 1387 276 559

To evaluate the performance of ESCOVE, we simulate an edge–cloud vehicular net-
work with 1000 vehicles [28]. The network consists of 10 edge servers, with edge servers’
types (Table 1) equally distributed, and 20 cloud servers, with cloud servers’ types (Table 1)
equally distributed. For the source locations of the vehicles, we take the first 1000 locations
from the VCI—DUT dataset. For the geographical location of the RSUs (edge servers),
we randomly generate the x and y coordinates between the minimum and the maximum
x and y coordinates values of the vehicles in a way that the RSUs are equidistant from
each other. Each vehicle in the network generates a request. Requests arrive at the edge
servers with a mean arrival rate of 10 requests per second [29]. For each vehicle’s request,
we randomly generate a CPU-utilization value and request length (MI). CPU utilization
is generated between the minimum and maximum CPU-utilization values. The length is
generated between the minimum and maximum request-length values. Figure 6 shows the
probability distribution of the CPU utilization values for the generated requests. Figure 7
shows the probability distribution of the generated requests’ lengths.

Sensors 2021, 21, 5233 14 of 20

Figure 6. Probability distribution of the generated requests’ CPU-utilization values.

Figure 7. Probability distribution of the generated requests’ length values.

In our experiments, for each vehicle’s request arriving at the connected edge server,
the server computes the energy consumption of requests on all servers (edge and the
cloud) where requests’ SLA requirements are satisfied. A request is then scheduled for
execution on the server where the energy consumption is minimized. If none of the
servers can satisfy the SLA requirements, then the request will be scheduled to the server
where the total execution time is minimized. We measure the energy consumption, latency,
processing time, and total execution time for each request. We also compute the total energy
consumption as the sum of the energy consumption of each request and the percentage of
SLAVs (Equation (32)).

% SLAVs =

m
#

i=1

([
Ttotal

ix
> Tmax

i

] ∣∣∣∣ [Lix > Lmax
i
] ∣∣∣∣ [Prix > Prmax

i
])

m
(32)

To demonstrate the performance of ESCOVE, we compare it with a state-of-the-art
algorithm:

• MEC-enabled Energy-Efficient Scheduling (MEES): A scheduling scheme that sched-
ules the vehicles’ requests either to the communicating edge server or offloads them

Sensors 2021, 21, 5233 15 of 20

to other edge servers via multi-hop requests transmission. The scheduling decision is
made in a way that the energy consumption of the edge servers is minimized under
deadline constraints. If no edge servers satisfy the SLA requirements for a request,
then the request is scheduled to the server providing the minimum execution time.

In addition, we compare the performance of ESCOVE with the following two ap-
proaches:

1. Random Non-SLA-Aware (RNSA) offloading: An offloading scheme that schedules
the vehicles’ requests randomly to the edge server (to which a vehicle submits the
request) or a cloud server without considering the SLA constraints.

2. Random SLA-Aware (RSA) offloading: An offloading scheme that schedules the
vehicles’ requests randomly to the edge server (to which a vehicle submits the request)
or a cloud server considering the SLA constraints.

We repeat the experiments with MEES, RSA, and RNSA approaches, and measure the
energy consumption of each request, latency, processing and total execution times for each
request, total energy consumption, and percentage of SLAVs.

5.3. Experimental Results Analysis

In this section, we analyze and compare the performance of our proposed ESCOVE
offloading algorithm with the MEES, RSA, and RNSA approaches.

Figure 8 shows the energy consumption of the vehicles’ requests using ESCOVE,
MEES, RSA, and RNSA. It shows that the overall energy consumption of ESCOVE is
minimized. This is because of the energy optimization objective of ESCOVE that schedules
the vehicles’ requests in a way that the energy consumption for each request’s execution
is minimized. The energy consumption of MEES is more than that of ESCOVE as MEES
schedules requests only on the edge servers without involving the cloud. Consequently,
the processing of requests requires more time using MEES, leading to higher energy
consumption. In addition, the energy consumption of RSA is less than that of MEES, even
though the former is non-energy-efficient. This is because of the inclusion of the cloud in
RSA for processing requests, leads to less time and thus less energy consumption. The
energy consumption of RNSA is the maximum. This is because RNSA randomly schedules
requests without considering the SLA. Consequently, a request’s execution time in RNSA
is greater compared with MEES and RSA. This leads to higher energy consumption, as the
energy consumed by a request is a function of its execution time.

Figure 8. Energy consumption of requests using ESCOVE, MEES, RSA, and RNSA.

Sensors 2021, 21, 5233 16 of 20

Figure 9 shows the latencies of requests using ESCOVE, MEES, RSA, and RNSA. It
shows that latencies using all the algorithms are below the permissible latency requirement
of 500 milliseconds. The figure shows that requests’ latencies using the MEES are lower
compared to other algorithms. This is because, MEES considers only the edge layer for
scheduling requests, while ESCOVE, RSA, and RNSA consider both edge and cloud layers.
The inclusion of a cloud layer in the latter results in higher latency.

Figure 9. Latencies of requests using ESCOVE, MEES, RSA, and RNSA.

Figure 10 shows requests’ processing times using ESCOVE, MEES, RSA, and RNSA.
It shows that processing times for all requests using ESCOVE and RSA are below the
maximum permissible processing time of 5 s. This is because of the processing time
constraint consideration in the algorithms while scheduling requests. A zoomed-in image
for the processing times using ESCOVE and RSA has been presented in the figure for clarity.
Regarding the MEES and RNSA, not all requests meet the processing time constraint. This
is because, the requirement is not considered in RNSA, while for the MEES only the edge
servers are not able to respect the processing time requirement. The processing time in
MEES increases with increasing vehicles as requests’ waiting times increases.

Figure 10. Processing times of requests using ESCOVE, MEES, RSA, and RNSA.

Sensors 2021, 21, 5233 17 of 20

Figure 11 shows the total execution time of requests using ESCOVE, MEES, RSA, and
RNSA. It shows that execution times for all requests using ESCOVE and RSA are below the
acceptable deadline. This is because of the deadline constraint considered in the algorithms
while scheduling requests. The execution times of ESCOVE and RSA are zoomed in for
clarity in the figure. MEES and RSA do not satisfy the deadline constraint. This is because
for MEES, the edge servers are not able to process requests in the given deadline, and for
RSA the deadline constraint is not considered. The execution using MEES increases with
increasing vehicles due to increasing waiting time at the edge servers.

Figure 11. Total execution times of requests using ESCOVE, MEES, RSA, and RNSA.

Figure 12 shows the total energy consumption of all requests and percentage of
SLAVs using ESCOVE, MEES, RSA, and RNSA. It shows that ESCOVE has the least
energy consumption with 0% of SLAVs. The SLAVs using RSA is also 0%, but the energy
consumption is more compared to that of ESCOVE. The energy consumption of MEES
is higher than that of ESCOVE and RSA, and the percentage SLAVs is 99.5%. The RNSA
approach has the worst performance in terms of total energy consumption. The percentage
SLAVs using RNSA is 92.4%. Figure 13 shows the average latency, processing and total
execution times for the algorithms. It shows that the average latency of all the algorithms is
below the permissible latency requirement. Regarding the processing and total execution
times, the values for ESCOVE and RSA are below the corresponding permissible limit.
However, for MEES and RNSA, the processing time and deadline constraints are not
satisfied.

Sensors 2021, 21, 5233 18 of 20

Figure 12. Total energy consumption and percentage SLAVs using ESCOVE, RNSA, and RSA.

Figure 13. Average latency, processing and total execution times using ESCOVE, MEES,
RSA, and RNSA.

In summary, ESCOVE saves 60.26% of total energy consumption compared to MEES,
1.47% compared to RSA, and 69.44% compared to RNSA, with no SLAVs.

6. Conclusions

Energy-efficient computation offloading is important in edge–cloud vehicular net-
works for executing computationally intensive and time-critical vehicles’ requests respect-
ing the SLA. In this paper, we propose the Energy-SLA-Aware Edge–Cloud Computation
Offloading in Vehicular Networks (ESCOVE) algorithm. The proposed algorithm schedules
a vehicle’s request to either an edge server or to a cloud server in a way that the energy
consumed to execute the request is minimized and the request’s SLA requirements are
satisfied. To the best of our knowledge, we are the first ones to propose an energy-SLA-
aware offloading algorithm that optimizes the energy consumption of the edge as well
as the cloud servers, considering latency, processing time, and deadline constraints. We
compared the performance of ESCOVE with one state-of-the-art algorithm, MEES, and

Sensors 2021, 21, 5233 19 of 20

two offloading approaches, RNSA and RSA, in terms of a request’s energy consumption,
latency, processing and total execution times, total energy consumption for all requests,
and the percentage of SLAVs. Our experimental results reveal that ESCOVE outperforms
the state-of-the-art algorithm and other approaches in terms of energy consumption as
well as SLAVs.

Author Contributions: Conceptualization, L.I.; methodology, L.I.; investigation, L.I. and H.M.;
writing—original draft preparation, L.I. and H.M.; writing—review and editing, L.I.; supervision,
L.I.; project administration, L.I.; funding acquisition, L.I. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Water and Energy Center of the United Arab
Emirates under grant number 31R215.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hartenstein, H.; Laberteaux, L.P. A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 2008, 46, 164–171.

[CrossRef]
2. Mell, P.; Grance, T. The NIST Definition of Cloud Computing Recommendations of the National Institute of Standards and

Technology. Nist Spec. Publ. 2011, 145, 7.
3. Xie, R.; Tang, Q.; Wang, Q.; Liu, X.; Yu, F.R.; Huang, T. Collaborative Vehicular Edge Computing Networks: Architecture Design

and Research Challenges. IEEE Access 2019, 7, 178942–178952. [CrossRef]
4. Ismail, L.; Materwala, H. IoT-Edge-Cloud Computing Framework for QoS-Aware Computation Offloading in Autonomous

Mobile Agents: Modeling and Simulation. In Proceedings of the International Conference on Mobile, Secure, and Programmable
Networking, Paris, France, 28–29 October 2020; pp. 161–176.

5. Ismail, L.; Materwala, H. Energy-Aware VM Placement and Task Scheduling in Cloud-IoT Computing: Classification and
Performance Evaluation. IEEE Internet Things J. 2018, 5, 5166–5176. [CrossRef]

6. Zhang, K.; Mao, Y.; Leng, S.; Maharjan, S.; Zhang, Y. Optimal Delay Constrained Offloading for Vehicular Edge Computing
Networks. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017.

7. Du, J.; Yu, F.R.; Chu, X.; Feng, J.; Lu, G. Computation Offloading and Resource Allocation in Vehicular Networks Based on
Dual-Side Cost Minimization. IEEE Trans. Veh. Technol. 2019, 68, 1079–1092. [CrossRef]

8. Zhao, J.; Li, Q.; Gong, Y.; Zhang, K. Computation offloading and resource allocation for cloud assisted mobile edge computing in
vehicular networks. IEEE Trans. Veh. Technol. 2019, 68, 7944–7956. [CrossRef]

9. Sun, F.; Hou, F.; Cheng, N.; Wang, M.; Zhou, H.; Gui, L.; Shen, X. Cooperative Task Scheduling for Computation Offloading in
Vehicular Cloud. IEEE Trans. Veh. Technol. 2018, 67, 11049–11061. [CrossRef]

10. Ning, Z.; Huang, J.; Wang, X.; Rodrigues, J.J.P.C.; Guo, L. Mobile Edge Computing-Enabled Internet of Vehicles: Toward
Energy-Efficient Scheduling. IEEE Netw. 2019, 33, 198–205. [CrossRef]

11. Huang, X.; He, L.; Zhang, W. Vehicle Speed Aware Computing Task Offloading and Resource Allocation Based on Multi-Agent
Reinforcement Learning in a Vehicular Edge Computing Network. In Proceedings of the 2020 IEEE International Conference on
Edge Computing (EDGE), Honolulu, HI, USA, 18–20 September 2020; pp. 1–8.

12. Huang, X.; Xu, K.; Lai, C.; Chen, Q.; Zhang, J. Energy-efficient offloading decision-making for mobile edge computing in vehicular
networks. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 35. [CrossRef]

13. Pu, L.; Chen, X.; Mao, G.; Xie, Q.; Xu, J. Chimera: An Energy-Efficient and Deadline-Aware Hybrid Edge Computing Framework
for Vehicular Crowdsensing Applications. IEEE Internet Things J. 2019, 6, 84–99. [CrossRef]

14. Ismail, L.; Abed, E.H. Linear Power Modeling for Cloud Data Centers: Taxonomy, Locally Corrected Linear Regression, Simulation
Framework and Evaluation. IEEE Access 2019, 7, 175003–175019. [CrossRef]

15. MATLAB Documentation. Available online: https://www.mathworks.com/help/matlab/ (accessed on 31 July 2021).
16. SPECpower_ssj2008. Available online: https://www.spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071128-0

0004.html (accessed on 31 July 2021).
17. Server 3: SPECpower_ssj2008. Available online: https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-2012

0306-00434.html (accessed on 31 July 2021).
18. Server 4: SPECpower_ssj2008. Available online: https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-2012

0306-00437.html (accessed on 31 July 2021).
19. Server 5: SPECpower_ssj2008. Available online: https://www.spec.org/power_ssj2008/results/res2016q1/power_ssj2008-2015

1215-00708.html (accessed on 31 July 2021).
20. Server 6: SPECpower_ssj2008. Available online: https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-2012

0213-00420.html (accessed on 31 July 2021).
21. Carlucci, G. CPU Load Generator. Available online: https://github.com/GaetanoCarlucci/CPULoadGenerator (accessed on

31 July 2021).

http://doi.org/10.1109/MCOM.2008.4539481
http://doi.org/10.1109/ACCESS.2019.2957749
http://doi.org/10.1109/JIOT.2018.2865612
http://doi.org/10.1109/TVT.2018.2883156
http://doi.org/10.1109/TVT.2019.2917890
http://doi.org/10.1109/TVT.2018.2868013
http://doi.org/10.1109/MNET.2019.1800309
http://doi.org/10.1186/s13638-020-1652-5
http://doi.org/10.1109/JIOT.2018.2872436
http://doi.org/10.1109/ACCESS.2019.2956881
https://www.mathworks.com/help/matlab/
https://www.spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071128-00004.html
https://www.spec.org/power_ssj2008/results/res2007q4/power_ssj2008-20071128-00004.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00434.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00434.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00437.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00437.html
https://www.spec.org/power_ssj2008/results/res2016q1/power_ssj2008-20151215-00708.html
https://www.spec.org/power_ssj2008/results/res2016q1/power_ssj2008-20151215-00708.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120213-00420.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120213-00420.html
https://github.com/GaetanoCarlucci/CPULoadGenerator

Sensors 2021, 21, 5233 20 of 20

22. Tektronix. TBS 2000 Digital Oscilloscope. Available online: https://download.tek.com/manual/TBS2000-User-RevC-EN-077114
701.pdf (accessed on 31 July 2021).

23. Wedlock, B.D.; Roberge, J. Electronic Components and Measurements; Prentice Hall: Hoboken, NJ, USA, 1969.
24. What is LabVIEW?—National Instruments. Available online: https://www.ni.com/en-lb/shop/labview.html (accessed on

31 July 2021).
25. Yang, D.; Li, L.; Redmill, K.; Özgüner, Ü. Top-view trajectories: A pedestrian dataset of vehicle-crowd interaction from

controlled experiments and crowded campus. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France,
9–12 June 2019; pp. 899–904.

26. Jian, Z.; Muqing, W.; Min, Z. Joint computation offloading and resource allocation in C-RAN with MEC based on spectrum
efficiency. IEEE Access 2019, 7, 79056–79068. [CrossRef]

27. He, Y.; Zhai, D.; Huang, F.; Wang, D.; Tang, X.; Zhang, R. Joint Task Offloading, Resource Allocation, and Security Assurance for
Mobile Edge Computing-Enabled UAV-Assisted VANETs. Remote Sens. 2021, 13, 1547. [CrossRef]

28. Di Maio, A.; Soua, R.; Palattella, M.R.; Engel, T. ROADNET: Fairness-and throughput-enhanced scheduling for content dissemi-
nation in VANETs. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops),
Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

29. Ma, X.; Zhang, J.; Yin, X.; Trivedi, K.S. Design and analysis of a robust broadcast scheme for VANET safety-related services. IEEE
Trans. Veh. Technol. 2011, 61, 46–61. [CrossRef]

https://download.tek.com/manual/TBS2000-User-RevC-EN-077114701.pdf
https://download.tek.com/manual/TBS2000-User-RevC-EN-077114701.pdf
https://www.ni.com/en-lb/shop/labview.html
http://doi.org/10.1109/ACCESS.2019.2922702
http://doi.org/10.3390/rs13081547
http://doi.org/10.1109/TVT.2011.2177675

	Introduction
	Related Work
	System Model
	ESCOVE: Energy-SLA-Aware Edge–Cloud Computation Offloading in Vehicular Networks
	Total Execution Time, Latency, and Processing Time Computation
	Total Execution Time, Latency, and Processing Time for Local (Edge) Computing
	Total Execution Time, Latency, and Processing Time for Cloud Computing

	Energy Consumption Computation
	Request Scheduling and Execution
	Request-Response Delivery

	Performance Evaluation
	Experimental Environment
	Experiments
	Experimental Results Analysis

	Conclusions
	References

