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Abstract

The transmission of genomic information from coding sequence to protein structure during protein synthesis is subject to
stochastic errors. To analyze transmission limits in the presence of spurious errors, Shannon’s noisy channel theorem is
applied to a communication channel between amino acid sequences and their structures established from a large-scale
statistical analysis of protein atomic coordinates. While Shannon’s theorem confirms that in close to native conformations
information is transmitted with limited error probability, additional random errors in sequence (amino acid substitutions)
and in structure (structural defects) trigger a decrease in communication capacity toward a Shannon limit at 0.010 bits per
amino acid symbol at which communication breaks down. In several controls, simulated error rates above a critical
threshold and models of unfolded structures always produce capacities below this limiting value. Thus an essential
biological system can be realistically modeled as a digital communication channel that is (a) sensitive to random errors and
(b) restricted by a Shannon error limit. This forms a novel basis for predictions consistent with observed rates of defective
ribosomal products during protein synthesis, and with the estimated excess of mutual information in protein contact
potentials.
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Introduction

In the sixty years since its formulation communication theory

[1] has shaped modern technology, from integrated circuits to

satellite communication. Claude Shannon’s fundamental insight

was that, with the right code, information can be reliably

transmitted between sender and receiver at any level of spurious

noise, although the practical design or discovery of such Shannon

codes has proved challenging.

The generality of Shannon’s results suggests that biological

systems may also use Shannon codes, such as in the transfer of

genomic information during cellular protein synthesis. Despite

efforts over the last fifty years [2], evidence for this hypothesis has

remained inconclusive [3,5]. Yockey, who pioneered an infor-

mation theory approach to the Central Dogma [6], applied the

Shannon-Weaver communication model [1] to describe the flow

of information from DNA to the amino acid sequence but did not

provide a detailed information theoretic description of the folded

state. Entropy analysis may indicate that the ‘information

content’ of the physical protein structure is large enough to

accommodate the ,4 bits per amino acid residue in primary

sequence [7,8]. However, ,4 bits per residue cannot be the true

rate of information transfer between sequence and structure. This

follows from (a) Anfinsen’s result that a fully translated amino

acid sequence is necessary and sufficient for a protein to fold into

its native state [9], and from (b) Levinthal’s argument that folding

cannot be realistically achieved by sampling an astronomical

number of configurations [10]. In contradiction to (b), such a

high rate would require, for a typical protein of ,400 amino

acids, any receiver to decode the correct state from ,21600

possible states. Furthermore, given (a), there is no way to avoid

this combinatorial explosion by determining the correct protein

shape from a lesser part of the amino acid sequence. Thus, for

information transmission between sequence and structure to be

realistic, transmission rate must be much smaller than ,4 bits per

residue.

In line with this argument, mutual information studies show

that information exchange between primary and secondary

structure is ,0.20 bits per amino acid residue [11], which is a

factor five higher than estimates between primary and tertiary

structure in contacts of native structures [12,13]. Because non-

local contacts mainly determine tertiary structure, this implies

that information transfer between sequence and tertiary

structure is indeed modest, a few hundredth of a bit per residue

[11–13].

The main result in information theory is Shannon’s noisy

channel theorem which sets a universal limit on communication in

any error prone communication channel [1]: the Shannon limit. It

says that communication can take place only if channel capacity C

is above the transmission rate R. Although no reliable communi-
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cation in Shannon’s sense is possible below this point a Shannon

limit has not been explicitly proposed as part of a communication

protocol between sequence and structure.

This situation appears unsatisfactory given the growing

evidence that error in protein synthesis is common: ,30% of all

ribosomal products in eukaryotic cells are degraded during or

immediately after translation and folding suggesting that a large

fraction of proteins is synthesized into aberrant structures

(misfolded protein) [14,15]. This is significantly higher than the

error accumulated during translation, which amounts to 461024

per residue [16], and therefore corresponds, for an average chain

length of ,400, to only ,0.2 amino acid errors per completed

protein chain. Furthermore, misfolded proteins appear to play

critical roles in prevalent diseases such as Alzheimer’s, Parkinson’s

or diabetes [17–19]. Hence, an adequate model of cellular protein

synthesis should address errors explicitly.

Here, to support the hypothesis that a noisy communication

channel with a Shannon limit exists in the protein sequence-

structure map, we encode a large set of experimental protein

atomic coordinates into a contact vector representation [20]. This

discrete and one-dimensional representation of tertiary structure,

which orders all polypeptide backbone hydrogen bonds by their

sequence separation, leads to two main results. First, it gives

quantitative evidence for a communication channel with an

information capacity C above a Shannon limit at 1022 bits per

amino acid symbol. Second, it introduces a measure of

communication fidelity between sequence and structure, the

Gallager probability of error-free communication qe
2. Above the

Shannon limit both measures are sensitive to errors in crystallo-

graphic structures and in primary sequence. By contrast, models of

misfolded structures and random coils do not achieve the Shannon

limit, i.e. capacity falls below 1022 bits per amino acid symbol and

communication fidelity vanishes exactly.

These results are consistent with studies on the efficacy of

protein synthesis and sequence-structure correlation, including (a)

the high rate (,30%) of ‘defective ribosomal products’ in

eukaryotic cells [14,15], which equals the error probability derived

from high-resolution protein structures, (b) mutual information

estimates between sequence and structure [11–13], which are

consistent with channel capacities given here, and (c) the observed

excess in mutual information from protein contact potentials [12],

which matches the reported Shannon limit.

We conclude that the sequence-structure map in proteins can be

represented in a biologically meaningful way as a noisy digital

communication channel with an output error probability of at

least ,30% and a Shannon limit at 1022 bits per amino acid

symbol.

Materials and Methods

Model formulation: Shannon-Weaver communication
between protein sequences and structures

Cellular production of polypeptides was modeled as a serial

process where over time many chains are synthesized by the

translational and ribosomal apparatus. Figure 1 shows a

schematic: translation determines a series of amino acid sequences

{…, Seqt21, Seqt, Seqt+1, …} = {Seqt}tMZ, each Seqt for one

protein chain, ordered by a discrete temporal order tMZ of

corresponding tertiary structures {…, Strt21, Strt,

Strt+1,…} = {Strt}tMZ, where Z = {…,21, 0, 1,…} is the set of

integers. For example, translation and folding of sequence Seqt21

into a structure Strt21 was completed before it was finished so for

Seqt. Thus the synthesis of individual polypeptide chains is ordered

by a discrete time index representing source and destination

random processes {Seqt}tMZ and {Strt}tMZ, respectively.

Our model hypothesis was a Shannon-Weaver communication

channel [1] between amino acid sequences (the source, or sender)

and corresponding structures (the destination, or receiver). Source

and destination are linked with three consecutive components: an

encoder, a noisy channel, and a decoder.

The source is here defined as a series of concatenated primary

sequences {Seqt}tMZ resulting in a stream SA of letters from the

amino acid alphabet A with alphabet size |A| = 20. The encoder is

a map that uses a block code of fixed length n to encode the source

through a set of code words (the code book), i.e., it maps every

sequence Seqt onto one single code word Xn(Seqt) represented by

an n-vector (x1,…, xn) of integers. The code word is an element of

the code book A*, the finite set of all code words. The message

input Xn(Seqt) = (x1,…, xn) is transmitted over a noisy communi-

cation channel which outputs an n-vector Yn(Strt) = (y1,…, yn), now

representing the folded protein chain Strt. This step mirrors the

physical folding process in which a geometrically unspecified

sequence becomes a functionally determined 3D structure, and

communicational noise is interpreted as any physical interaction of

the nascent protein with its environment so that the original input

Xn is randomly distorted into an output Yn. In a last step, a decoder

deciphers Yn(Strt) by selecting one member in the code book A*

that registers the completed structure. This decoding produces an

output sequence SA* of structural symbols in A* and it completes

the communication process. These communication channel

Figure 1. Shannon-Weaver communication model of serial protein synthesis. A series of amino acid sequences {…, Seqt21, Seqt,
Seqt+1} = {…, NDFV, KMFAQGQGD, LSTA, …} is encoded, one sequence at a time into one code word Xn, transmitted over the folding channel to an
output code word Yn, and finally decoded into structural symbols {…, a*2, a*1, a*4,…} which represent the folded structures {…, Strt21, Strt, Strt+1}.
doi:10.1371/journal.pone.0003110.g001
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components were established from structural protein data as

follows.

Protein structural data sets
The representative set of NP = 31609 protein tertiary structures

and their primary sequences was taken from the Research

Collaboration for Structural Bioinformatics Protein Data Bank

(PDB) [21] in September 2005. Redundancy was limited only to

the extent that multiple chains with identical sequences from the

same PDB file were removed, and the complete list of PDB chain

identifiers was deposited at http://mammoth.bcm.tmc.edu/

lisewski2008/np.list. A smaller and non-redundant subset of

N25 = 2372 protein chains represented the PDBselect25 list [22]

from March 2006.

Misfolded protein structures data set
The library of 928 chains and their misfolded Ca backbone

coordinates in PDB file format was deposited at http://mammoth.

bcm.tmc.edu/lisewski2008/misfold928.tar.gz as a compressed

UNIX tar-archive.

Channel output and input
For the channel output we have chosen a unique one-

dimensional contact vector representation of the folded polypep-

tide chain [20]. A contact vector is the integer-valued distribution

yk counting at each component all contacts that are separated by

k21 steps along the sequence, with k$3 (residue pairs with k,3

are always in contact). Since chains vary in length, the maximum

value of k for which yk does not vanish depends on the given

structure. A large-scale analysis showed that there exists a natural

cut-off for k, and contacts with longer sequence separations

contributed significantly less [23]. To verify this, we calculated the

absolute distribution from NP = 31609 PDB chains for two choices,

5.7Å and 9Å, of the geometrical distance threshold r which defines

a contact pair if any two Ca atoms of the backbone are closer than

r (Fig. 2A). For k.400 the distribution rapidly dropped with a

negative slope of m<24.7 (double-log scale), and the cumulative

distribution indicated that relative contributions above km<400

were negligible (insert in Fig. 2A). This behavior was not sensitive

to a particular choice of r, provided r was larger than the distance

between consecutive Ca atoms (Fig. 2A). Therefore every channel

output Yn(Strt) defined a contact vector (y3,…, yn+2) with block

length n = 400.

To control how channel output depended on the geometrical

contact distance r, we normalized the distribution of yk and

calculated its Shannon entropy Hc = 2Sk yk log2 yk. The entropy

Hc(r) was traced over increasing r, from r = 3.8 Å onward, and we

observed a unique minimum at rm = 5.7Å with Hc
* = 4.28<log2

20 bits (Fig. 2B). This minimum was the same for two different

choices of native protein structures, the whole set of Np = 31609

PDB structures and a non-redundant subset of 3000 single domain

chains from the DALI/FSSP database [24], and it therefore was

independent of the number of domains per chain. Also, the

minimum did not depend on the block length if km.400 (Fig. 2B).

This observation implied that an alphabet of no more than

2H�c &20 symbols (size of the code book) was necessary to represent

contact vectors with minimum redundancy. Thus, to minimize

redundancy, we fixed r = rm as a geometric contact threshold

between residues. This step was equivalent to taking the least cost

tk,2log2(yk) for decoding [25,26] by minimizing the entropy Sk yk

tk = Hc(r).

The chosen contact threshold equals the average distance

between two Ca carbons in backbone hydrogen bonds at

5.7760.53 Å. Hydrogen bonds were identified from a given

atomic record using the Hydrogen Bond Explorer computer

program version 2.01 with default parameter settings [27]. Hence

contact vectors have a distinct biophysical meaning: they estimate

the number of backbone hydrogen bonds ordered by sequence

separation.

With these choices, block length n = 400 and contact threshold

rm = 5.7Å, we characterized the block code of contact vectors and

no further parameters were included in our model.

Decoder and code book
For decoding a set A* of code words (the code book) was

specified through a cluster detection method among all contact

vectors. Since for our data an optimum code book was estimated

to have 2H�c &20 code words, we used a standard heuristic and

applied the k-means algorithm with k = 20 over the space of

NP = 31609 contact vectors to identify the elements in A*. Cluster

algorithms like k-means approximate a given set of many feature

vectors by a much smaller number of representative vectors [28].

Algorithmic convergence was reached rapidly and resulted in a set

of twenty code words A* = {a*
1, …, a*

20}, where each a*
iMA* was a

single contact vector. Figure 3 shows these twenty code words (red

dots) embedded among all NP contact vectors in a reduced two-

dimensional map projected with multidimensional scaling (MDS).

Following standard practice, decoding was done through vector

quantization [28]: any channel output Yn(Strt) was assigned to the

nearest codeword a*
minMA* according to the nearest neighbor

condition

d Y n, a�min

� �
~min d Y n, a�i

� �
: 1ƒiƒ20

� �
with the contact metric distance [21], d(Xn, Yn) =Sk |xk2yk|.

Source and destination
Source and destination were two symbol sequences, SA and SA

*,

at each side of the communication channel: one sequence of

|SA| = 7702314 amino acid symbols and a second sequence of

|SA
*| = 31609 corresponding structural symbols in A*. Statistically,

both sequences had similar symbol distributions (Fig. 4A) with

Shannon entropy H(A) = 3.90 bits for the amino acid alphabet A,

and H(A*) = 3.76 bits for structural code words in A*. Finite

sampling effects underestimate the Shannon entropy by M/2N,

where M is the number of symbols in the sample (here, M = 20),

and N = |SA|+|SA
*| is the sample size [29]. This yielded negligible

corrections of 361024 for H(A*) and 161026 for H(A).

A control showed that a single code word in A* with

HA
* = 3.76 bits of information was sufficient to identify the native

conformation among all known protein structures. This was

consistent with two observations: (1) every contact vector trivially

determines the amino acid sequence length (consecutive residues

are always in contact in the polypeptide chain), (2) given a single

domain chain, only HCA = 3.54<HA
* bits of information are

necessary to determine the structural class and architecture, i.e.

the first two levels in the CATH hierarchy (the ‘‘Class Architecture

Topology Homologous superfamily’’ classification of protein

structure domains, version 2.6.0, [30]). HCA is the information

entropy from the distribution of known structural domains among

all 39 protein architectures of CATH version 2.6.0.

We further tested if sequence length and domain architecture

were sufficient to identify the correct fold. The test set were 5160

single domain structures with known CATH architecture from the

set of NP = 31609. For every chain in the test set the most similar

other was chosen from the entire pool of NP with the smallest

difference in sequence length among those sharing the same

Protein Shannon Limit
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domain architecture in CATH. All identified pairs were then

geometrically aligned with the FAST algorithm (Fast Alignment

and Search Tool, [31]) yielding an all-atom alignment RMSD of

2.5462.23 Å with a fraction of 0.6360.32 of the residues aligned.

Thus, on average, both chains were representatives of the same

fold by common criteria [32].

Channel capacity, rate and Shannon’s theorem
The channel capacity was numerically derived in two steps.

First, the conditional probability p(A|A*) was defined as an event

counting table, where rows represent the 20 possible structural

symbols {a1
*, a2

*, …}, and columns the 20 amino acids symbols

{A, G, …}. Thus, for a source amino acid sequence and a single

Figure 2. Block code of contact vectors represents protein tertiary structures. (A) Absolute distributions of contacts ordered by their
contact lengths k for 31609 structures from the Protein Data Bank evaluated at two choices of the contact threshold r. Contributions for k.400 are
negligible; insert shows the corresponding cumulative distributions. Solid red lines indicate linear fits to range (2) and range (3). (B) Information
(Shannon) entropy Hc of contact vectors across different choices of contact thresholds r and for two collections of PDB structures (‘PDB’, a set of
31609 PDB chains; ‘DALI/FSSP’, a set of 3000 structural domains). Grey region indicates thresholds r below the distance of two consecutive Ca atoms
in the polypeptide chain. (C) Contact vector information entropy Hc as a function of contact threshold r and contact vector cut-off km. Dashed vertical
line depicts the minimum at rm = 5.7 Å. (D) Rise and saturation at ,log2 20 of the minimum entropy Hc

* with increasing contact vector length km. A
choice of km = 400 was sufficient to reach the asymptotic value (dashed lines).
doi:10.1371/journal.pone.0003110.g002

Protein Shannon Limit
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destination symbol the entries in a given row were incremented

accordingly. This was done for all NP = 31,609 protein chains, and

the table was normalized such that SaMA p(a, a*) = 1 for all a*MA*.

Second, the joint probability is p(A, A*) = p(A|A*) p(A*), and from it

the mutual information can be calculated as I(A; A*) = 2SaMA SaMA*

p(a, a*) log2 p(a, a*)/(p(a) p(a*)). The full 20620 table p(A, A*) was

deposited at http://mammoth.bcm.tmc.edu/lisewski2008/

np31609_joinp.dat.

The channel capacity C is defined as

C~ max
p Að Þ

I A; A�ð Þ

In this formula, the maximum in mutual information over

distributions p(A) was achieved through the symbol frequencies

in SA, since they represent the fixed natural amino acid

propensities in biological organisms. The channel capacity gives

the maximum amount of information that can be transferred in a

single use of the channel. A single use of the channel is the transmission

of a single amino acid symbol.

The code rate R is defined as R = H(A)/n, where H(A) is the

information entropy of the amino acid sequence (source) and n is

the code block length used by the encoder.

If code rate R and channel capacity C are known, then

Shannon’s theorem tells us whether communication over the

channel is possible. The case C.R implies that for every block size

n.nmin = H(A)/C Shannon codes exist, whereby information can

be transmitted over the communication channel with arbitrary

small error, i.e., the probability pe for a mismatch at the decoder is

bounded from below by zero. The opposite case, C,R, signals a

breakdown of reliable transmission: no Shannon code exists and pe

ceases to be bounded from below by zero, thus approaching one

exponentially with increasing block length n. The point where

capacity C equals rate R is the Shannon limit.

Results

Native protein structures satisfy Shannon’s theorem
A direct application of Shannon’s noisy channel theorem

confirmed that communication between protein amino acid

sequences and native structures was achievable. The sequence

and structural data from the Protein Data Bank (PDB) yielded a

Shannon entropy of the amino acid sequences at H(A) = 3.90 bits

and, with the block length n = 400, a transmission rate

R = 0.010 bits per amino acid symbol followed. Notice that the

rate does depend on the composition but not on the amino acid

Figure 3. Map of contact vectors from the Protein Data Bank. Multidimensional scaling 2D map of 31609 contact vectors extracted from the
Protein Data Bank. Red dots indicate the position of the code words in A*, which represent twenty clusters in contact vector space as listed in Table
S1 (Supporting Information). Shorter chains are in the upper left corner while longer chains are located in the lower right corner of the map.
doi:10.1371/journal.pone.0003110.g003

Protein Shannon Limit
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order. The estimated channel capacity from these data was

C = 0.016 bits/amino acid symbol (Fig. 4B). A negative control

was done by generating 100 random realizations of SA and SA
*, in

which all symbols in the original sequences were randomly

permuted (so that the relative frequencies of symbols were

preserved.) This gave an average capacity (8.360.7)61025 bits/

amino acid symbol, which is a 180-fold decrease with respect to

the positive result (Fig. 4B).

To test whether this capacity estimate was sensitive to sample

size and redundancy, we turned to a smaller subset of proteins

from the PDB, restricted to N25 = 2372 protein chains with mutual

sequence identity of less than 25%. This choice resulted in a

capacity of C25 = 0.016 bits/amino acid symbol. A negative

control through 100 random permutations yielded (7.160.064 )6
1024,0.05 C25, see Fig. 4B, and it showed that this estimate was

robust.

Thus for the given set of native protein structures channel

capacity C was 0.006 bits/amino acid symbol above the rate R and

therefore, as expected, communication from amino acid sequences

to tertiary structures was achieved.

Random errors lead to Shannon limit
To monitor the response of the communication channel to

random errors we used channel capacity C and the related

Gallager error bound pe
2 as indicators [33]. The latter gives an

upper limit pe
2 for the decoder error probability pe of the best

possible code with block length n (the code with the lowest error

probability) [34], viz.

pevp{
e :2{nE Rð Þ; E Rð Þ~ max

p Að Þ
max

0ƒrƒ1
E0 r,p Að Þð Þ{rR½ �

R is the rate, p(A) is the distribution over the amino acid alphabet,

and

E0 r,p Að Þð Þ~{log2

X
a1[A1

X
a[A

p að Þp a� ajð Þ1= 1zrð Þ
" #1zr

As above for the channel capacity, the maximum over the source’s

distribution in was given through the natural amino acid

frequencies, and pe
2 was computed from the structural data of

NP protein chains. Since pe
2 gives an upper bound for the

probability of channel error, we hypothesized that it represents a

measure of communication fidelity between protein sequences and

structures.

To test this hypothesis, we evaluated the Gallager error bound

against random errors imposed onto the symbol sequences SA and

SA
*. If information can be transmitted between the symbol streams

SA and SA
*, then random substitutions on either side of the channel

should lower mutual information and therefore also reduce the

channel capacity C. Concurrently, reducing the capacity to the

limit C R R implies p2
e R 1, since no information can be reliably

transmitted at capacities less than the rate R, according to

Shannon’s theorem.

In the first test we did not change the elements in SA
*, but

imposed errors in SA through artificial missense mutations by

randomly substituting amino acid symbols at increasing rates eA.

We asked to what extent the given structural message SA
* at

destination was compatible with random perturbations in amino

acid sequence SA. For example, eA = 0.01 meant that one percent

randomly selected symbols in SA were randomly substituted with

different amino acid symbols. Twelve error levels eA between 0 and

Figure 4. Statistical distributions of amino acid symbols and structural symbols. (A) Relative frequencies of amino acid symbols (aMA) and
structural letters (a*MA*) from the set of 31609 chains in the Protein Data Bank. Both symbol alphabets have similar information entropies:
H(A) = 3.90 bits and H(A*) = 3.76 bits. (B) Estimates (+) on the channel capacity C for two sets of structures (‘PDB ALL’, a collection of 31609 PDB chains;
‘PDB25’, a subset of 2372 proteins with low sequence redundancy.) Negative controls (2) after 100 random permutations of the sequences SA and SA*

for both sets (bars indicate standard deviations).
doi:10.1371/journal.pone.0003110.g004
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0.20 were selected each over an ensemble over 100 random

realizations. Figure 5A (circles) shows pe
2 plotted against C, where

data points at the lower right corner correspond to lowest values of

eA, with a minimum pe,0
2 = 0.86 for eA = 0. As expected, increase in

eA lead to a drop in C and an increase in pe
2. At capacities lower

than C = 0.010 bits/amino acid symbol, the Gallager bound

saturated at maximum value pe
2 = 1 with vanishing standard

deviations.

In a second test, to analyze errors at the destination, we left

unchanged the amino acid symbols in SA but this time put errors

into SA
* at increasing rates eA

*. Error rates were selected at sixteen

levels between eA
* = 0 and eA

* = 0.20. For vanishing eA
* the lowest

Figure 5. Random errors lead to Shannon limit in sequence-structure communication. (A) The Gallager error bound pe
2 as a function of

capacity C. Channel capacities were derived at increasing error rates eA and eA* among the symbols in SA (circles) and SA* (squares), respectively. At a
limit capacity C = 0.010 bits/amino acid symbol, pe

2 becomes one. Bars represent standard deviations over 100 random realizations. (B) Two linearly
separated regions with pe

2,1 for eA+eA*,emax (‘Shannon code’), and with pe
2 = 1 for eA+eA*.emax (‘No Shannon code’), with emax = 0.15. The

separating line between these regions indicates the Shannon limit. (C) Channel capacity as a function of a contact vectors with a reduced number n
of components (block size). Capacities C above the transmission rate R allow communication. CL is the capacity from a sample of ten random code
books representing only chain lengths L (grey region depicts standard deviation). (D) Strong correlation between amino acid sequence length and
total number of contacts in a contact vector for a control set of 928 structural models of native structures (open boxes); loss of correlation for the
same set of unfolded structural models.
doi:10.1371/journal.pone.0003110.g005

Protein Shannon Limit
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value for the Gallager bound again was pe,0
2 = 0.86. For increasing

errors eA
* (Fig. 5A, squares) channel capacity C and error bound

pe
2 were along the same curve as in the previous case, and in

particular capacities below C = 1.061022 bits/amino acid symbol

implied pe
2 = 1 with vanishing standard deviations. When

combined, this equivalent response to errors in SA and SA
*

indicated a linear relation between eA and eA
* at the limit where pe

2

reached its maximum, eA+eA
* = emax, with emax<0.15. Therefore

errors in the symbol sequences SA and SA
* were additive in defining

two linearly separated regions: pe
2 = 1 for eA+eA

*$emax (grey region

in Fig. 5B), and pe
2,1 for eA+eA

*,emax (white region in Fig. 5B).

As a main result, the error rate emax at which the Gallager

bound became maximal, pe
2 = 1, indicated a Shannon limit

because at this point the rate R = 0.010 bits/amino acid symbol

and the capacity C were equal (Fig. 5A). This conclusion was

further supported by the observation that emax and the minimum

error bound pe,0
2 were exhaustive: emax+pe,0

2 = 0.15+0.86<1.

Thus randomly adding errors at source or destination up to a limit

emax maximized the Gallager bound pe
2 and lowered C to the level

where it equaled R. The Gallager error bound pe
2 therefore

established a measure of sequence-structure fidelity in proteins,

defined as qe
2 = 12pe

2.

The Shannon limit is the point where contact vectors transmit

merely one structural attribute over the communication channel:

the protein’s chain length L. This proposition was in line with two

controls. First, ten code books simply defined by twenty random

chain lengths yielded a capacity CL = 0.010060.0006 bits per

chancel use (Fig. 5C), which indicates that ,60% of the channel

capacity at C = 0.016 bits per amino acid symbol could be assigned

to a transmission of chain lengths. Second, reducing contact vector

length, from n = 400 to n = 1, lead to a decrease in channel

capacity to the point where C<CL, see Fig. 5C. Since contact

vector components in native structures are proportional to

sequence length (correlation coefficient r = 0.92 with C = 0.010 bits

per amino acid symbol for a control set of 928 native chains,

Figure 5D), the Shannon limit at CL becomes the least amount of

reliable information about the structure that a contact vector may

carry.

A negative control confirmed this statement (Figure 5D): for a

corresponding set of 928 modeled random coils channel capacity

dropped to C = 0.003 bits per amino acid symbol and correlation

was poor (r = 0.53). Thus unfolded chains such as random coils do

not achieve the Shannon limit at 0.010 bits per amino acid

symbol.

Errors in tertiary structure impair communication
In order to test how structural deviations from the native state

distort communication between sequence and structure, we

generated a series of increasingly distorted structures for each

one in the control set of 928 native chains. Structural models were

Ca backbones created through a contact potential Monte Carlo

optimization algorithm [35], which recovered a physically realistic

Ca backbone from the protein’s contact map and its primary

sequence. To generate misfolded chains, we randomly removed

contacts from native contacts maps and used the reduced maps as

input for the algorithm. The fraction c indicates the remaining

contacts in the contact map, such that c = 1 corresponds to the

native structure. For example, Fig. 6A shows four output models at

values cM{1.00, 0.87, 0.77, 0.69} applied to the A chain of PDB

entry 1M27, a phosphotransferase with an SH2 domain. The level

of deformation from native geometry was measured with the

FAST algorithm [31], which for each value c calculated a

corresponding alignment fraction f, defined as the number of

aligned residues over the total number of residues. As the example

shows, loss of native contacts (smaller c) lead to model structures

with lesser geometric similarity to the native fold (smaller f).

For every chain in the set of 928 a series of ten misfolded models

with decreasing values 1$c$0.65 was generated. From these data

were calculated ten channel capacities C and the averaged

alignment fractions f̄ between misfolded models and original

PDB structures with FAST. Figure 6B shows that at f̄<0.6 channel

capacity C undergoes a sharp increase toward the maximum value

Figure 6. Loss of native geometry in protein structures leads to channel capacities below the Shannon limit. (A) For the PDB structure
1M27 chain A (a phosphotransferase), the four panels show how loss of native contacts (smaller c) leads to Ca model backbones (magenta backbone
trace) with a smaller alignment fraction to the native fold (cyan). (B) Channel capacity C for a control set of 928 structures at ten levels of geometrical
deformation from the native state as measured by the average alignment fraction (open boxes); negative controls after ten random permutations
(triangles with standard deviation error bars).
doi:10.1371/journal.pone.0003110.g006
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at 0.0105 bits per amino acid symbol (with f̄ = 1 for native

structures). This increase thus confirmed that higher channel

capacities were indicative of tertiary structures closer to the native

state. We note that the total number of contacts did not necessarily

indicate higher structural quality: native (f̄ = 1) structures had

136055 backbone contacts while the misfolded model set with

f̄ = 0.68 had a larger number, 154994.

Random substitutions of symbols in SA
* represent structural

deviations to such extent that the nearest code word in the code

book A* is changed, leading to decoding error. Even small

variations in geometry can change decoding; for example, from

the twenty nuclear magnetic resonance models of human ubiquitin

in PDB 1C3T (CATH 3.10.20.90) the carbon backbones of the

first and the second model align with RMSD (root mean square

deviation) of 0.62 Å. However, in contact vector space both

structures are sufficiently divergent to have different nearest

neighbor code words: the first decodes to ‘2’ and the second to ‘5’

(Fig. 3). The PDB file 1EO6 also represents two ubiquitin chains

(A and B; CATH 3.10.20.90) solved with X-ray crystallography,

with chain B having an extra phenylalanine at the C-terminus.

Both chains align with a small RMSD of 0.43 Å, but again they

are decoded into different code words: ‘4’ for chain A and ‘16’ for

chain B.

To further investigate how structural deviations in experimen-

tally determined protein coordinates impair communication, we

selected from the original set all NX = 29945 structures which were

solved though X-ray crystallography. Since crystallographic

resolution is an indicator of structural quality, i.e., structural

models obtained at higher resolution were assumed closer to the

native state and thus are less likely to include structural defects, we

tested whether qe
2 could discriminate high-resolution from low-

resolution structures. Using a filtering procedure, only those

structures out of the total NX were kept which satisfied resolution

limits, ranging from 9.50Å to 1.30Å. This yielded thirteen nested

sets of structures of increasing crystallographic resolution (Table

S2). For each of these sets, channel capacity C and sequence-

structure fidelity qe
2 were calculated.

Figure 7A shows a linear relationship between channel capacity

C and qe
2; linear fitting gave a slope a = 42.5 and an offset

b = 20.51 such that qe
2 = a C+b, which was consistent with the

results in Fig. 5A. The insert in Fig. 7A shows the distribution of

reported crystallographic resolutions for all structures; the

histogram followed roughly a normal distribution which supported

our assumption that resolution was a random source of structural

deviations.

Calculations of mutual information from finite statistical

samples are systematically overestimated [36], and this positive

bias in mutual information had to be considered in our values for

C and qe
2. Under the assumption |A| |A*| = 400%|SA|, i.e., the

number of samples is still much larger than the number of relative

frequency bins, the mutual information C is overestimated by

DC~
Aj j{1ð Þ A�j j{1ð Þ

SAj j2 ln 2

This term, which decreases with larger sample size |SA|, had to be

subtracted from the values of C. Due to linearity between C and

qe
2 (Fig. 6A), it proportionally reduced the sequence-structure

fidelity by the amount Dqe
2 = a DC. To warrant the above

assumption, 400%|SA|, our smallest sample contained 91556

amino acid symbols which corresponded to 424 protein chains

(Table S2 in Supporting Information).

Figure 7B shows Dqe
2 (circles) as a function of average

crystallographic resolution and the corrected values of

sequence-structure fidelity qe
2 (filled boxes). Structural resolution

was well correlated with fidelity, ranging from qe
2 = 0.08 at 2.17 Å

average resolution to qe,max
2 = 0.71 at 1.30 Å. For average

resolutions below ,1.30 Å fidelity saturated slightly below qe,max
2.

Several controls supported this observation. First, we generated

for each of the thirteen sets ten randomly chosen sets of equal size,

thus by mixing high-resolution with low-resolution structures. The

resulting values qe
2 (open boxes in Fig. 7B) were non-monotonic

with increasing resolution and never exceeded an average fidelity

of 24%. Second, to cross-validate this maximum fidelity, we added

to the sample (Supporting Information, Table S2, 10th entry)

random errors in SA and SA
* at increasing rates eA+eA

*, and

observed that above emax<0.65 the error bound pe
2 approached

one (Supporting Information, Fig. S1). This confirmed that pe
2

and emax were additive.

In a third control a sampling bias was excluded. Figure 7C

shows the relationship between average resolution and channel

capacity, this time for successive sets of 500 chains in ordered

resolution, which gives a partitioning of the set NX = 29945 into 59

equal samples (leaving out the last 445 chains in NX). Although the

trend between resolution and channel capacity was noisier, a least

square fit identified a negative slope 20.007760.0015 bits per

amino acid symbol per Å. A negative control using total random

permutations in SA (triangles) and in SA
* (filled boxes) showed that

the signal was well above the random baseline. Together these

results supported our hypothesis that both qe
2 and C represent

sensitive measures of sequence-structure fidelity.

Discussion

Evidence has been given that protein amino acid sequences and

their tertiary structures constitute the source and the destination of

a digital communication channel. In direct consequence, Shan-

non’s noisy channel theorem could be applied and a Shannon limit

in the sequence-structure map quantitatively predicted.

All relevant Shannon-Weaver communication model compo-

nents were characterized (source, input, output, decoder, destina-

tion) from sequence and structure data except the encoder, i.e., the

map from protein sequences (source) onto code blocks (input). A

full characterization of the encoding map should explain how an

amino acid sequence determines an input contact vector.

Although we are not in the position to devise it, there are

indicators that such mapping exists. First, the information entropy

of output contact vectors, Hc
* = 4.28 bits, is slightly higher than the

information entropy of amino acid sequences, H(A) = 3.90 bits.

Thus contact vectors, the inputs and outputs of the channel, retain

enough potential information to capture the amino acid code.

Second, as amino acid sequences uniquely determine the geometry

of the target polypeptides so do contact vectors correspond to

unique geometric configurations. This is remarkable because

contact vectors, like primary sequences, encode protein structure

through a one-dimensional and discrete representation (Support-

ing Information, Fig. S2).

Without an encoding process, channel capacity and Gallager

bound neglected sequence order and were at input sensitive only

to errors which changed absolute amino acid sequence composi-

tion. Amino acid composition and chain length are important

determinants of protein structure [37–40], but a correct encoder

should be a function of sequence order. In particular since every

change in amino acid composition changes amino acid order, but

not vice versa, the effect of random errors on channel capacity is

underestimated in our analysis. However, the transmission rate,

which sets the Shannon limit, is always independent of sequence

order.
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A possible concern is whether source, block code, and

destination are essential components and whether some arbitrary

choices could lead to similar results. For example, after replacing

the alphabet of twenty amino acid symbols with an alphabet of all

400 dipeptides {AA, AG, …}. In this case the code rate R2

becomes twice the rate for single amino acids, because R2<log2

(400)/n = 2 log2 (20)/n<2R. The corresponding capacity C2 does

not change, however, as the chain rule for mutual information I

gives C2 = I(A, A; A*) = I(A; A*)+I(A|A; A*), and the second term is

null (consecutive amino acids residues are practically uncorrelated

Figure 7. Resolution in crystallographic structures is positively correlated with sequence-structure communication fidelity. (A)
Linearity between channel capacity C and sequence-structure fidelity qe

2 for thirteen nested sets of structures with increasing crystallographic
resolution (Supporting Information Table S2). Insert shows the distribution of reported crystallographic resolution among 29945 structures. (B)
Sequence-structure fidelity as a function of average crystallographic resolution (grey boxes); negative control using thirteen samples of random PDB
structures (white boxes); overestimation DC for each sample (circles), which were subtracted from the original capacity values. (C) Capacity C as a
function of average resolution for 59 disjunctive sets of structures ordered by decreasing resolution; each set had a constant number of 500 PDB
chains. Negative controls through random permutations in SA (triangles) and in SA* (filled boxes).
doi:10.1371/journal.pone.0003110.g007
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[13]). For our data sets this yields C = 0.016 bits/amino acid

symbol and R2 = 0.020 bits/amino acid symbol. Thus, given a

block code, Shannon’s theorem prohibits an arbitrary increase of

the rate by taking blocks of multiple amino acid symbols. This

example illustrates that the problem in communication theory is

not a choice of alphabets but, critically, the identification of a

block code that satisfies Shannon’s theorem. Although other block

codes may be found, our results demonstrate communication with

a block code of contact vectors.

Shannon limit between sequence and structure
As its key result, the analysis suggests a Shannon limit between

protein amino acid sequences and structures at a limit channel

capacity of C = 0.010 bits per amino acid symbol. This limit,

defined at the point where capacity C equals channel rate R, is a

necessary consequence of Shannon-Weaver communication. It is

here proposed as an information barrier which needs to be

overcome in order to establish communication between sequences

and structures. Three main lines of evidence support the Shannon

limit hypothesis: first, atomic coordinates from native or close to

native structures always lead to capacities higher than C = 0.010

(Fig. 4B, 7A–C); second, realistic models of unfolded proteins and

random coils yield capacities below this value (Fig. 5D, 6B); and

third, random substitutions in primary sequence reduce channel

capacity to the limiting point (Fig. 5A).

The Shannon limit thus marks a specific threshold below which

communication in sequence-structure ensembles is predicted to

cease if errors accumulate above a critical rate. This situation

resembles an error catastrophe, i.e., the complete loss of biological

information due to excessive noise and errors. However, both

concepts should not be confused [41]: the Shannon limit generally

follows from errors in digital communication while the term error

catastrophe originated from a mathematical model of molecular

evolution [42].

In their study of protein contact potentials, Cline et al. [12]

measured the mutual information of pairwise amino acid residue

contacts in 208 protein structures. Using conventional properties

of the amino acids they found that only ,75% of the total

0.04 bits per contact mutual information could be attributed to

hydropathy, charge, disulfide bonding, and burial, hence leaving

an uncharacterized DIcp = 0.01 bit per contact. We suggest that

this extra information represents the Shannon limit at

C = R = 0.010 bits per amino acid symbol. This possibility arises

when both numbers, R and DIcp, are given the same units by

considering nc = 331, the average number of contacts per contact

vector. The Shannon limit then becomes R(n/nc) = 1.261022 bits

per contact, a number that is consistent with DIcp.

Sequence-structure fidelity
The second result is the identification of a sequence-structure

fidelity measure, qe
2 = 12pe

2, which estimates the probability of

correct structural decoding. This fidelity measure decreases with

increasing rates of random error in primary sequence and in

tertiary structure, and for near atomic resolution structures its

value saturates at a maximum of ,70% (Fig. 7B). This maximum

fidelity level corresponds to a capacity of 2.861022 bits/amino

acid symbol (Fig. 6A), or 3.461022 bits/contact, which is in line

with previous data on mutual information in protein contact pairs

estimated at 0.02 [11] and at 0.04 bits per contact [12]. It is

notable that these independent results imply that any communi-

cation channel between sequence and structure requires block

lengths of at least nmin = H(A)/0.04<100 and nmin<200, respec-

tively. These are lower bounds consistent with our choice, n = 400.

The statistical detection of high-resolution structures with qe
2

appears perhaps questionable, given that an entire polypeptide

chain is represented by a single letter in A*. However, this result is

supported by the fact that (a) above the Shannon limit a single

letter carries around 4 bits of information which, together with

sequence length, were sufficient to determine the correct fold

among single domain structures; and (b) that even small structural

variations at atomic resolution are detectable through decoding

with contact vectors. Thus once the Shannon limit is overcome,

only a few bits of information are necessary to characterize a

protein’s fold. It is also noted that our analysis requires large

enough ensembles of primary and tertiary structures that meet

conditions on sampling, |A| |A*| = 400%|SA|, and on entropy

balance between source and destination, H(A)<H(A*). Because

both conditions are not met for single structures, the fidelity

measure qe
2 differs from other computational approaches which

often assign a quality measure to a single structure [43,44].

Since pe
2 estimates the likelihood of decoding error, while

reaching a minimum for near-native structures at pe,min
2 = 12

qe,max<30% (Fig. 6B), it follows that in our model at least ,30%

of all folded polypeptide chains are decoded with error. Is this

error estimate biologically relevant? There has been compelling

experimental evidence that in eukaryotic cells about ,30% of all

newly synthesized proteins are degraded within minutes of their

ribosomal generation [14,15,45]. These rapidly degraded ribo-

somal products are probably not due to short-lived proteins that

achieve their native state, but likely constitute misfolded defective

ribosomal products (DRiPs) which are degraded either by

the ubiquitin-proteasome or by a novel and ubiquitylation

independent pathway, respectively [46].

If this experimentally determined rate of defective ribosomal

products is representative for errors during protein synthesis

then it becomes consistent with the maximum fidelity limit on

sequence-structure communication derived from our data. This

consistency may further suggest that the biological transforma-

tion of amino acid sequence into folded protein is an inherently

error prone cellular communication process, where many

synthesized polypeptides do not make it into native protein

structures.

Supporting Information

Table S1 Table of all 20 structural code words in the code book

A* as identified with the k-means clustering algorithm among

NP = 31609 tertiary structures. A vigesimal (base-20 numeral

system) representation is used for contact vectors by alphabetical

ordering of amino acid symbols, {A,C,D,…,Y}. This number

representation was convenient because among all NP chains only a

negligible fraction had contact vector components above 400. It

was therefore sufficient to represent contact vectors through an

ordered string of values between 0 = (‘Aa’) and 399 = (‘Yy’). For

example, a contact vector (y3 = 320, y4 = 39; y5 = 2, y6 = 0,…,

y402 = 0) is written as ‘TaCyAdAa’, where repetitive zero entries at

the end were removed. CM (contact metric) indicates the contact

metric distance between a code word and its nearest chain in the

PDB along with available CATH structural classification at

architecture level.

Found at: doi:10.1371/journal.pone.0003110.s001 (0.03 MB

PDF)

Table S2 Thirteen nested sets of structures from the Protein

Data Bank with increasing crystallographic resolution.

Found at: doi:10.1371/journal.pone.0003110.s002 (0.03 MB

PDF)
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Figure S1 Negative control for Gallager bound by imposing

additional random errors. Increase in Gallager error bound due to

errors (eA+eA*) for the sample of |SA| = 204677 and |SA*| = 940

(10th entry in Table S2). Line depicts an exponential least square

fit, 12exp(2xa), with a = 1.2. Arrow indicates the highest

numerical value 0.9994 below one; numerical resolution of the

statistical sample was ,1025.

Found at: doi:10.1371/journal.pone.0003110.s003 (0.40 MB TIF)

Figure S2 Correspondence between the normalized contact

metric for contact vectors, dN, and maximum alignment RMSD

with color encoded alignment coverages for 10,000 random PDB

pairs. Small contact metric values, dN,0.04, imply geometrical

similarity or near identity between two structures.

Found at: doi:10.1371/journal.pone.0003110.s004 (1.37 MB TIF)
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