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Abstract
Community structures in collaboration networks reflect the natural tendency of individuals to

organize their work in groups in order to better achieve common goals. In most of the cases,

individuals exploit their connections to introduce themselves to new areas of interests, giving

rise to multifaceted collaborations which span different fields. In this paper, we analyse collab-

orations in science and among movie actors as multiplex networks, where the layers repre-

sent respectively research topics and movie genres, and we show that communities indeed

coexist and overlap at the different layers of such systems.We then propose a model to grow

multiplex networks based on twomechanisms of intra and inter-layer triadic closure which

mimic the real processes by which collaborations evolve. We show that our model is able to

explain the multiplex community structure observed empirically, and we infer the strength of

the two underlying social mechanisms from real-world systems. Being also able to correctly

reproduce the values of intra-layer and inter-layer assortativity correlations, the model contrib-

utes to a better understanding of the principles driving the evolution of social networks.

Introduction
More often than not the agents of a social system prefer to combine their efforts in order to
achieve results that would be otherwise unattainable by a single agent alone. A relevant role in
the organisation of such systems is therefore played by the emerging patterns of collaboration
within a group of individuals, which have been widely and thoroughly investigated in the last
few decades [1, 2]. In a collaboration network, two individuals are considered to be linked if
they are bound by some form of partnership. For instance, in the case of scientific collabora-
tions, the nodes of the networks correspond to scientists and the relationship between two
authors is testified by the fact that they have co-authored one or more papers [3]. Another well-
known example of collaboration network is that of co-starring graphs, where the nodes repre-
sent actors and there is a link between two actors if they have appeared in the same movie.

The study of large collaboration systems has revealed the presence of a surprisingly high
number of triangles in the corresponding networks [4, 5]. This indicates that two nodes with a
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common neighbour have a higher probability to be linked than two randomly chosen nodes.
This effect, known as transitivity [1], can be easily explained in terms of a basic mechanism
commonly referred to as triadic closure [6], according to which two individuals of a collabora-
tion network have a high probability to connect after having been introduced to each other by
a mutual acquaintance [4, 7, 8]. Some other works have pointed out that triadic closure can
also explain other empirical features of real-world collaboration networks, including fat-tailed
degree distributions and correlations between the degrees of neighbouring nodes [9, 10].

Another remarkable feature often observed in social and collaboration networks is the pres-
ence of meso-scale structures in the form of communities, i.e. groups of tightly connected
nodes which are loosely linked to each other [11]. Interestingly, structural communities quite
often correspond to functional groups [12].

An important observation is that not all the links of a collaboration network are equal, since
collaborations can often be classified into a number of different categories. For instance, scien-
tific co-authorship can be classified according to the research field, while actors often appear in
movies of different genres. In these cases, a collaboration network is better described in terms
of amulti-layer ormultiplex network [13, 14] where links representing collaborations of a spe-
cific kind are embedded on a separate layer of the network, and each layer can have in general
a different topology. Great attention has been recently devoted to the characterisation of the
structure [15–20] and dynamics [21–24] of multi-layer networks. In particular, various models
to grow multiplex networks have appeared in the literature, focusing on linear [25] or non-lin-
ear [26] preferential attachment, or on weighted networks [27]. Less attention has been devoted
to define and extract communities in multiplex networks [28, 29], for instance by mean of sto-
chastic block models [30, 31].

In this work we investigate the multiplex nature of communities in collaboration networks
and we propose a simple model to explain the appearance, coexistence and co-evolution of
communities at the different layers of a multiplex. Our hypothesis is that the formation of com-
munities in collaboration networks is an intrinsically multiplex process, which is the result of
the interplay between intra-layer and inter-layer triadic closure. For instance, in the case of sci-
entific collaborations, multiplex communities naturally arise from the fact that scientists may
collaborate with other researchers in their principal field of investigation and with colleagues
coming from other scientific disciplines. Analogously, actors can prefer either to specialise in a
specific genre or instead to explore different (sometimes dissonant) genres, and these two
opposite behaviours undoubtedly have an impact on the kind of meso-scale structures
observed on each of the layers of of the system. The generative model we propose here mimics
two of the most basic processes that drive the evolution of collaborations in the real world,
namely intra- and inter-layer triadic closure, and is able to explain the appearance of overlap-
ping modular organisations in multi-layer systems. We will show that the model is able to
reproduce the salient micro-, meso- and macro-scale structure of different real-world collabo-
ration networks, including the multi-layer network of co-authorship in journals of the Ameri-
can Physical Society (APS) and the multiplex co-starring graph obtained from the Internet
Movie Database (IMDb).

Results

Empirical analysis
We start by analysing the structure of two multiplex collaboration networks from the real
world. The first multiplex is constructed from the APS co-authorship data set, and consists of
four layers representing four sub-fields of physics (respectively, Nuclear physics, Particle phys-
ics, Condensed Matter I, and Interdisciplinary physics). In particular, we considered only
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scientists with at least one publication in each of the four sub-fields, and we connected two sci-
entists at a certain layer if they had co-authored at least a paper in the corresponding sub-field.
The second multiplex is constructed from the Internet Movie Database (IMDb) and consist of
four layers respectively representing the co-starring networks of actors with at least one partici-
pation in four different genres, namely Action, Crime, Romance, and Thriller movies. The
basic structural properties of each layer of the two multiplexes are summarised in Table 1 (see
Methods for more information about the data sets).

Since we are interested in assessing the role of intra- and inter-layer triadic closure in the
formation of meso-scale multiplex structures, we quantified the transitivity of each layer
through the clustering coefficient C [4], which takes values in the interval [0, 1] (see Methods).
We notice that the four layers of each data set have similar values of clustering, ranging respec-
tively in [0.24, 0.3] in the case of APS and in [0.56, 0.61] for IMDb. As we will discuss in the fol-
lowing, by focusing on layers having comparable clustering we will be able to perform a
comparison between the structure of these real-world multiplex networks and the proposed
model in its simplest formulation.

The multiplex nature of communities in collaboration networks can be measured by means
of the normalised mutual information (NMI) [32] (see Methods), which quantifies the similar-
ity between the partition in communities observed in two different layers of a multiplex. The
normalised mutual information takes values in [0, 1]. In general, higher values of NMI corre-
spond to more similar partitions. The values of NMI for each pair of layers in APS and IMDb
are shown in Fig 1. It is interesting to notice that in general pairs of layers corresponding to
related subjects or genres exhibit higher values of NMI. This is for instance the case of Nuclear
Physics and Particle Physics in APS. Similarly, in the IMDb network we observe a higher simi-
larity between the communities at the three layers representing respectively Thriller, Crime
and Action genres. Conversely, the layer of Romance movies displays a different modular
structure from Crime and Action. Notice also that the level of similarity between the communi-
ties of two layers can vary substantially, despite the four layers of each multiplex have roughly
the same clustering coefficient.

Model
In the following Section we introduce a model to grow collaboration networks with tunable
multiplex community structure, able to reproduce the patterns observed in the considered real-

Table 1. Basic properties of real-world multiplex collaboration networks.We report the number of nodes
N, the average degree hki and the clustering coefficientC for each layer of a subset of the APS and IMDb
data sets. In particular, we focus on the multiplex collaboration network of all scientists active in Nuclear, Par-
ticle, Condensed Matter I and Interdisciplinary physics, and the multiplex collaboration network of all actors
starring in Action, Crime, Romance and Thriller movies. All the layers of APS have a clustering coefficientC
in the range [0.24, 0.30]. Conversely, the values of C of all the IMDb layers are in the range [0.56, 0.61].

APS N hki C

Nuclear (N) 1238 4.75 0.27

Particle (P) 1238 4.66 0.30

Cond. Matt. I (CM) 1238 10.29 0.24

Interdisciplinary (I) 1238 7.37 0.26

IMDb N hki C

Action (A) 55797 83.56 0.61

Crime (C) 55797 82.30 0.58

Romance (R) 55797 86.00 0.59

Thriller (T) 55797 77.75 0.56

doi:10.1371/journal.pone.0147451.t001
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world systems. Let us consider for simplicity the case of a multiplex withM = 2 layers, and
assume that initially each layer consists of a clique of n0 nodes. Then at each time step t a new
node is added to the network, withm[1] edge stubs to be connected on layer 1 andm[2] other
stubs to be connected on layer 2. The multiplex network grows according to the following
rules:

• Layer selection. The newly arrived node i selects one of the two layers {1, 2} uniformly at ran-
dom. Let us label the first selected layer with the index a. The first edge of i is connected to
one of the existing nodes on that layer, chosen uniformly at random, that we call na.

• Intra-layer triadic closure (I). The remainingm[a]-1 edges of node i on layer a are attached
with probability p[a] to one of the first neighbours of na, chosen uniformly at random, and
with probability 1 − p[a] to one of the nodes of layer a, chosen uniformly at random.

• Inter-layer triadic closure. When all itsm[a] edges on layer a have been created, node i starts
connecting on the other layer b withm[b] edges. The first link in layer b is created with proba-
bility p� to the same node na, and with probability 1 − p� to one of the other nodes, chosen
uniformly at random. The node to which this first link is attached is called nb.

• Intra-layer triadic closure (II). The remainingm[b]-1 links at layer b are attached with proba-
bility p[b] to one of the first neighbours of nb chosen uniformly at random, and with probabil-
ity 1 − p[b] to one of the nodes at layer b, chosen uniformly at random.

This general model has five parameters to be tuned, namely the number of new edgesm[1]

andm[2] brought by each new node on each of the two layers, which determine the average
degree on each layer, and the three probabilities p[1], p[2], and p�, which are respectively respon-
sible for the formation of intra- and inter-layer triangles. In fact, by varying the parameters p[1]

and p[2] we can tune the strength of the intra-layer triadic closure mechanism, i.e the probabil-
ity to form triangles on each of the two layers. In particular, larger values of p[1] and p[2] will
foster the creation of a larger number of triangles in layer 1 and layer 2 respectively. Con-
versely, the parameter p� tunes the inter-layer triadic closure mechanism, and in particular
high values of p� correspond to a higher probability that the neighbourhoods of node i at the
two layers will exhibit a certain level of overlap. These two simple attachment rules, namely
intra-layer and inter-layer triadic closure, aim to describe the real mechanisms characterising
the evolution of collaboration networks. We argue that, for instance, scientists do not tend to
collaborate with other scientists at random. Instead, they usually exploit the neighbourhoods of
their collaborators in a specific field (intra-layer triadic closure). Similarly, when opening

Fig 1. Similarity of communities at the different layers of real-world collaboration networks. In each of
the two graphs nodes represent the layers of the multiplex (APS on the left and IMDb on the right) and the
edges are coloured according to the value of the normalised mutual information for the community
decompositions at the corresponding pairs of layers.

doi:10.1371/journal.pone.0147451.g001
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themselves to new scientific fields, a researcher usually takes into account the neighbourhoods
of their past colleagues from previous collaborations in other fields (inter-layer triadic closure).
A schematic representation of the model is depicted in Fig 2.

It has been recently shown [10] that in a single-layer network scenario the interplay between
random attachment and triadic closure leads to a network growth in which the attachment
probability (i.e., the probability for an existing node to receive one of the new edges) is a sub-
linear function of the degree, and produces networks with non-trivial community structure, as
long as the link density is not too high. In the multi-layer model we propose, the further addi-
tion of an inter-layer triadic closure mechanism allows to tune at will the overlap between the
community structures at the different layers.

Validation in a Simple Scenario
To assess the ability of the model to reproduce the organisation of communities in multiplex
networks, we start by considering a simple scenario, i.e. the case in which the layers of the mul-
tiplex have the same density (m[1] =m[2] =m) and the same clustering coefficient (p[1] = p[2] =
p). We show that this simplified version of the model is already able to reproduce both the dif-
ferent levels of similarity between community structures at different layers, and the micro-
scopic patterns of intra-layer and inter-layer degree correlations observed in the real-world
collaboration multiplexes of APS and IMDb.

In Fig 3(a), we report the values of the clustering coefficient C (which, by construction, does
not depend on the parameter p�) for several realisations of the model (see Methods). As
expected, the clustering coefficient of each layer is a linearly increasing function of the parame-
ter p, which tunes the strength of intra-layer triadic closure. This means that, if we consider a
real-world multiplex network whose layers have approximately the same value of clustering
coefficient C, we can set the value of the parameter p of the model accordingly. This is for
instance the case of the four-layer multiplex networks of APS and IMDb constructed in the
previous Section, where all the layers have comparable levels of clustering. We obtain p = 0.40
for APS and p = 0.85 for IMDb, respectively.

Fig 2. Schematic representation of network growth with intra-layer and inter-layer triadic closure. A newly arrived node i createsm[1] new edges on
layer 1 andm[2] new edges on layer 2. The new node starts by choosing at random one of the two layers {1, 2}. We indicate the first chosen layer using the
label a. a) The first link of the new node is connected to one of the nodes of layer a, chosen uniformly at random and called na (solid green line). Each of the
remainingm[a]

− 1 links is attached with probability p[a] to a neighbour of the previously chosen node (intra-layer triadic closure) or with probability 1 − p[a] to
one of the nodes at layer a, chosen uniformly at random (dashed red lines). b) Afterwards, the new node starts connecting on the other layer b. The first link
on layer b is created to node na with probability p*, or to one of the other nodes at layer at random with probability 1 − p*. We call nb the first node to which i
attaches on layer b. c) Each of them[b]

− 1 remaining edges on layer b are attached with probability p[b] to one of the neighbours of nb, and with probability 1 −

p[b] to one of the nodes on layer b, chosen uniformly at random.

doi:10.1371/journal.pone.0147451.g002
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In Fig 3(c) we show, as a colour-map, the values of NMI of the networks obtained through
the proposed model by using different combinations of the parameters p and p� (see Methods).
It is evident that, in spite of its simplicity, the model can yield a quite rich variety of multiplex
networks. In agreement with intuition, when both p and p� are large one obtains multiplexes
with higher values of NMI. In fact, in this regime both the intra-layer and inter-layer triadic
closure mechanisms are strongly affecting the network evolution and, as a consequence, it is
likely that the new node joining the network will close a triad on both layers in the same region
of the network. As a consequence, each layer will have a strong community structure (large p)
which is pretty much correlated to the one present on the other layer, due to the large value of
inter-layer triadic closure p�. Conversely, if the inter-layer parameter p� is small we will obtain
layers whose partitions in communities are poorly correlated when p is large (blue region in
the phase space of Fig 3, while the NMI is only marginally larger when p is very small (bottom-
left corner of the phase space).

In Fig 4 we report two realisations of the multiplex network model with N = 50,m[1] =m[2]

= 2 and p[1] = p[2] = 0.9, respectively for p� = 0.9 (left) and p� = 0.1 (right). Nodes belonging to
the same community are reported using the same colour, and the colour chosen for each com-
munity in the second layer (bottom) corresponds to the colour of the community in the first
layer (top) for which the node overlap between the communities is maximum. These two
examples help explain the role of the parameter p� in shaping the inter-layer modular structure
of the network. For p� = 0.9 (left panel) the community structures of the two layers are closely
matched (this situation corresponds to the high values of NMI found in the top-right region of

Fig 3. Model calibration in a simple scenario.We show the values of p and p* extracted for the different pairs of layers of the four-layer collaboration
networks of APS and IMDb. (a) The clustering coefficient C depends exclusively on the parameter p, which tunes intra-layer triadic closure. Since all the
layers of those two multiplex networks have comparable clustering coefficients, we are able to determine the value of the parameter p in each of the two
cases. (b) For each pair of layers, we can also determine the value of the inter-layer triadic closure parameter p* by setting it equal to the value which yields
an organisation in communities characterised by a value of NMI compatible with that observed in the real network.

doi:10.1371/journal.pone.0147451.g003
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the heat-map in Fig 3), while for p� = 0.1 (right panel) the communities at the two layers are
uncorrelated (low values of NMI in the top-left of the heat-map in Fig 3).

Differently from the clustering coefficient C, the values of the normalised mutual informa-
tion NMI depend on both p and p�. Having already determined a candidate value of p for each
multiplex by fitting the clustering coefficient of its layers, we can determine the strength of the
inter-layer triadic closure mechanism by fitting the NMI. Remarkably, for any fixed value of p,
the simplest formulation of our model is able to reproduce all the values of NMI observed in
the real-world networks by just tuning the parameter p�, with the exception of the pair
Nuclear-Particle physics which is slightly out of the plane with an NMI value of 0.81 (repre-
sented on the right border of the plane which corresponds to NMI = 0.79). We would like to
note here that the model is able to produce a remarkably wide range of values of NMI, which
span the whole interval [0.6, 0.9].

We further validate the model by showing that, using the inferred parameters (p,p�), we are
able to reproduce quite well the patterns of degree-degree correlations observed in the real-
world collaboration multiplexes.

Indeed, for each pair of layers α and β we analysed:

1. the intra-layer degree correlations, by looking at the average degree hKnn[α]i of the first
neighbours on layer α of nodes having a certain degree k[α], as a function of k[α];

2. the inter-layer degree correlations, by looking at the average node degree hk[β]i on β given
the degree k[α] on α;

3. the mixed degree correlations by looking at the average mixed node degree hKnn[β,α]i given
the degree k[α] on α;

Fig 4. Layers with similar or dissimilar community structures.We show the effect of the value of the inter-layer triadic closure parameter p* on the
multiplex community structure. The two top layers show two typical realisations of the simplest version of the network model with N = 50,m[1] =m[2] = 2 and
p[1] = p[2] = 0.9. Nodes belonging to the same community are given the same colour and are drawn close to each other. The two layers at the bottom of each
multiplex are obtained by setting, respectively, p* = 0.9 (left) and p* = 0.1 (right). The nodes maintain the same placement in space on the second layer, but
are coloured according to the community they belong in that layer (colours are chosen in order to maximise the number of nodes that have the same colour in
the two layers). It is evident that the community structures of the two layers on the left, corresponding to p* = 0.9, are very similar, while the partition into
communities of the upper layer on the left panel is substantially different from the one observed in the bottom layer of that multiplex.

doi:10.1371/journal.pone.0147451.g004
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(see Methods for details). The results are shown in Fig 5 for some significant examples. Dots
represent the values measured on the real-world networks, while solid lines correspond to the
values obtained in the corresponding multiplex models. Symbols with a hat (^) indicate that
the value of the considered variables, for both the model and the data, have been normalised to
the values of the corresponding configuration model to allow a comparison (see Methods). It is
interesting to notice that the model reproduces quite well the three types of degree correlations
in the IMDb multiplex, both in the case of high p and high p� (Action, Thriller given Action)
and the case of small p and small p� (Action, Romance given Action). A quantitative compari-
son of the the power-law fits of the curves is reported in Table 2. As an example from APS we
consider Condensed Matter I and Interdisciplinary physics (small p and high p�). In this case
we observe marked differences in the correlations measured in the real-world network and in
the model network, for both hKnn[α]i and hKnn[β,α]i. In particular, the model seems to overes-
timate degree correlations. These discrepancies are probably due to the relatively small number
of nodes (only 1238) in the considered data subset.

Although our intention was not to exactly reproduce all the features observed in real-world
collaboration multiplex networks, it is interesting to observe that the two mechanisms of inter-
layer and intra-layer triadic closure play an important role in determining the degree-degree
correlations in such networks. We also notice that the degree distributions of the layers in the
synthetic networks are compatible with the stretched exponential functional forms introduced
and discussed in Ref. [10].

Fig 5. Intra-layer, inter-layer andmixed assortativity in collaboration networks.We show the intra-layer (a), inter-layer (b) and mixed (c) degree-
correlations for couples of layers of the IMDb and APS collaboration networks. Real data (dots) are compared with the results of our model (solid lines)
generated with the extracted values p and p*. The symbols (^) indicate that the reported quantities (both for the model and the data) have been normalised to
the values observed in the corresponding configuration model. As shown, the model is in general able to correctly capture the assortative trends of the three
different types of correlations. Very good agreement with the data is attained in the case of the movie actor collaboration network. Less precise results are
obtained for the APS network, where we deal with a system of considerably smaller size.

doi:10.1371/journal.pone.0147451.g005
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Model Calibration for Generic Multiplex Networks
We now discuss how to calibrate the model in the most general case in which the layers might
possibly have different edge density, i.e.m[1] 6¼m[2], and different clustering, i.e. p[1] 6¼ p[2]. As
an example, we consider the co-authorship networks of the same four sub-fields of physics
(namely, Nuclear, Particle, Condensed Matter I and Interdisciplinary physics) used to con-
struct the four-layer APS multiplex (cf. Table 1 and Fig 1). However, we focus here on all two-
layer multiplex networks obtained by combining two networks at a time, so that, for instance, a
node appears in the Nuclear-Particle (N-P) multiplex network if the corresponding author has
published papers in both sub-fields. In general, the obtained multiplex networks are composed
by layers with different edge density and different clustering coefficients, as shown in Table 3,
thus we need to set separately the four parameters of the model p[1], p[2],m[1] andm[2].

We start by observing that the average degree of a synthetic layer is hki ’ 2m, wherem is
the number of edge stubs connected by a newly arrived node, so that the parametersm[1],m[2]

of the model can be set respectively equal to hk½1�i
2

h i
and hk½2�i

2

h i
, where hk[1]i and hk[2]i are the

measured average degrees of the two layers (numbers are approximated to the closest integers).
Similarly, as we show in Fig 6(a), the clustering coefficient C[α] of a layer α is univocally deter-
mined by p[α], as soon asm[α] is fixed. In Fig 6(a) we show how the values of C[α] change as a
function of p[α], for different values ofm[α]. Hence, the values of the intra-layer triadic closure
parameters p[1] and p[2] can be set in order to match the values of clustering coefficient
observed in each of the two layers. The only parameter yet to be determined is p�. However, if
we set the values ofm[1],m[2], p[1], and p[2] to match the densities and clustering coefficients of
the layers, we can then run the model for different values of p� and look for the one which
yields a value of NMI as close as possible to the one observed in the real two-layer multiplex.
This procedure is sketched in Fig 6(b) for the six two-layer multiplexes in APS.

In order to better understand the role of the different parameters, in Fig 6(c) we report the
values of NMI obtained from different realisations of the model withm[1] =m[2] =m and p[1] =
p[2] = p form varying in [2, 3, . . ., 10], and p varying in [0, 0.1, . . ., 1] at different values of p�,
[0.05, 0.5, 0.95], corresponding respectively to low, intermediate and high inter-layer triadic
closure strength. We see that the effect of the increase in the link densitym of the layers leads
to a decrease in the similarity of their community structures even for high values of p and p�.

It is interesting to notice that, although the generic version of the model depends on five
parameters, respectively accounting for layer density (m[1] andm[2]), triadic closure (p[1] and
p[2]), and inter-layer overlap of communities (p�), the values of those parameters can be easily
set by measuring just the average degree and the average clustering coefficient of each layer,
and the normalised mutual information between the community structures at the two layers.
Again, the good agreement between the synthetic networks and the real-world datasets extends
also to other structural properties, such as intra-layer and inter-layer degree correlations,

Table 2. Quantitative comparison between the curves obtained from themodel and the data for the
inter-layer degree correlations the andmixed degree correlations. The curves have been fitted using a
function of the form f(x)* xγ; the γ parameter is reported for the corresponding curves in Fig 5.

Layers’ pair hk[β]i hKnn[β,α]i
γdata γmodel γdata γmodel

Interd. given Cond. Matt. I 0.98 0.85 0.14 0.30

Thriller given Action 0.83 0.84 0.16 0.17

Romance given Action 0.89 0.87 0.30 0.27

doi:10.1371/journal.pone.0147451.t002
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which were thought to have little or no direct relation at all with triadic closure. These results
suggest that triadic closure plays an unexpectedly central role in determining the structural
properties of real-world multiplex collaboration networks.

Discussion
Human collaboration patterns are inherently multifaceted and often consist of different inter-
action layers. Scientific collaboration is probably the most emblematic example. As a Ph.D. stu-
dent you usually join the scientific collaboration network by publishing the first paper with
your supervisor in a specific field. Afterwards, you start being introduced by your supervisor to
other researchers in the same field, e.g. to some of his/her past collaborators, and you might
end up working with them, creating new triangles in the collaboration network of your field
(what we called intra-layer triadic closure). But it is also quite probable that some of your past
collaborators will in turn introduce you to researchers working in another -possibly related-
area (what we called an inter-layer triadic closure), so that you will easily find yourself partici-
pating in more than just one field, and the collaboration network around you will become
multi-dimensional. Such multi-level collaboration patterns appear not to be specific of scien-
tific production only, but are instead found in many aspects of human activity.

The multi-layer network framework provides a natural way of modelling and characterising
multidimensional collaboration patterns in a comprehensive manner. In particular, we have
argued that one of the classical mechanisms responsible for the creation of triangles of acquain-
tances, i.e. triadic closure, is indeed general enough to give also account for another interesting
aspect of multi-level collaboration networks, namely the formation of cohesive communities
spanning more than a single layer of interaction. It is quite intriguing that the simple model we
proposed in this work, based just on the interplay between intra- and inter-layer triadic closure,
is actually able to explain much of the complexity observed in the micro- meso- and macro-
scopic structure of multidimensional collaboration networks of different fields (science and
movies), including not just transitivity but also intra- and inter-layer degree correlation pat-
terns and the correspondence between the community partitions at difference layers. We also
remark that such levels of accuracy in reproducing the features of real-world systems have
been obtained without the introduction of ad-hoc ingredients.

The results reported in this paper suggest that, despite the apparent differences in the overall
dynamics driving scientific cooperation and movie co-starring, triadic closure is a quite generic
mechanism and might indeed be one of the fundamental processes shaping the structure of
multi-layer collaboration systems. These findings fill a gap in the literature about modelling
growing multidimensional networks, and pave the way to the exploration of other simple mod-
els which can help underpinning the driving mechanisms responsible for the emergence of
complex multi-dimensional structures.

Table 3. Basic properties of duplex networks in APS.We consider all the possible multiplex networks withM = 2 layers obtained from combinations of the
APS collaboration networks corresponding to the four sub-fields Nuclear, Particle, Condensed Matter I and Interdisciplinary Physics. For each duplex, we
report the number of nodesN, the average degree on the two layers hk[1]i and hk[2]i, and the values of the clustering coefficients C[1] andC[2].

Layer 1 Layer 2 N hk[1]i hk[2]i C[1] C[2] NMI

Nuclear Particle 6572 6.88 7.46 0.56 0.56 0.83

Nuclear Cond. Matt. I 3828 4.53 7.20 0.43 0.34 0.71

Nuclear Interdisciplinary 2556 4.15 5.39 0.37 0.33 0.72

Particle Cond. Matt. I 3774 5.70 7.82 0.53 0.40 0.71

Particle Interdisciplinary 2502 4.82 5.66 0.49 0.39 0.74

Cond. Matt. I Interdisciplinary 27257 10.34 7.05 0.55 0.64 0.82

doi:10.1371/journal.pone.0147451.t003

Emergence of Multiplex Communities in Collaboration Networks

PLOS ONE | DOI:10.1371/journal.pone.0147451 January 27, 2016 10 / 15



Methods

Data sets
We considered data from the APS and the IMDb collaboration networks. The APS collabora-
tion data set is available from the APS website http://journals.aps.org/datasets in the form of
XML files containing detailed information about all the papers published by all APS journals.
The download is free of charge and restricted to research purposes, and APS does not grant to
the recipients the permission to redistribute the data to third parties. We parsed the original

Fig 6. Model calibration. In panel a) we show the dependence of the clustering coefficient C on the intra-layer triadic closure parameter p for different values
of the parameterm, which sets the layer’s average degree. In the multiplex consisting of the layers Particle (P) and CondensedMatter I (CM), the average
degree of each layer corresponds, respectively, tom[1] = 3 andm[2] = 4. The value of p[1] and p[2] are determined to match the clustering coefficients C[1] and
C[2]. In panel b), after having determinedm[1],m[2], p[1] and p[2] for all the pairs of layers in the APS dataset, we run the model with such parameters for
different value of p* and infer, for each pair, the value of the inter-layer triadic closure parameter p* yielding a value of NMI compatible with that observed
(see Table 1 for layers’ acronyms). In panel c) we plot a heat-map of the NMI as a function of p andm, respectively for low (0.05), intermediate (0.50) and high
(0.95) values of p* in the model withm[1] =m[2] =m and p[1] = p[2] = p. An increase in the link density of the layers produces a less correlated community
structure in the two layers, even if the inter- and intra-layer triadic closure strengths are high.

doi:10.1371/journal.pone.0147451.g006
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XML files to retrieve, for each paper, the list of authors and the list of PACS codes. The PACS
scheme provides a taxonomy of subjects in physics, and is widely used by several journals to
identify the sub-field, category and subject of papers. We used the highest level of PACS codes
to identify the ten main sub-fields of physics, and we considered only the papers published in
Nuclear physics, Particle physics, Condensed Matter I and Interdisciplinary physics, respec-
tively associated to high-level PACS codes starting with 1 (Particle physics), 2 (Nuclear phys-
ics), 6 (Condensed Matter I) and 8 (Interdisciplinary physics). We focused only on the authors
who had at least one publication in each of the four sub-fields [19]. The co-authorship network
of each of those four sub-fields constitutes one of the four layers of the APS multiplex. In par-
ticular, two authors are connected on a certain layer only if they have co-authored at least one
paper in the corresponding sub-field. In the construction of the collaboration network of each
sub-field we purposely left out papers with more than ten authors, which represent big collabo-
rations whose driving dynamics might be more complex than just triadic closure.

The IMDb data set is made available at the website ftp://ftp.fu-berlin.de/pub/misc/movies/
database/ for personal use and research purposes. The data set comes in the form of several
compressed text files, and we used those containing information about actors, actresses, movies
and genres. We focused only on the co-starring networks of four movie genres, namely Action,
Crime, Romance, and Thriller [19], obtained by merging information about participation of
actors and actresses to each movie. In particular, two actors are connected by a link on a given
layer (genre) only if they have co-starred in at least one movie of that genre. We considered
only the actors who had acted in at least one movie of each of the four genres. We chose to
restrict our analysis to just four layers for both the APS and the IMDb data set, which allowed
us to consider the simplest formulation of our model, in which all the layers have the same
clustering coefficient C. The use of the APS and the IMDb data sets does not require any ethical
approval.

Transitivity and community structure
Wemeasured the transitivity of each level by mean of the clustering coefficient C = (1/N)∑i Ci

[4], where Ci:

Ci ¼
P

j6¼i;m 6¼iaijajmamiP
j 6¼i;m 6¼iaijami

¼
P

j 6¼i;m 6¼iaijajmami

kiðki � 1Þ : ð1Þ

The similarity of two community partitions can be measured through the normalised
mutual information (NMI) [32]. In particular, given the two partitions Pa and Pb respectively

associated to layer α and layer β, we denote the normalised mutual information (NMI) between
them as

NMIðPa;PbÞ ¼
�2

PMa
m¼1

PMb
m0¼1 Nmm0 log

Nmm0N
NmNm0

� �

PMa
m¼1 Nm log

Nm
N

� �þPMb
m0¼1 Nm0 log

Nm0
N

� � ð2Þ

where Nmm0 is the number of nodes in common between modulem of partition Pa and module
m0 of partition Pb, while Nm and Nm0 are respectively the number nodes in modulem and in

modulem0. The partition in communities on each layer has been obtained through the algo-
rithm Infomap [33].
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Synthetic multiplex networks
We created synthetic networks according to our multi-layer network model by starting, on
each layer, from a seed graph consisting of a triangle of nodes and simulating the intra- and
inter-layer triadic closure mechanism for N = 20000 nodes, for different values of the parame-
ters p and p�. For each pair of values (p, p�) we computed the mean clustering coefficient C on
each single layer and the normalised mutual information NMI of the community partitions of
the two layers over 30 different realisations. As observed from simulations, once the parameters
(p, p�) are fixed, the values of NMI and C do not vary substantially as the order N of the net-
work increases. Notice that since the most simple formulation of the model we have set an
identical value of p on both layers, the two layers will end up having the same clustering coeffi-
cient (up to small finite-size fluctuation).

Degree correlations
We study the assortativity of real multiplex collaboration networks in terms of intra-layer,
inter-layer and mixed degree correlations. The trend for intra-layer correlations is analysed by
mean of the function hK ½a�

nnðk½a�Þi, that is the average degree of the nearest neighbours on layer α

of a node with given degree k[α] on that layer. In particular, hK ½a�
nni is obtained as an average of

K ½a�
nn;i over all nodes with the same degree k[α]. The node term can be computed as

K ½a�
nn;i ¼

P
j 6¼i

a
½a�
ij k

½a�
j

k
½a�
i

, where a½a�ij are the entries of the adjacency matrix at layer α. Since such mea-

sure considers only a layer at a time, the layer index here is not strictly necessary but will be
kept for symmetry with the other coefficients. It is interesting to notice that, in absence of
intra-layer degree correlations, hK ½a�

nnðk½a�Þi is a constant, while hK ½a�
nnðk½a�Þi is an increasing (resp.,

decreasing) function of k[α] if assortative (resp., disassortative) degree correlations are present.
To quantify inter-layer degree correlations we considered the quantity hk[β](k[α])i [19, 25],

that is the average degree on layer β of a node with degree k[α] on layer α. Again, hk[β](k[α])i
will be an increasing function of k[α] if nodes tend to have similar degrees on both layers (assor-
tative inter-layer correlations), while hk[β](k[α])i will decrease with k[α] if a hub on one layer
will preferentially have small degree on the other layer, and vice-versa.

Finally, we measured the presence of mixed correlations through the function hK ½b;a�
nn ðk½a�Þi,

that is the average degree on layer β of the nearest neighbours on layer β of a node with degree
k[α] on layer α [26]. In analogy with the case of intra-layer correlations, the node term is

K ½b;a�
nn;i ¼

P
j 6¼i

a½b�
ij
k½b�
j

k½a�
i

. We remark here that there exists another possible definition of mixed corre-

lations coefficient, which considers the nearest neighbours of a node on layer α rather then β
(see Ref. [26] for details). The results for the alternative definition of mixed correlations are
analogous to those observed for hK ½b;a�

nn ðk½a�Þi and are not shown in the text. In general, correla-
tion functions might be affected by the degree sequence at each layer of the multiplex. In the
simple scenario considered at first, however, we do not fit the parameterm from the data, to
reduce as much as possible the complexity of the model. Instead, in order to still perform an
accurate comparison between the synthetic multiplex networks constructed by our model and
the real ones, in a second step we divided all the correlation functions by their (constant) value
expected in the corresponding configuration model network. The correct normalisation for the

intra-layer correlation function is hðk½a�Þ2i
hk½a�i [34], while for the inter-layer correlation function we

have to divide hk[β](k[α])i by hk[β]i. Finally, the mixed correlation function is correctly normal-

ised by hðk½b�Þ2i
hk½a�i .
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