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Abstract

Background: The diversity of placental architectures within and among mammalian orders is believed to be the
result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from
rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs)
from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired
by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-
specific genes (LSGs) using co-expression, promoter, pathway and network analysis.

Results: Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49
previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS) in
promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for
nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict
that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking,
regulatory processes in the nucleus, and processes that initiate parturition and immune system development.

Conclusions: The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of
placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are
useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs
are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for
experimental approaches to validate the functions of LSGs and to study their evolution.

Background

Placentae exhibit remarkable variation in tissue structure
and morphology within and between mammalian clades,
and even within a single mammalian order [1]. The
diversity of placental architectures is thought to be the
result of adaptive evolution arising from rapidly diver-
ging and novel genes [2-4]. A greater understanding of
the functional roles that these genes play would provide
insights into the molecular basis for the unique pheno-
typic and metabolic adaptations among closely related
mammalian species. Toward that end, we previously
identified and bioinformatically characterized novel tran-
scripts in cattle using placenta as a source tissue [2].
These transcripts are lineage-specific (LSTs), and the
genes that encode them have no detectable homology to
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genes outside of that lineage (LSGs). Functional elucida-
tion of LSGs remains a daunting task and only a few
have been characterized beyond their expression pat-
terns [5-10]. A complementary approach that would
direct the genetic and biochemical characterization of
LSGs and their products is functional inference using
co-expression [11] and promoter analysis [12].

Gene expression is regulated by a complex interaction of
transcription factors (TFs) and their binding sites (TFBS)
on the gene promoter. Co-expression analysis is based
upon the assumption that a high degree of similarity in
gene expression profiles correlates with relatedness of
their functions [11]. Genes that are highly co-expressed
are often regulated by common transcription factor(s),
forming sub-networks of genes with a common function
[12]. As a general rule, co-regulated genes share a specific
arrangement of TFBSs on their promoters. The TEBSs are
often located in a specific order relative to the transcrip-
tion start site (TSS) as well as in a particular orientation
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with respect to the promoter [13]. For example, Kindy et
al. [14] showed that both strands of the c-myc gene are
transcribed in an overlapping fashion and that transcrip-
tion of the coding and non-coding strands is regulated
independently. Yu and coauthors [15] showed a strong
correlation between inter-TFBS distances and their orien-
tation with respect to each other, demonstrating that a
combination of TFs rather than an individual TF is the
functional unit in tissue-specific gene regulation. Others
have shown that the inter-TFBS distance between func-
tionally over-represented TFBS pairs can vary significantly
from 10 to 200 bp, although it may be greater than 200 bp
in some cases [16-18]. These findings provide insights into
factors governing the interactions between specific TFs
and document TF pairs that are predicted to act synergis-
tically in a tissue-specific manner [19] or at specific stages
of development [20].

In a previous work we identified 91 cattle- and cetar-
tiodactyl-specific novel transcripts that included coding
sequences and noncoding RNAs (ncRNAs) [2]. In the
present work, we have inferred functions of a subset of
these LSTs using co-expression analysis. In addition, we
identified over-represented TFBSs and their composites
in the promoters of co-expressed genes and searched
existing databases and the literature for pathways and
functions in which these TFs may play a synergistic role
in a specific tissue or developmental stage. Using these
functional inferences, we predicted sub-networks of
genes that may be co-regulated with the LSGs. Our
results predict that subsets of these LSGs function in
glycerophospholipid/fatty acid metabolism and protein
trafficking in liver and near-term placenta, and in pro-
cesses involving the initiation of parturition and
immune system development.

Results
Identification of tissue-specific and time-series clusters
A strategy for inferring functions of LSTs (Figure 1) was
applied to 63 previously identified LSTs [2] (see Meth-
ods). Two microarray expression datasets, consisting of
profiles of ~7,000 cattle genes [21] and including these
LSTs, were used for generating co-expression clusters.
From the dataset consisting of profiles of total RNA from
18 cattle tissues, 49 LSTs and 6,178 known genes were
selected for further analysis after applying filtering condi-
tions (see Methods). Using the LSTs as seeds, two clus-
ters were identified that showed preferential expression
in a specific tissue with at least two-fold higher expres-
sion compared to any other tissue (Figures 2 and 3).
From the liver time-series dataset [22], 28 of the 49
LSTs that had tissue profiles and 4,711 known expressed
genes were selected for clustering after data filtering (see
Methods). Two large clusters were identified with aver-
age pairwise Pearson correlation r > 0.75, and r = 0.90
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between any LST and transcripts encoded by known
genes. The identity of the genes in these clusters over-
lapped, and instead of merging the clusters by lowering
the correlation threshold, we selected the largest cluster
containing four LSTs and 208 known transcripts (LIVR)
for further analysis. These transcripts were co-expressed
at seven time-points and two diets (Figure 2). Apart
from liver, the genes in this cluster were expressed at
higher levels in adrenal gland, cerebrum, and placen-
tome (Additional file 1).

In order to identify plane of nutrition (diet) and time-
dependent relationships from the liver time-series data
[22], the 28 LSTs that passed filtering of the liver
expression data were hierarchically clustered (Figure 4).
The four LSTs in the LIVR cluster (5BP, 39NG, 237NG,
266NG) were down-regulated at -14, +1, and +14 days
relative to parturition in animals fed a restricted-energy
diet pre-partum (Figure 4). Analysis of the entire LIVR
cluster for diet and time-dependent relationships indi-
cated that the genes were under-expressed by 1.8-fold at
+1 and +14 days after parturition in liver of animals on
a lower (restricted) as compared to higher (ad libitum)
plane of nutrition pre-partum (P < 0.0001). This sug-
gests that the expression of the LIVR cluster during the
peri-partum period is directly influenced by plane of
nutrition pre-partum (Figure 2).

LIVR cluster and functional inference for LSGs

The LIVR cluster contains 208 known genes and four
LSGs, 237NG, 266NG, 39NG, and 5BP (Table 1; Figure
2). To determine the subsets of genes in the LIVR clus-
ter that may be co-regulated, we predicted and analyzed
TFBSs and their composites in upstream promoter
regions [-100, 1000] relative to the TSS using cattle gen-
ome (BCM_HGSC Btau_3.1) [23] sequence. p53 and
Oct-1 TEBSs were found to be significantly over-repre-
sented in the LIVR cluster. The Oct-1 site had a high
frequency in the cluster and was predicted in 40 genes
including the LSG 39NG. Of the over-represented paired
composite TFBSs, Srebp-1*Pax-8 was predicted in the
upstream region of two LSGs, 237NG and 266NG, and
known genes CCDC12 (coiled-coil domain protein 12),
MX1 (interferon-inducible protein p78), NGLYI (N-gly-
canase), PLCE1 (phospholipase C, epsilon 1), TRIP10
(CDC42-interacting protein 4), and ZDHHCI8 (zinc fin-
ger, DHHC domain containing 18). A search of the
composite regulatory signature discovery (CRSD) data-
base [24] for TFs Srebp-1 together with Pax-8 identified
glycerophospholipid metabolism, among others, as over-
represented pathways (Table 2). The cluster was
enriched for another paired composite, Spl*Pax-8,
which was predicted in the LSG 237NG and five other
known genes. This suggests that 237NG is regulated by
all three TFs, Sp1, Srebp-1 and Pax-8.
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Figure 2 Co-expression of LSTs and other genes in LIVR cluster. The cluster of 212 genes (LIVR) shows a significant (P < 0.0001) difference
in expression (~1.8-fold) between ad-libitum (AD; left panel) and energy-restricted (RS; right panel) diets at +1 and +14 days post-partum.
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Figure 3 Co-expression of genes in PLAC and THYM clusters. The average pairwise Pearson correlation (r) within each cluster was r > 0.75.
The correlation between any one of the LSTs and any known gene was r > 0.90: A) Co-expression of LSTs 22JE, 34FL, and 104JE with 113 other
genes using expression data from 18 cattle tissues. A cluster of 116 genes (PLAC) shows preferential expression in placentome, with each gene
having > 2-fold higher expression in placentome as compared to any other tissue: B) Co-expression of LSTs 383NG and 21PW with 30 other
genes using expression data from 18 cattle tissues. A cluster of 32 genes (THYM) shows preferential expression in thymus with each gene having
> 2 fold higher expression in thymus as compared to any other tissue. L_Intestine, large intestine; M_L_Node, mesenteric lymph node;

S_Intestine, small intestine.
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Figure 4 Clustering of 28 LSTs significantly expressed (P < 0.05) at one or more time-point(s) and by diet. Gray cells indicate that the
gene is either not expressed at that time-point/diet, had missing data, or did not meet the filtering criteria (see Methods). The numbers at the
intersection of branches indicate the branch-correlation. Green cells indicate under-expression, orange/red/pink cells indicate over-expression,
and yellow cells indicate no change in expression compared to the reference sample.
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An unordered triplet composite of TFBSs (AP-2, ZF5,
c-Ets1) that was over-represented in the cluster, was
predicted in LSG 237NG and five other known genes
(ANKRD16, ARF5, TMEM14C, ARL4A, NSMCE4A). The
three TFs that bind to those sites were found to be
active in the adipocytokine signaling pathway on the
basis of a CRSD search [25]. Comparison of the motifs
predicted ab initio using ANN-Spec [26] with known
TFBSs identified Elf1- and Spl-like sites as matches,
indicating that EIfl and Spl TFs regulate genes in the

LIVR cluster (Additional file 2). As corroborating evi-
dence, an Elfl binding site was predicted in 13% of the
genes in the LIVR cluster, including 266NG and 5BP,
and an Spl site was predicted in 27% of the genes,
which included the LSG 237NG. Analysis of the LIVR
cluster using Ingenuity Pathway Analysis (IPA) [27]
showed it to be enriched for genes in the
glycerophospholipid metabolism pathway, DNA repair,
cell death, organ development of epidermis and immune
response (Table 3).
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Table 1 Summary information for nine LSTs co-expressed with known genes.

LST GenBank acc. Cluster® Btau_3.1 Length (LST) Exon cDs® Species- specifcityd
22JE EU998973 PLAC chr7:65,670,509-65,672,078 1569 1 ncRNA Bt, Ss

104JE EU998975 PLAC chr3:78,876,417-78,886,469 619 5 68 Bt, Ss, Oa

34FL EU846101 PLAC chr29:24532031-24538612 1571 2 100K® Bt, Ss, Oa, Ch, Ec,
383NG EU998980 THYM chr8:31,549,088-31,549,951 864 1 61K Bt, Oa

21PW EU998981 THYM chr26:12,357,963-12,358,929 977 1 67 Bt

5BP EU998982 LIVR chr3:92,641,001-92,641,610 610 1 NcRNA Bt

237NG EU998978 LIVR chr19:51,623,121-51,623,742 622 1 62 Bt

39NG EU998977 LIVR chr3:79,052,419-79,054,067 767 2 172K¢ Bt

266NG EU998979 LIVR chr12:29,282,078-29,283,427 783 2 38K° Bt

@ PLAC, placenta; THYM, thymus; LIVR, liver

P A CDS, length of coding sequence in amino acids.

© A Kozak consensus sequence is predicted at the beginning of the ORF.

d Bt, Bos taurus (cattle); Ss, Sus scrofa (pig); Oa, Ovis aries (sheep); Ch, Capra hircus (goat); Ec, Equus caballus (horse).

Table 2 Over-represented ordered TFBS pairs and unordered TFBS triplets in LIVR, PLAC and THYM co-expression
clusters.

Cluster *TFBS singles and pairs P-value P-value® Ref. CRSD pathway (<10°) and
PREMOD identifier
LIVR Oct-1° 0.002 0.152 [37] NA®
p53 0.002 0.152 [36] NA
Sp1*Pax-8 0.001 0.049 [72] Agrin in postsynaptic differentiation;
glycerophospholipid metabolism
SREBP-1*Pax-8° 0.002 0.049 [40] glycerophospholipid metabolism;
Agrin in postsynaptic differentiation
ZF5%YY1 0.002 0.049 [73] Whnt signaling pathway;
antisense pathway
Ebox*c-Ets-1(p54) 0.004 0.052 [74] nicotinate and nicotinamide
metabolism; signal transduction
AP-2, ZF5, c-Ets 0.027 0.026 [43] adipocytokine signaling pathway;
-1 (pS4)b HIV-I Nef: negative effector of Fas
and TNF
PLAC STAT*Pax-2° 0.0009 0.10 [75,76] glycerolipid metabolism (with STAT
family); prion pathway; mod027529
Tax/CREB*ETF 0% 0.039 NA EGFR-specific transcription factor
(ETF) not found in CRSD
Oct-1*GATA-4 0.0009 0.10 [77] mod003360; mod065501; mod070287
Tel-2*VDR 0.0005 0.10 NA Phosphatidylinositol signaling system;
mod100969
THYM v-MybP 109 0.069 [78] NA
KROX 0.004 0224 [79] NA
Nkx2-5*CdxAP 0.0006 0.077 [54] N-glycan biosynthesis; ribosome;
mod004754
MAF*HOXA7 0.0002 0.077 NA phospholipase C-epsilon pathway

@ * indicates order in this composite; ;" within the TFBS composite indicates an unordered composite.
® Indicates that this composite is also predicted in an LST.

€ FDR corrected P-value

¢ mod#, PREMOD identifier representing a predicted TFBS module.

€ NA, not applicable.
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Table 3 Ingenuity Pathway Analysis of gene clusters.
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LST cluster®

Significant b functions (F) and canonical
pathways (C)

Genes included in the function

LIVR (143/212)

PLAC (64/116)

THYM (18/32)

glycerophospholipid metabolism (C)
cancer (F)

repair of DNA (F)

immune response of organism (F)
development of epidermis (F)
Wnt/beta-catenin signaling (C)
acute-phase response signaling(C)
tissue morphology-size (F)

small molecule biochemistry- transport of
amino acids and synthesis of prostaglandin (F)

embryonic development- proliferation and
formation of embryonic tissue (F)

development of embryonic and trophoblast
cells (F)

cell cycle-entry into cell stage (F)
lipid Metabolism
cell adhesion (F)
transcription (F)

cancer—cell death of tumor cell lines(F)

cellular growth and proliferation (F)
cell death (F)

gene expression-transcription and
transactivation (F)

immune and lymphatic system development
and function (F)

LYPLAI, PGSI, PLCE1, PLCL2

FABP5, GLRX, GRRP1, MET, MLH1, PLCE1, PLXNB2, ASB2, KCTD11, CDK3
CDC5L, ERCCI, MLH1, NHEJ1, NTHLT, POLI, XRCC1

CD48, GATA3, MX1

ALDH3A2, FABPS, GJBS

CDH1, CSNK1G2, DKK1, TLE4

FOS, HMOX2, PTPNT1, SOD2

CDKN1C, DLX5, IGF2, STC1, PTGS2, FOS, CDHI1

SLC7A3, STX1A, COMT, PTGS2, IGF2, FOS, IGFBP7, CYP4A22, BCAT, STCI1, MAN2AT,
PTPNT1, TFPl, SOD2

ESMI, MED28, PTGS2, CDH1, DKK1, FOS, HAND1

CDKN1C, HANDT, IGF2, PTPNT11

CDH1, CDKNIC, FOS, MAD2L1, PTPNT11, SOD2
CYP4A22, IGF2, IGFBP7, PTGS2, STCI, PTPNT1, COMT
CASK, CD151, CDH1, IGFBP7, MAD2L1, MAN2A1, PTPN11, PVRL2, TFPI

CASK, CDH1, CDKN1C, DKK1, DLX5, FADD, FOS, GATAD2A, HAND1, IGF2, MED2S,
MSXT1, PTPN11, RP13-122B23.3, SNAPC2, SOD2, SPEN, TARBP2, THOC4, TLE4, UBTF,
ZNF281

CDH1, CDKNIC, DKK1, FADD, FOS, IGF2, IGFBP7, IHPK2, MAD2L1, MSX1, PTGS2,
PTPNT1, SOD2, UBTF

BTG1, CDCA7, ELF1, HMGB1, NCOR2, PCNA, PTK2, TCF12, ZFP36L2, ASXL1
PCNA, TRAPI, PLA2G7, BTGI1, NCOR2, HMGBI, PTK2, TCF12, ZFP36L2
HMGBIT, HMGB2, PCNA, ELF1, ASXL1, NCOR2, ZBTB7A, BTGI, PTK2, TCF12, NXF1

HMGBI, TCF12, PTK2, CDCA7, NCOR2

@ Numbers in parentheses indicate count of genes with IPA functions/cluster size; LIVR cluster, [5BP, 39NG, 237NG, 266NG] and 208 other genes; PLAC cluster,
[104JE, 22JE, 34FL] and 113 other genes; THYM cluster, [383NG, 21PW] and 30 other genes.

® All P-values were < 0.05

PLAC cluster and functional inference for LSGs

identified four TFBS composite pairs in the cluster

The PLAC cluster was expressed preferentially in placen-
tome and consisted of 116 genes, including three that are
LSGs, 34FL, 22JE, and 104JE (Table 1; Figure 3A). On the
basis of PSI-BLAST search [28] and multiple sequence
alignments we have annotated one of the LSTs, 34FL
[GenBank: NM_001105478], as an SSLP-1 (secreted
seminal vesicle protein) homolog, which belongs to a
class of secreted Ly6 domain containing proteins. The
predicted protein product of 34FL, like the SSLP-1 glyco-
protein in mouse [29], has 10 cysteines and contained the
conserved C-terminal CCXXXXXCN motif, indicating
that it is a member of the SSLP-1 secreted Ly-6 glycopro-
tein subfamily (Additional file 3). In addition, 34FL was
predicted by PSORTII [30] to contain a signal peptide,
and was localized to the extracellular region providing
evidence that it is a secreted protein. Furthermore, the
34FL gene was located on BTA29 in an orthologous
region that is syntenic with mouse SSLP-1 on MMU9.
The PLAC cluster was not found to be enriched for
any single TFBS or TFBS triplets. However, we

(Table 2). The pair, STAT*Pax-2 (signal transducer and
activator of transcription; paired homeobox 2), was pre-
dicted in the LSG 34FL, PAG2 (Pregnancy associated
glycoprotein), and PTGS2 (COX2, prostaglandin-endo-
peroxide synthase 2). The motifs predicted ab initio by
ANN-Spec in the cluster had significant matches to NEF-
kB (nuclear factor kappa B), MAZ (Myc-associated zinc
finger), and Spl TFBSs. All three sites were predicted in
the cluster at varying frequency, although none were
predicted in an LSG (Additional file 2). The cluster was
found to be enriched for Wnt/B-catenin signaling and
acute phase response (APR) signaling pathways. Other
enriched IPA functions in the PLAC cluster were trans-
port of amino acids and synthesis of prostaglandins,
adhesion, development of trophoblast cells, and lipid
metabolism.

THYM cluster and functional inference for LSGs
A thymus-specific cluster (THYM) was identified, con-
sisting of 32 genes, including two LSGs 383NG and
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21PW. Both of these are single-exon transcripts (Figure
3B) and have multiple ESTs from different libraries as
evidence of transcription. 383NG is a paralog that has
been duplicated in two other locations on the same
chromosome [2]. The THYM cluster was found to be
enriched for v-Myb (myeloblastosis viral oncogene
homolog) and KROX (also EGR, early growth response
gene) TFBSs (Table 2). Three TFBS composite pairs
were over-represented in the THYM cluster, of which
one, Nkx2-5*CdxA, was predicted in the LSG 2I1PW
and ASXL1 (Additional sex comb-like 1). An ab initio
predicted motif matched the IRF (Interferon regulatory
factor) TFBS. IRF-1 was identified in 21% of the genes
in the cluster, including the LSGs 383NG and 21PW
(Additional file 2). An analysis of the THYM cluster
using IPA showed enrichment for genes involved in
apoptosis, immune and lymphatic system development,
transcription and trans-activation, and cell prolifera-
tion (Table 3).

Gene interaction network for the LIVR cluster

We then used weighted gene co-expression network ana-
lysis (WGCNA) [31] to identify sub-networks in the
LIVR cluster. Only one module consisting of all the 212
genes was identified indicating the integrity of the cluster.
On the basis of gene connectivity measurements, the top
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five hub genes (CNGB3, GGAI, FABPS, IL22RA1,
237NG) with the highest connectivity were identified in
the LIVR cluster, and included the LSG 237NG. The hub
genes CNGB3 (cyclic nucleotide gated channel beta 3)
and GGAI (golgi associated, gamma adaptin ear contain-
ing, ARF binding protein 1) are known to play roles in
ion and intracellular protein transport. The hub genes
IL22RA1 (interleukin 22 receptor, alpha 1) functions in
cell signaling and FABPS5 (fatty acid binding protein 5,
epidermal) in FA metabolism and signaling, suggesting
that in addition to protein transport, these are dominant
processes represented in the LIVR cluster. Using gene
interactions from GeneGO MetaCore [32], which is mod-
eled on known pathways in humans, a network was
inferred for a subset of genes that are co-expressed with
237NG and 266NG. In addition, hub genes were added to
build the network (Figure 5).

Discussion

Functional elucidation of a novel gene is a challenging
task. We have used an informatics-based strategy
(Figure 1) to infer functions of a set of LSGs first found
expressed in a cattle term-placenta cDNA library [2].
This was accomplished by generating co-expression
clusters (Figures 2 and 3) using LSTs as seeds to cluster
other genes from two microarray datasets consisting of
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are shown as determined using a liver tissue trace in GeneGO. Majority of these are common to placenta tissue as determined using a placenta
tissue trace. Those interactions that are specific to liver only are marked with the letter L. Genes that are expressed as part of the LIVR cluster are
indicated with a red circle. A legend explaining the symbols is provided at http://portal.genego.com/legends/legend_6.png.
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transcript profiles from 18 cattle-tissues and liver of ani-
mals fed two different diets at several peripartal time-
points. We then identified over-represented TFBSs and
their composites in the promoters of co-expressed
genes, and searched existing databases and the literature,
for pathways and functions in which these TFs may play
a role in a specific tissue or developmental stage. Yu
and co-authors found that genes targeted by the same
TF tend to be co-expressed, with the degree of co-
expression increasing if genes share more than one TF
[33]. This provides significant validation of our
approach, and gives us confidence in the sub-networks
of co-regulated genes that were identified. We present
below a synthesis of our results with the aim of support-
ing the inferred functions of LSGs in each cluster.

Evidence supporting inferred functions for LSGs in the
LIVR cluster

The LIVR cluster was found to be enriched for genes in
the glycerophospholipid metabolism pathway, DNA
repair, transport, cell death, organ development of epi-
dermis, and immune response functions (Table 3).
These pathways and functions are also characteristic of
term placenta [34], which was the source tissue used to
create the cDNA library from which the LSTs were
identified. In support of the correlated pathways and
functions of genes in liver and placenta we also found
that the LIVR cluster genes are expressed in placentome
(Additional file 1). Glycerophospholipid metabolism
plays a significant role in the onset of labor in humans
[35], and apoptosis and immunological processes are
known to represent important cellular functions in
term-placenta [34]. The overlapping functions likely
represent common subpopulations of cells in liver and
placenta, such as macrophages and lymphocytes.

Genes in the LIVR cluster were enriched for p53 and
Oct-1 TFBSs. p53 exerts a variety of regulatory effects
following DNA damage [36]. An Oct-1 TFBS has been
predicted in the 39NG promoter along with a PPARy
site. PPARy works in concert with Oct-1 to mediate
transcriptional activation of GADD45 (growth arrest and
DNA damage-inducible gene 45) [37]. The presence of
both Oct-1 and PPARYy sites on the 39NG promoter
suggests a role for the encoded protein in DNA repair
processes in response to DNA damage. In addition, the
protein is predicted by PSORTII [30] to be a nuclear
protein, which supports such a role. A paired TFBS
composite, Srebp-1*Pax-8, was significantly over-repre-
sented in the LIVR cluster, and was predicted in two
LSGs, 237NG and 266NG. It was also predicted in
PLCE1, NGLY1, and TRIP10, which have known roles in
fatty acid (FA) metabolism, turnover of glycoproteins,
and lipid binding, respectively (see Additional file 4 for
protein functions). Srebp-1 is known to regulate genes
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involved in the biosynthesis of fatty acids, triglycerides
and phospholipids in liver and adipocytes [38], and has
been shown to play a role in glycerophospholipid meta-
bolism [39] suggesting that 237NG and 266NG are also
involved in these processes. Smith and coauthors
reviewed evidence that show Pax-8 works together with
Srebp-1 to target PPARy (peroxisome proliferator-acti-
vated receptor gamma) in adipocytes and liver [40].
Some of these LIVR genes were shown to form sub-net-
works that participate in glycerophospholipid meta-
bolism, protein transport and signaling pathways in liver
(Figure 5). The LSG, 237NG, is inferred to play a role in
glycerophospholipid metabolism and cytokine signaling,
and is one of the hub genes.

The LIVR cluster was enriched for an unordered tri-
plet TFBS composite, AP-2, ZF5, c-Etsl (p54), which
included the LSG 237NG, ANKRD16, ARF5, TMEMI14C,
ARL4A, and NSMCE4A. The transcription factor AP-2
(TFAP2A) is correlated with expression of cytokine-
induced serum amyloid Al gene (SAAL) in cattle liver
[41] and is known to be a repressor for SAA1 [42].
SAA1 plays a role in the immune system, supporting a
role for 237NG in cytokine-related immune processes.
AP-2 and ZF5 binding sites have been predicted
together in liver by Smith et al [43]. A sub-network of
genes including ARF5, ARFGAPI and the hub gene
GGA1I, which play roles in protein trafficking and locali-
zation within the golgi apparatus, was shown previously
to be linked with processes in signaling and glyceropho-
spholipid metabolism pathways in liver (Figure 5). A
motif predicted ab initio by ANN-Spec shows a signifi-
cant similarity to the TFBS for EIfl, which is predicted
in 13% of the LIVR gene promoters, including the pro-
moter regions of 266NG and 5BP (Additional file 2).
The Elf1 TF plays a role in early liver development of
mouse embryos [44], thus suggesting a similar role for
these two LSGs (Table 4).

Expression of the LIVR genes was found to be affected
by pre-partum diet. They were down-regulated by
restricted feeding at +1 and +14 days postpartum suggest-
ing that the predicted functions (e.g., apoptosis, glycero-
phospholipid metabolism, DNA repair mechanisms, and
cell signaling) are down-regulated during the early post-
partum period when the animals are fed restricted diets
that do not meet 100% of the estimated energy require-
ments during the non-lactating period. This management
strategy is more successful in preparing the animal to the
onset of parturition and lactation, and leads to lower inci-
dence of metabolic disease [22]. Therefore, animals on a
higher plane of nutrition (i.e. consuming diets to meet or
exceed energy requirements) show increased inflammatory
responses, apoptosis, and DNA repair; a conclusion shared
by Loor and coauthors [22]. Above, we suggested that gly-
cerophospholipid metabolism is a common function in
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Table 4 Inferred biological functions of LSTs.
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Cluster LSTs Function Inference

LIVR 5BP (ncRNA) Involved in glycerophospholipid/fatty acid metabolism, cell
237NG signaling and protein trafficking in epithelial cells. 39NG
39NG possibly plays a role in DNA repair processes in response to
266NG DNA damage. Responsive to differences in pre-partum plane of

nutrition at time-points +1, +14 after onset of lactation (Figures
2 and 4).

PLAC 104JE Preferential expression in placentome; involved in immune
22JE (ncRNA) response, acute phase and inflammatory processes. 34FL is a
34FL pre-term and term placentome-specific SSLP-1 glycoprotein,

possibly involved with PAG2 and PTGS2 in the final events
before parturition at the feto-maternal interface.

THYM 383NG Preferentially expressed in thymus and may play a role in
21PW immune system development and cell-proliferation. 21PW may

play a role in gene activation in fetal thymus development.

liver and near-term placenta in animals approaching labor
and delivery. Metabolic processes in both tissues have
been shown to be affected by diet in non-ruminants. For
example, in pregnant mice the FA composition in the
mother’s diet influences the maternal liver and fetal pla-
centa FA composition [45,46]. These findings suggest that
the LIVR genes, many of which are involved in FA-linked
functions, protein transport and cell signaling, play similar
diet-responsive roles in both liver and placenta of pregnant
animals (Figure 5), given that nearly all (99%) of the LIVR
genes, including the LSGs, are also expressed in the pla-
centa (Additional file 1).

Evidence supporting inferred functions of LSGs in the
PLAC cluster

The PLAC cluster genes were found to be preferentially
up-regulated in placentome and enriched for specific
processes in the placenta; e.g. transport of amino acids
and synthesis of prostaglandins, trophoblast cell adhe-
sion, lipid metabolism, transcription, and cell prolifera-
tion (Table 3). The cluster is also enriched for acute
phase response (APR) genes, which function to restore
homeostasis. These APR gene products are a variety of
serum proteins synthesized in increased amounts in
response to trauma and infection. Given that labor and
delivery result in oxidative and immunological stresses,
with APR and apoptotic responses in placental tissue
[47], APR enrichment provides a snap-shot of these pro-
cesses in near-term placenta. The cluster is also enriched
for Wnt/B-catenin signaling, which has been shown to
play a central role in coordinating uterus-embryo interac-
tions required for implantation in mouse [48].

The composite TFBS pair, STAT*Pax-2, was over-
represented in three co-expressed genes; 34FL, PAG2,
and PTGS2. The PWM for the predicted STAT binding
site is common to a range of STAT proteins that
are involved in the development and function of the
immune system and play a role in maintaining immune
tolerance and tumor surveillance. PTGS2 is a

biosynthetic isoenzyme that was shown in pregnant
cows and guinea-pigs to be involved in intrauterine
prostaglandin (PG) synthesis, which is crucial for the
initiation of parturition [49,50]. PTGS2 was found to be
20-fold greater in cattle term placentomes (delivery at
260 days or later) compared with preterm placentomes
(delivery between day 174 and day 260 of gestation)
further supporting its role in parturition [34]. Given that
our data show that 34FL (a predicted SSLP-1 glycopro-
tein), PAG2, and PTGS2 are highly co-expressed and
predicted to be regulated by STAT TFs, we suggest that
34FL also plays a role in pregnancy and/or parturition.

The ANN-Spec motifs predicted ab initio in the PLAC
cluster have significant matches to TFBSs for NF-xB
(nuclear factor kappa B), MAZ (Myc-associated zinc fin-
ger), and Spl (Additional file 2). NF-xB is known to
initiate transcription for a variety of genes that are
involved in immune response, acute phase and inflam-
matory processes [51]. It has been located in human
fetal membranes and decidua at term and pre-term
delivery [52]. The physiological expression of COX-2
(PTGS?2) in rat trophoblast involves a sustained activa-
tion of NF-xB, and its inhibition abrogates the inducibil-
ity of PTGS2 [48]. This result functionally links NF-xB
and PTGS2 with the other co-expressed genes in the
PLAC cluster, suggesting a complex role for glycopro-
teins including 34FL in initiating and orchestrating the
cell biology at the feto-maternal interface before parturi-
tion (Table 4).

Evidence supporting functional inference for LSGs in the
THYM cluster

The thymus is an immune system organ that is of cen-
tral importance to the maturation of T lymphocytes.
Genes in the THYM cluster are enriched for the related
functions immune system and lymphatic system develop-
ment, cell death, and cellular growth and proliferation
(Table 3). The v-Myb TFBS was over-represented in the
THYM cluster and predicted in LSG 383NG. The
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v-Myb oncogene product causes late onset T cell lym-
phomas when expressed in the T cell lineage of trans-
genic mice [53], thus suggesting a role for this LSG
383NG in cell-proliferation. The TFBS composite pair
Nkx2-5*CdxA was over-represented in promoters of
21PW and ASXL1 (additional sex comb-like 1). CdxA
and Nkx2 have been shown to be markers for endoderm
germ layer patterning during gastrulation, a process
necessary for formation of the thymus [54]. The AsxL1
gene in Drosophila is required to maintain homeotic
gene activation and silencing, and its homologs have
been identified in mouse and found to be expressed in
thymus [55]. The roles played by the TFs CdxA and
Nkx2 in endoderm germ layer patterning, and that of
ASXL1 in homeotic gene activation and silencing sup-
port a role for the LSG 2IPW in thymus development.
Furthermore, the IRF-1 TFBS, which regulates IL-15
gene expression and influences the development of T-
cells and natural killer cells in the thymus [56], is pre-
dicted in LSGs 383NG and 21PW (Additional file 2).
Taken together, these findings implicate 383NG and
21PW in immune system development and cell-prolif-
eration (Table 4).

Conclusions

We selected the placenta as a model system to identify
and functionally characterize novel LSGs because of its
unique characteristics as a rapidly evolving physiological
system in mammals. As we and others have shown, the
placenta is a rich source of expressed LSGs and rapidly
diverging genes [2,3,57-60]. Such genes are candidates
for adaptive placental functions acquired by the rumi-
nant lineage. We used a combination of cluster analysis,
promoter analysis, WCGNA, and gene annotation to
predict the functions of nine previously uncharacterized
LSGs (Table 4) from a starting set of 49 (18%). The
stringent analysis criteria produced unique and highly
correlated gene expression clusters among 18 different
tissues and across seven time-points and two diets in
liver (Figures 2 and 3). The three clusters analyzed con-
tained nine LSTs, seven of which are encoded by pre-
sumptive novel protein encoding LSGs and two are
presumptive ncRNAs [2]. Our results represent a major
advance in characterizing the novel LSTs expressed in
bovine placenta and have yielded predictions of func-
tions that are consistent with their putative role in rumi-
nant reproductive and immune physiology.

As additional animal genomes are sequenced and the
numbers of novel genes with unknown functions
increases, our approach establishes a valuable precedent
for future studies. We show that it is possible to identify
and characterize a significant fraction of lineage-specific
genes bioinformatically, which may guide hypothesis-dri-
ven experiments to determine their biochemical and
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cellular functions. These may in turn yield new insights
into the role of LSGs in speciation and adaptive
evolution.

Methods

Source datasets

In a previous study, 91 novel transcripts were identified
in a cattle placenta ¢cDNA library. These LSTs were
characterized on the basis of their genomic distribution
and annotation in Btau_2.0 and expression patterns in
18 cattle tissues [2]. For the present work, the annota-
tion was updated to Btau_3.1 (December 2007) [23]. Of
the original 91 LSTs, 63 currently have no matches to
non-Cetartiodactyl sequences in public databases [61].
The remaining 28 transcripts were not considered in
this study as they were re-annotated as representing
divergent homologs.

Two ¢cDNA microarray expression datasets profiling
~7,000 cattle genes were used. The cDNAs used for the
array were selected from a near-term cattle placenta
c¢DNA library [21]. The first dataset (GEO GSE3029)
was obtained by profiling total RNA from 18 cattle tis-
sues [21]. For this dataset, transcripts were included in
the analysis if the intensity was above the median signal
intensity of negative control spots present on the array,
and in addition, the minimum intensity was 250 units in
at least one sample-point. The second dataset [GEO:
GSE3331] was generated by temporal gene expression
profiling of liver RNA during the peripartal period in
Holstein cows fed with a moderate energy ad-libitum, or
restricted diet in which the animals were fed to con-
sume ca. 80% of their calculated energy requirements
from -65 days until parturition [22]. The temporal data
spanned -65 to +49 days relative to parturition for ani-
mals receiving each diet. Expression levels of the tran-
scripts were analyzed further if the intensity was above
the median signal intensity of negative control spots
present on the array, the minimum raw intensity was
150 in at least one sample-point, and the relative
expression compared to the control was statistically sig-
nificant in at least one sample-point with a raw P-value
(P) < 0.05. For both datasets, only those intensity spots
that were flagged as ‘present’ were included in the
analysis.

Tissue expression profile clustering

Among the 63 LSTs, 49 were present in at least one of
the 18 tissues with a raw intensity of 250 (Additional
file 5). In addition to these 49 LSTs, expression levels of
6,178 transcripts passed this filter. The LSTs were clus-
tered using Pearson correlation (r) threshold of 0.90. A
representative was selected from each cluster and the
un-clustered LSTs were self-represented. Genes on the
array that co-expressed with each of these LSTs at
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r > 0.90 were grouped into clusters that included all co-
expressed LSTs. The cluster was adjusted to bring the
average cluster r > 0.75.

Clustering of temporal liver gene expression profile

Of the 49 LSTs, 28 were present in at least one liver
sample with a raw intensity of 150 and significantly
expressed at P < 0.05 compared to a control mixture of
tissues excluding liver. Expression of 4,711 unique genes
passed these filter conditions. The temporal profiles of
the LSTs were clustered hierarchically using gene-condi-
tion clustering as implemented in GeneSpring [62]. The
liver gene expression profiles of representative LSTs
were used as seeds to identify co-expressed genes from
the 4,711 genes on the array using Pearson correlation
(r) at a threshold r > 0.90. As before, the clusters were
adjusted to bring the average cluster r > 0.75.

A mixed effects model using the SAS procedure Proc
MIXED (SAS Institute, Cary, North Carolina, USA) [63]
was used on the 212 unique genes in the liver cluster to
determine expression differences between groups of ani-
mals on two diets (moderate energy ad-libitum and
restricted) at different time points (-65, -30, -14, +1,
+14, +28, +49 days). The LOG2-transformed ratios were
analyzed for each gene using a mixed model that
included the fixed effect of diet within time point. Sta-
tistically significant P-values for the models were
adjusted for multiple comparisons using the Benjamini-
Hochberg false discovery rate (FDR) correction [64].

Functional annotation and assignment of genome
coordinates of genes in clusters

Functions, gene symbols and genome coordinates were
assigned to each clone accession on the array using
RefSeq (Btau_3.1) and human protein annotations in
UCSC genome browser tables [65]. Manual curation of
the clusters involved removing identical genes and using
the UCSC browser to check if each gene was annotated
with the correct gene symbol and genome coordinates.
This manual inspection was crucial for ensuring the tran-
scription start site of genes and their promoter regions.

Promoter extraction

Mammalian regulatory elements are concentrated near
transcription start sites (TSS). For this reason, promoter
analysis was concentrated on the proximal promoter
region, -1000 to +100 bp relative to the TSS. Both
unmasked and repeat-masked promoter sequences
[-1000, +100] were extracted for gene clusters from
Btau_3.1 using the UCSC Genome Table browser. To
identify TFBSs that are over-represented in the gene
clusters, we used promoters of unique cattle RefSeq
genes as the background set. The coordinates for a non-
redundant set of Btau_3.1 RefSeq genes were
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downloaded from UCSC Genome Table Browser, and
the proximal promoters [-1000, +100] were extracted as
described for the clusters.

Identification of transcription factor binding site (TFBS)
Vertebrate-specific TFBSs were predicted by scanning
the repeat-masked promoters using the Match program
[66] with a core similarity threshold of 0.9 and a matrix
similarity threshold of 0.85. The promoters in each clus-
ter were searched against a predefined matrix profile in
the TRANSFAC Professional 11.4 database [67]. This
database contained a set of 214 high-quality, vertebrate-
specific, non-redundant position weight matrices
(PWMs) with minimized false positives ("vertebrate_-
non_redundant_minFP” with high-quality matrices
selected). Only a single occurrence of a TFBS was
counted in each promoter, and the predicted TFBS
counts in each cluster were compared to those in the
cattle RefSeq promoter set using Fisher’s exact test
(FET), which is based on a hypergeometric distribution.
The computed P-values were adjusted for multiple com-
parisons using the Benjamini-Hochberg FDR correction
[64].

Identification of over-represented co-occurring TFBS
combinations
Two TFBSs were defined as co-occurring if they were
distinct, non-overlapping, and their PWMs had a core
similarity threshold of 0.9 and matrix similarity thresh-
old of 0.85 in the output from the Match program. The
Match output lists the PWM matches in their positional
order on the promoter. Both ordered (A-B # B-A rela-
tive to the TSS) and unordered (A-B = B-A) TFBS pairs
and triplets were predicted separately, and the orienta-
tion of the TFBSs was ignored. To prevent double-
counting, only a single occurrence of a combination was
counted per gene. For the unordered combinations,
non-redundancy was ensured by collapsing each identi-
fied combination in its sorted order (A-B-A or A-C-B or
B-A-C = A*B*C), and then counting only a unique
occurrence of the unordered combination within a gene
promoter. Unordered TFBS composites were denoted
with a comma separating the sites. Composite ordered
TFBSs were denoted with an asterisk between the sites
indicating that they were predicted to be co-occurring
in that order in the promoter relative to the TSS. TFBS
pairs and triplets were predicted for three different
minimum threshold distances of 20 bp, 50 bp, and 100
bp between the TFBSs to identify all adjacent non-over-
lapping TFBS combinations [16]. The maximum allowed
inter-TFBS distance was set to 250 bp.

The counts of the ordered pair and triplet TFBSs were
computed for each cluster of genes and compared to
the counts of the respective pairs and triplets in the
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background RefSeq promoters using Fisher’s exact test.
A minimum cell count of five was necessary for com-
parisons. The computed P-values were adjusted for mul-
tiple comparisons using the FDR correction as before,
and comparisons were deemed significant if the adjusted
P-value was < 0.1. The entire analysis was carried out
for both repeat-masked and unmasked promoters and
significant predictions in the repeat-masked promoters
had to be predicted in the unmasked cluster promoters
to be selected. This precautionary measure ensured that
no predictions were within repeats. TFBS prediction
results were manually checked for the presence of over-
represented composites.

Ab initio motif prediction and comparison to known
TFBSs

ANN-Spec [26] was used for ab initio prediction of
motifs that were common to an entire cluster. For each
cluster of genes, the motif predictions were made on
unmasked promoters, using the unmasked Btau_3.1
RefSeq promoters from which the cluster genes were
subtracted as background. ANN-Spec was run iteratively
by varying the predicted motif length from 6 to 16 bp
and setting the run cycle (parameter m) to 100. The
PWMs of predicted motifs were parsed from the ANN-
Spec output. Tomtom [68] was used to compare the pre-
dicted PWMs with TRANSFAC v11.4 PWMs and com-
parisons with P < 0.01 were deemed significant. Logos
depicting the frequency of each nucleotide at each posi-
tion of a motif were generated for the ANN-Spec-pre-
dicted and corresponding matching Transfac PWMs
using the EnoLOGO web server [69].

Functional classification of clusters

Ingenuity Pathway Analysis (version 5.5) [27] was used to
identify functional enrichment in the clusters, using the
respective source gene sets (6,149 genes in tissue experi-
ments, 4,711 in liver time-series experiments) as refer-
ence. The Ingenuity Pathway Knowledge Base (IPKB) was
used as the source database for biological function and
pathway assignment to genes. The significance threshold
for function and pathway enrichment was P < 0.05.

To identify known pathways in which the TFs were
involved we queried the CRSD, which consists of
miRNA, TF and gene expression regulatory signatures
assigned to specific BioCarta and KEGG pathways using
genome-wide enrichment analysis [24]. A Perl script
was written that accepted a TFBS composite and parsed
the dataset for the co-occurrence of the TFs in the com-
posite in a common pathway at a P < 10, In addition,
we used the Predicted Regulatory Module (PREMOD)
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database [70] to identify any known modules within our
set of TFBS composites.

Identification of genes with the highest connectivity
using WGCNA

To identify sub-networks of co-expressed genes in the
LIVR cluster and “hub genes” we used WGCNA
(Weighted Gene Co-Expression Network) [71]. Expres-
sion ratios and logl0 transformed P-values were used as
input for the 212 genes in the LIVR cluster. WGCNA
uses Pearson correlation to calculate an adjacency
matrix using the power adjacency function defined as
follows [71]:

aj; =| COf(Xi/Xj)|ﬁf

where aj; is the adjacency between two genes i and j, x
is the expression of a gene, and f§ is the power factor
for a scale-free network. For the LIVR cluster, this
power was 8 as determined by the scale-free network
criterion provided by the authors [71]. Default para-
meters were used for module generation. Gene connec-
tivity was determined, and the top five genes with the
highest connectivity (hub genes) were identified using
1.2 as a cutoff for gene significance and intramodular
connectivity (K/Kmax) cutoff of 0.95.

Network inference using GeneGO

GeneGO MetaCore [32] was used to identify known
interactions in the LIVR cluster of genes, modeled on
the human interaction database included in GeneGO.

List of Abbreviations used

LST: Lineage-specific transcript; LSG: Lineage-specific
gene; ncRNA: noncoding RNA; TEBS: Transcription fac-
tor binding site; TF: Transcription factor; PWM: position
weight matrix; LIVR: cluster of genes expressed in liver
and showing effect of diet; PLAC: cluster of genes prefer-
entially expressed in cattle placenta; THYM: cluster of
genes preferentially expressed in cattle thymus; SKIN:
cluster of genes preferentially expressed in cattle skin;
ADRBRN: cluster of genes preferentially expressed in cat-
tle adrenal gland, thalamus, and cerebellum; FET: Fisher’s
exact test; FDR: Benjamini-Hochberg false discovery rate.

Additional file 1: Tissue expression profile of the LIVR cluster of
genes. Tissue expression profile of the LIVR cluster of genes includes two
of the LSTs (237NG, 5BP) and 104/208 other genes in the cluster.
L_Intestine, large intestine; M_L_Node, mesenteric lymph node;
S_Intestine, small intestine.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
161-51.PDF]
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Additional file 2: Comparison of ANN-Spec. ab initio predicted motif
PWMs with known Transfac binding site PWMs. This table displays
the frequency logos of PWMs that were predicted using ANN-Spec and
for known Transfac binding sites with which the predicted PWMs were
significantly matched.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
161-S2.PDF ]

Additional file 3: Multiple alignment of 34FL with mouse SSLP-1.
Multiple alignment of 34FL with mouse SSLP-1 and other secreted Ly6
domain containing proteins having 10 conserved cysteine residues.
Dashes in the alignment indicate gaps, and gray shaded areas indicate
conserved cysteines.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
161-S3.PDF]

Additional file 4: Functions of gene products. Text file containing
glossary of gene functions.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2164-11-
161-S4.TXT]

Additional file 5: LSTs used for clustering with tissue expression
data. Initial set of 49 LSTs used as seeds to cluster the tissue expression
data.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
161-S5.PDF ]
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