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Type 2 diabetic nephropathy (DN) is the most common cause of end-stage renal disease and is increasingly considered as an
inflammatory disease characterized by leukocyte infiltration at every stage of renal involvement. Inflammation and activation of
the immune system are closely involved in the pathogenesis of diabetes and its microvascular complications. Macrophage has been
well recognized to play an important role in type 2 DN, leukocyte infiltration, and participated in process of DN, as was proposed
recently. Th1, Th2, Th17, T reg, and cytotoxic T cells are involved in the development and progression of DN. The purpose of this
review is to assemble current information concerning the role of T cells in the development and progression of type 2 DN. Specific
emphasis is placed on the potential interaction and contribution of the T cells to renal damage. The therapeutic strategies involving
T cells in the treatment of type 2 DN are also reviewed. Improving knowledge of the recognition of T cells as significant pathogenic
mediators in DN reinforces the possibility of new potential therapeutic targets translated into future clinical treatments.

1. Introduction

Diabetes mellitus (DM) is a complex syndrome characterized
by absolute or relative insulin deficiency leading to hyper-
glycemia and an altered metabolism of glucose, fat, and pro-
tein. These metabolic dysfunctions are pathologically associ-
ated with specific microvascular diseases and various charac-
teristic long-term complications, including diabetic neuro-
pathy, nephropathy, and retinopathy. Diabetic nephropathy
(DN), affecting more than one third of patients with type 1
DM and up to 25% of all patients with type 2 DM, is an ex-
tremely common complication of DM that profoundly con-
tributes to patient morbidity and mortality [1–4]. Diabetic
nephropathy is a leading cause of chronic kidney disease, res-
ulting in end-stage renal disease (ESRD) which has became a
major problem facing human health worldwide [1–4]. Rapi
dly increasing rates of DM with profound consequences of
DN are the primary reason for this worldwide increase. Diab-
etic nephropathy (DN) is characterized as pathological find-
ings of hypertrophy of glomerular structures, thickening of
the basement membrane, and accumulation of extracellular

matrix (ECM) components. Multiple mechanisms con-
tribute to the development and outcomes of DN, such as an
interaction between metabolic abnormalities, hemodynamic
changes, genetic predisposition and inflammatory milieu,
and oxidative stress, constituting a continuous perpetuation
of injury factors for the initiation and progression of both of
DM and DN [5]. Traditionally, metabolic and hemodynamic
factors are the main causes of renal lesions in patients with
type 2 DM and DN, both considered nonimmune diseases
[6–8]. However, recent studies have shown that chronic in-
flammation is associated with the development and progres-
sion of type 2 DM, implying that immunologic and inflam-
matory mechanisms may play a pivotal role in the disease
process [9–11]. Furthermore, increased infiltration of mono-
cytes/macrophages and activated T lymphocytes, as well as
augmented expression of inflammatory cytokines in the kid-
neys have also been found in patients with DN [9–11].
Serial research has demonstrated that DN is a metabolic and
hemodynamic disorder, with inflammation playing a vital
role in the process [12, 13]. Type 1 DM is an autoimmune
disease, and the role of T cell has been well recognized in the
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disease process. However, the role of T cells in type 2 DM
is still debated. Several animal models are ideal for type 2
DM and DN that are extremely similar to that of humans
and provide the tools necessary to investigate associated
mechanisms [14–16]. The purpose of this review is to as-
semble current information concerning the role of T cells in
the development and progression of type 2 DN, as evidenced
from animal models related to human disease. Specific em-
phasis is placed on the potential interaction and contribution
of the T cells to kidney damage. In addition, we also review
the therapeutic strategies involving T cells in the treatment
of type 2 DN.

2. T Cells, Metabolic Syndrome, and Type 2 DM

2.1. Adaptive T Cell Immune Response. The immune system
is composed of innate and adaptive immunity. Innate im-
mune system activation associated with chronic inflamma-
tion has been revealed to participate in the pathogenesis of
type 2 diabetes and its complications [11]. It is widely re-
cognized that adaptive immunity CD4+ T cells can be dif-
ferentiated into T-helper 1 (Th1), Th2, Th17, and Treg ac-
cording to their cytokine profiles [17, 18]. Th1 cells produce
large quantities of interferon-γ (IFN-γ), induce delayed
hypersensitivity reactions, activate macrophages, and pro-
mote cell-mediated immunity. Th2 cells produce mainly
interleukin-4 (IL-4), induce IgE production, suppress Th1
cell activation, and contribute to humoral immunity [17, 18].
Th17, the recently discovered CD4+ effector T cell lineage
distinct from Th1 and Th2, is a third distinct subset of T
helper cells preferentially producing interleukin-17, but not
IFN-γ or IL-4. We now have three types of effector helper T
cells: Th1, Th2, and Th17 which are regulated reciprocally
to maintain a balance in immune-mediated disease [19].
Regulatory T cells control adaptive immune responses by
suppressing T cells, NK cells, NKT cells, B cells, and dendritic
cells [20]. CD8+ T cells recognize antigen in association with
MHC class I molecules and are predominantly cytotoxic.
Cytotoxic T cells use various mechanisms to kill their targets,
including direct cell-cell signaling via surface molecules and
indirect signaling via cytokines.

2.2. Type 1 versus Type 2 DM. Type 1 diabetes is an organ-
specific autoimmune disease characterized by a progressive
cell-mediated destruction of pancreatic beta cells, leading
to an absolute deficiency of insulin. Both activation of the
T-cell-mediated immune system leading to insulitis and hu-
moral B cell response producing immunoglobulins against
beta cell autoantigens participate in the pathogenesis of type
1 DM [21, 22]. Developing a more aggressive T-cell pheno-
type and changing the Th1-to-Th2 balance towards a more
proinflammatory milieu (Th1 dominant) may be associated
with the progression towards overt diabetes. Furthermore,
evidence demonstrating the association of the Th17 subset
with pathogenesis of type 1 diabetes is rapidly accumulating
[23–25]. By contrast, type 2 diabetes is a nonautoimmune
form of diabetes characterized by insulin resistance and
relative (rather than absolute) insulin deficiency. At present,

however, little is known about the role of T cells in the process
of insulin resistance, metabolic syndrome, or type 2 DM
[26].

2.3. T Cells in Insulin Resistance, Metabolic Syndrome, and
Type 2 DM. Adipose tissue inflammation is now recognized
as a crucial process leading to the metabolic syndrome,
diabetes and atherosclerotic cardiovascular disease [27–29].
However, how adipose inflammation is initiated and main-
tained is still unclear. Macrophage infiltration of adipose
tissue has been described in both animal models and human
diseases [27]. Accumulation of other immune cells, such as T
cells, has been observed in obese adipose tissue recently [30–
32]. T lymphocytes are known to interact with macrophages
and regulate the inflammatory cascade [33]. Nishimura et
al. performed studies to investigate the functional role of T
lymphocytes in adipose inflammation [34]. In mice fed a
high-fat diet, larger numbers of CD8+ effector T cells infil-
trated obese epididymal adipose tissue, whereas the numbers
of CD4+ helper and regulatory T cells were diminished. The
phenomenon of infiltration by CD8+ T cells precede macro-
phage accumulation, and once CD8+ T cells were depleted
using specific antibodies, macrophage infiltration, adipose
tissue inflammation, and systemic insulin resistance were
ameliorated [34]. Nishimura et al. also found that obese
adipose tissue activates CD8+ T cells, which then promote
the recruitment and activation of macrophages in this tissue
[34]. These findings, indicating that systemic insulin resis-
tance is ameliorated by CD8 depletion and aggravated by
adoptive transfer of CD8+ cells, strongly suggest that CD8+ T
cells play essential roles in the initiation and maintenance of
adipose tissue inflammation and systemic insulin resistance
[34].

Accumulation of CD8+ T cells in obese epididymal fat
pads was not accompanied by the presence of greater num-
bers of CD8+ T cells in the systemic circulation, suggesting
that CD8+ T cells are activated by endogenous stimuli loca-
lized in the adipose tissue [34]. Coincubation with CD8+ T
cells plus lean adipose tissue may induce macrophage dif-
ferentiation, suggesting that the interactions among CD8+

T cells, macrophages, and adipose tissue may activate and
propagate a local adipose inflammatory cascade [34]. In
contrast to CD8+ T cells, numerous CD4+ T cells and regu-
latory T cells were lower. The predominant T-cell effect on
glucose homeostasis, revealed by conducting CD4+ T-cell
reconstitution studies in lymphocyte-free mice, was the
improvement of glucose tolerance, enhanced insulin sensiti-
vity, and lessening of weight gain [35]. Regulatory T cells and
subsets of CD4+ Th2 cells are known to secrete anti-infla-
mmatory cytokines that can inhibit macrophage recruitment
and activation [36]. Whether the reducing numbers of CD4+

and regulatory T cells augment the inflammatory response
during the inflammatory cascades in obese adipose tissue re-
quires further study to elucidate the detail mechanisms [34].

2.4. Effects of Hyperglycemia and Type 2 DM on T Cells.
Elements of DM can directly or indirectly activate T cells.



Experimental Diabetes Research 3

High-glucose concentrations may induce macrophage pro-
duction of IL-12, which can stimulate CD4 cell production of
IFN-γ [37]. By contrast, hyperglycemia may activate nuclear
factor kB (NF-kB) through PKC and reactive oxygen species
to rapidly stimulate the expression of cytokines [38, 39].
T lymphocytes from patients with diabetes which have an
activated phenotype and TNF-α-expressing Th1 cells are
prevalently detected [40–42]. The expression of IL-1, TNF-
α, and macrophage migration inhibitory factor (MIF) is
markedly upregulated in the injured kidney [43, 44]. Fur-
thermore, longer disease duration results in increased ad-
vanced glycosylation end (AGE) products and AGE-modified
proteins, which could bind to the receptor for AGE on
macrophages and T cells, stimulating synthesis and release of
proinflammatory cytokines in DM [45–47]. IFN-γ secretion
by T cells can initiate and induce further inflammation and
oxidative stress within renal tissues [47]. Advanced gly-
cosylation end (AGE) induces synthesis of IFN-γ that
further accelerates the inflammation by the activation of
macrophages and vascular cells with renal tissues [42, 47].

3. Leukocyte Recruitment and
Renal Injury in DN

Although DN has not been considered an inflammatory
disease in the past and although metabolic or hemodynamic
factors are the major causes contributing to DN, recent
studies have suggested that DN is an inflammatory process,
and immune cells might be involved in its development
and progression [13, 48]. Diabetic nephropathy (DN) is an
inflammatory disease with prominent leucocytes infiltratiing
the kidneys. Most research has focused on the contribution
of macrophages because they are the foremost infiltrating
immune cells in diabetic kidneys [43, 49]. Inflammation in-
duced by macrophages may constitute important mecha-
nisms in the progression of DN [43, 49, 50]. The importance
of macrophages in diabetic renal injury has been clearly
demonstrated; however, little is known about the role of lym-
phocytes. The levels of circulating activated lymphocytes
were higher in type 1 diabetic patients with proteinuria than
those in nonproteinuria patients [40, 51]. This suggests that
activated T lymphocytes may also be associated with the de-
velopment of type 1 DN. Whether T cells are associated with
the development of type 2 DN is still unknown.

3.1. Lymphocyte Recruitment in Diabetic Kidney. In patients
with type 1 diabetes, T-cell influx and accumulation in the
juxtaglomerular apparatus are the factors that exacerbate
diabetes and correlate with glomerular filtration surface and
albumin excretion rate [51]. Previous investigations have also
shown folds increasing in glomerular and interstitial CD4+

and CD8+ T cells, as well as in interstitial FOXP3+ regulatory
T cells in diabetic compared with non-diabetic wild-type
mice [40, 51]. The development of early diabetic renal injury
is associated with significant lymphocyte infiltration. There
is no doubt that immune cells participate in the renal injury
under the conditions of DN, and their migration into the
kidney is a crucial step in the progression of this disease.

Although the detailed mechanisms of leukocyte migration
into renal tissues in DN are not completely understood nor is
the functional role of T cells within this compartment, it has
been reported that adhesion molecules and the chemokines
are involved in this recruitment [42, 44, 52].

Recruitment of leukocyte is a key event in the disease
progression of DN. Previous studies have demonstrated that
mice deficient in intercellular adhesion molecule-1 (ICAM-
1) may cause defects in macrophages and leukocytes homing
into renal tissues, resulting in substantial reduction of renal
injury [53]. The CD4+ T cells homing into glomeruli of
diabetic kidney were decreased in ICAM-1-deficient-db/db
mice, as compared with those of db/db mice [53]. Because
naive and effector T cells constitutively express LFA-1, and
ICAM-1 expression is found on renal endothelial, epithelial,
and mesangial cells, it is likely that this interaction will plays a
significant role during T-cell migration into the kidney [54–
56]. Chemotactic cytokines are also major factors that induce
the recruitment of inflammatory cells into the kidney, sub-
sequently amplifying the immune-mediated damage [57].
Once macrophage is infiltrated within the diabetic kidney,
the macrophages and macrophage-derived products can
induce further inflammation [43]. Monocyte chemoattrac-
tant protein-1 (MCP-1), an important chemokine regulating
macrophage recruitment, is upregulated in patients with DN
[58]. Moreover, constitutive RANTES expression directs sub-
set-specific homing of CD4+ T cells in the kidney [59]. The
role of RANTES in directing T lymphocyte homing into the
diabetic kidney is not yet clear.

Compared to Type 2 diabetic patients without DN, sign-
ificantly lower plasma concentrations of sCTLA-4 and higher
concentrations of sCD28 were noted in Type 2 diabetic pa-
tients with DN [60]. Furthermore, plasma sCD28 and sCD80
were found to be positively correlated with the fasting urine
albumin, creatinine ratio in DN patients. The disease severity
of DN related with elevated soluble adhesion molecule vas-
cular cell adhesion molecule-1 and P-selectin were also found
[60]. Costimulatory molecules, together with leukocyte ad-
hesion molecules, are crucial for T lymphocyte and leuko-
cyte-mediated inflammatory responses. The aberrant expres-
sion of soluble costimulatory molecules and adhesion mole-
cules may be related to the activation of T cells and leukocytes
in the progression of inflammation in type 2 DN [60].

3.2. Leukocytes and Diabetic Nephropathy: Cause or Conseq-
uence? Increased infiltration of monocytes/macrophages
and activated T lymphocytes, as well as augmented expres-
sion of inflammatory cytokines in the kidneys, have been
found in patients with DN [9–11]. Longer disease duration of
DM results in an increase of advanced glycosylation end
(AGE) products and AGE-modified proteins that may bind
to leukocytes, stimulating the synthesis and release of pro-
inflammatory cytokines in DM [45, 46]. By contrast, an
activated renin-angiotensin-aldosterone system (RAAS) and
endothelial dysfunction, well noted in patients with DM,
have also been proven to be a crucial determinants of leuko-
cyte activation and cytokine expression in generating proin-
flammatory and proliferative effects [61–63]. Thus, it is high-
ly possible that metabolic or hemodynamic factors in DN
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may trigger the immune-mediated inflammatory responses
and cytokine production. Furthermore, prominent leukocyte
infiltration in models of remnant kidneys or unilateral ureter
obstruction, models considered to be nonimmunologically
mediated, was also illustrated. Hence, the accumulation of
leukocyte in the kidneys of DN can be the results of lesions
from high glucose or glomerular hyperperfusion (secondary
to hyperglycemia or hypertension), rather than the cause of
DN. Therefore, leukocytes may be either the cause or the
consequence of DN.

3.3. Interaction and Mechanisms of T-Cell-Mediated Renal
Damage. The scale of CD4+ and CD8+ T cells accumulated
in the diabetic kidneys was much smaller than that of macro-
phages in rodent models of both Type 1 and Type 2 DN [43,
64], suggesting that T cells may interact with macrophages to
regulate inflammation and renal injury. Activated T cells can
cause injury directly through cytotoxic effects and indirectly
by recruiting and activating macrophages. Proinflammatory
cytokines secreted by T (CD4+, CD8+) cells could acti-
vate neighboring macrophages directly or by stimulating
mesangial cell production of colony stimulating factor-1 and
MCP-1 indirectly [65]. Once macrophages have activated,
they can release nitric oxide, reactive oxygen species, IL-1,
TNF-α, complement factors, and metalloproteinases, all of
which promote renal injury [49, 50]. T cells express the
receptor for AGEs and can respond to AGEs [47]. The acti-
vation of CD4+ and CD8+ T cells by AGE can initiate IFN-γ
secretion by T cells [47], which could induce further inflam-
mation and oxidative stress within the diabetic kidney. In
addition, CD8+ cells may perform a cytolytic function in the
diabetic kidney. All of these cytokines and molecules pro-
mote inflammation and induce further expression of macro-
phage colony-stimulating factor and ICAM-1 in renal cells,
further contributing to renal injury [48, 66].

Nevertheless, infiltrating macrophages and T lympho-
cytes are the most probable sources of many cytokines med-
iating the renal injury in DN and its progression. The intrin-
sic renal cells (endothelial, mesangial, glomerular, and tubu-
lar epithelial cells) are able to synthesize many pro-inflam-
matory cytokines [67, 68]. At high glucose levels, podocytes
are considered the major sources of IL-1α and IL-1β, and
they may also produce MCP-1 [69, 70]. Increased secretion
of TGF-β by peripheral blood mononuclear cells has been
reported in patients with DN and seems to be responsible for
fibrogenic and proliferative effects on fibroblasts [71–73].
Furthermore, the TGF-β is also a crucial pleiotropic cytokine
associated with the development of Tregs and Th17 cells [19].
Collectively, induction of proinflammatory and profibrogen-
ic molecules influences renal damage in diabetes.

The aberrant production of inflammatory cytokines and
chemokines, as well as differential activation of MAPK in
different leucocytes (T helper (Th) cells and monocytes), are
the underlying immunopathological mechanisms of type 2
DM patients with DN [74]. An increasing body of evi-
dence indicates that immigrated blood leukocytes might
considerably alter the phenotype of endothelial cells and
increase inflammation of the vascular bed [75]. Endothelial
dysfunction is associated with most forms of cardiovascular

disease, such as coronary artery diseases, chronic renal
failure, and diabetes [76]. Interaction of renal tissue macro-
phages and T cells produces various reactive oxygen species,
proinflammatory cytokines, metalloproteinases, and growth
factors, which modulate the local response and increase
inflammation within the diabetic kidney [5, 8, 77, 78].

4. Roles of T Cells in Type 2 Diabetic
Nephropathy

4.1. Th1 Cells. The circulating lymphocytes trafficking
through tissues may interact with tissue AGEs. Exposure of
activated T lymphocytes to AGE may enhance the expression
of interferon gamma (IFN-γ) indicating that the T cell AGE-
receptor system might be linked to lymphokine production
involving in renal damage. Under conditions of excessive
AGE-protein and AGE lipid accumulation (e.g., aging and
diabetes), enhanced production of AGE-induced IFN-γ may
accelerate immune responses that contribute to tissue injury.

It is well recognized that T helper-1 (Th1) response pre-
cedes and accompanies type 1 diabetes [21]; hence, it is pos-
sible that Th1 cells are prevalent in type 1 diabetic kidney.
Elevated levels of ICAM-1 and P-selectin within the dia-
betic kidney, combined with increased levels of IFN-γ and
MIF, were associated with the homing of effector Th1 cells
in glomeruli [79]. However, little is known about the mecha-
nisms of Th1 cell migration in the type 2 DN model during
the development and progression of kidney diseases. Higher
serum IFN-γ levels, a Th1 cytokine, and positive correlations
between plasma IFN-γ, proteinuria, and estimate glomerular
filtration rate (eGFR) were found in type 2 diabetic patients
with overt nephropathy [80]. Plasma IL-2R levels found in
type 2 DM patients with overt DN were higher than those
without overt nephropathy. Furthermore, a significantly
positive correlation was determined between plasma IL-2R
and proteinuria [80]. These results indicate that Th1 cellular
immunity in conjunction with Th1 and proinflammatory
cytokines may mediate tissue injury in patients with DN
[80].

4.2. Th2 Cells. Th2 cells, producing IL-4 cytokines, can con-
tribute to humoral immunity, suppress Th1 cell activation,
and function as an inhibitory cytokine of autoimmunity and
inflammations [17]. No significant change of serum IL-4
level in type 2 DN patients, as compared to those without
nephropathy [80]. Specific polymorphisms within the IL4R
locus and by specific genotypes at the IL4R, IL4, and IL13 loci
were strongly associated with susceptibility to type 1 DM
[81]. Furthermore, an association of interleukin (IL)-4
intron-3 polymorphism with susceptibility to end-stage
renal disease was discovered [82]. However, the role of IL-
4 gene polymorphisms in type 2 diabetic nephropathy still
requires further evaluation.

IL-10, another important Th2 cytokine, exerts predom-
inantly anti-inflammatory and immunosuppressive effects
[83]. Low production capacity of IL-10 associated with the
metabolic syndrome and type 2 DM [84]. Some studies have
revealed elevated IL-10 levels in the sera of diabetic patients
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with nephropathy, and a positive correlation between IL-10
levels and albuminuria has been suggested to participate in
the DN pathogenesis [85–87]. IL-10 promoter variants and
haplotypes (GTA and GTC) have predictive value in deter-
mining the susceptibility to nephropathy in Tunisian T2DM
patients [88, 89].

4.3. Th17 Cells. Th17 is a third distinct subset of T helper
cells and have been found to play vital roles in the pathogen-
esis of several autoimmune diseases such as multiple sclerosis
and rheumatoid arthritis [19]. Increasing evidence demon-
strates that the Th17 cell in type 1 DM in murine model and
human type 1 DM [23–25]. Recently, T cell in type 2 DM
patients has been revealed to be skewed toward a proinflam-
matory phenotype, requiring monocytes for maintenance
and promoting chronic inflammation through elevated IFN-
γ and IL-17 production [90]. However, IL-17A cannot be
concluded to be associated with nephropathic complications
of type 2 DM, due to an increased serum level of IL-17A
found in patients with nonnephropathy [91].

4.4. Treg Cells. The expression rate of CD4+CD25+Foxp3+

Treg cells between the control group and type 2 diabetic pa-
tients yielded no significant difference [92]. In type 2 diabetic
patients with microalbuminuria and macroalbuminuria, the
expression of CD4+CD25+Foxp3+ Treg cells was significantly
lowered, as compared with that of the control group, and
patients with macroalbuminuria showed significantly lower
expression of CD4+CD25+Foxp3+ Treg cells than did the
microalbuminuric patients. Significant inverse correlations
were noted between the disease course and the expression
of CD4+CD25+Foxp3+ Treg cells between the urinary albu-
min excretion rate (UAER) and the expression of CD4+

CD25+Foxp3+ Treg cells. Whether the CD4+CD25+Foxp3+

regulatory T cells (Treg) play role in type 2 DN still requires
further investigation [92].

4.5. Cytotoxic T Cells. Adipose tissues can activate CD8+T
cells, which then promote the recruitment and activation
of macrophages resulting in the metabolic syndrome, which
can be significantly attenuated by a specific CD8 antibody
[34]. In the diabetic kidneys of NOD mice, accumulation of
CD8+ cells is associated with increased expression of genes
encoding perforin and granzyme B, as well as with colocaliza-
tion in immunostaining for perforin [93]. This suggests that
CD8+ cells may perform a cytolytic function in the diabetic
kidney. In streptozocin-induced diabetic nephropathy, pre-
vious studies have shown that the difference in expression
of CD4+ T cells in control and diabetic kidneys is more sig-
nificant at 1 month than at 8 months, whereas expression of
CD8+ T cells is more significant at 8 months. It is speculated
that DN is probably initiated and driven by a Th1 process.
The function of CD8+ T cells, however, becomes more signi-
ficant at later stages of the disease when tissue loss is evident
[94].

5. Type 2 DN and Therapeutic Strategies
Involving T Cells

Due to the pathogenic complexity of DN, protecting diabetic
patients from the development and progression of renal

injury remains a challenge for physicians. The accumulation
of inflammatory cells in renal biopsies of diabetic patients
is associated with tissue damage and a progressive decline
in renal function [95]. In animal models, the use of
immunosuppressants, neutralizing antibodies, and genetic
deficiencies has shown that reducing leucocyte accumu-
lation and activation in diabetic kidneys suppresses the
development of renal injury [96]. Many previous studies
have used anti-inflammatory strategies that also suppress
accumulation of lymphocytes in diabetic kidneys, indicating
that lymphocytes may also contribute to disease progression.
Inflammation plays an important role in the pathogenesis of
proteinuria in DN. Inhibiting renal macrophage recruitment
by immunosuppressant therapy, or modulating of MCP1
or ICAM-1 expression in diabetic mice, demonstrate anti-
proteinuric and renoprotective effects [13, 69, 97–99].

The mammalian target of rapamycin (mTOR) is a ser-
ine/threonine kinase that plays a pivotal role in mediating cell
size and mass, proliferation, and survival [100]. High activa-
tion of mTOR within the kidney has been reported to occur
in DN [101, 102]. Systemic administration of rapamycin,
a specific and potent inhibitor of mTOR, markedly ame-
liorated pathological changes and renal dysfunctions in
db/db mice [102]. Rapamycin markedly inhibited the influx
of inflammatory cells, predominantly lymphocytes, and
macrophages, associated with DN [100–104]. This effect is
likely attributable to rapamycin-induced inhibition of the
proliferation and clonal expansion of B and T lymphocytes
[103–105]. Within the kidney, rapamycin also ameliorates
the release of proinflammatory cytokines and chemokines,
such as monocyte chemoattractant protein-1, RANTES, IL-
8, and fractalkine, exacerbating the inflammatory process in
DN [103–105]. These results indicate that mTOR activation
plays a pivotal role in the development of DN and that rapa-
mycin could be as a strong therapeutic potential agent for
DN.

Depletion of CD8+ T cells using specific antibodies could
ameliorate macrophage infiltration, adipose tissue inflam-
mation, and systemic insulin resistance. Whether depleting
CD8+ T cells could be applied in treatment of DN is still
undetermined. Anti-inflammatory or immunosuppressive
treatment has been applied to treat DN in animal models
[106–109]; however, therapeutic approaches targeting T cells
are still limited.

6. Conclusion

Beyond traditional metabolic and hemodynamic risk factors,
type 2 DN is now increasingly considered as an inflammatory
disease. The inflammatory process is not only due to an in-
nate immune response dominated by macrophage-mediated
effects, but also by the adaptive immune response mediated
by leukocytes. T cells participate in the development of type
2 DN from processes of insulin resistance, metabolic syn-
drome, and type 2 DM into type 2 DN. The recruitment of
leukocyte is a key event in the disease progression of DN.
Diverse immune cells and cytokines exert important roles
in the pathogenic complexity of development and progres-
sion during the DN process. Interaction of renal tissue
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macrophages and T cells produces various reactive oxygen
species, proinflammatory cytokines, metalloproteinases, and
growth factors, which modulate the local response and
increase inflammation within the diabetic kidney. A better
understanding of the role of T cells in the context of DN will
create several new opportunities for therapeutic intervention
that may benefit patients with DN.
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