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Susceptibility to severe illness from COVID-19 is anticipated to be associated with cigarette smoking as it
aggravates the risk of cardiovascular and respiratory illness, including infections. This is particularly
important with the advent of a new strain of coronaviruses, the severe acute respiratory syndrome coro-
navirus (SARS-CoV-2) that has led to the present pandemic, coronavirus disease 2019 (COVID-19).
Although, the effects of smoking on COVID-19 are less described and controversial, we presume a link
between smoking and COVID-19. Smoking has been shown to enhance the expression of the
angiotensin-converting enzyme-2 (ACE-2) and transmembrane serine protease 2 (TMPRSS2) key entry genes
utilized by SARS-CoV-2 to infect cells and induce a ‘cytokine storm’, which further increases the severity
of COVID-19 clinical course. Nevertheless, the impact of smoking on ACE-2 and TMPRSS2 receptors
expression remains paradoxical. Thus, further research is necessary to unravel the association between
smoking and COVID-19 and to pursue the development of potential novel therapies that are able to con-
strain the morbidity and mortality provoked by this infectious disease. Herein we present a brief over-
view of the current knowledge on the correlation between smoking and the expression of SARS-CoV-2
key entry genes, clinical manifestations, and disease progression.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

The current outbreak of a novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) causes a severe respiratory
illness called coronavirus disease 2019 (COVID-19). SARS-CoV-2 is
an enveloped RNA virus with high zoonotic potential. Genetic anal-
ysis revealed that SARS-CoV-2 belongs to the Betacoronavirus
genus and the Sarbecovirus subgenus, indicating that it originated
from the bat coronavirus (BatCoV RaTG13) [1]. The initial epi-
demic, which began inWuhan, China, continued seeding secondary
chains through international travel and propagated to over 180
countries and territories [2]. As of October 2020, more than 34
million confirmed cases have been reported, including over one
million deaths, with a rising number of cases reported in India,
the United States, and Brazil [3]. SARS-CoV-2 is an extremely con-
tagious infection with interpersonal transmission by aerosols and
fomites; the virus remains environmentally active in the atmo-
sphere and on surfaces for several days [4]. These features make
it possible for the virus to spread rapidly and cause a global
pandemic.

The outbreak was initially presented in the form of pneumonia
of unknown etiology. As the epidemic evolved into a global pan-
demic, it became clear that the SARS-CoV-2 infection contributes
to multi-organ disease, with a high incidence of acute respiratory
distress syndrome (ARDS) and digestive tract complications [5].
SARS-CoV-2 has a broad spectrum of clinical manifestations rang-
ing from asymptomatic to multi-organ dysfunction [6]. The disease
is graded into mild, moderate, severe, and critical, depending on
the severity of the presentation, while the most common symp-
toms include fever, cough, diarrhea, and fatigue [6]. Based on the
R-nought (R0) values, it is considered that SARS-CoV-2 is more
contagious than previous coronavirus pandemics (SARS or MERS)
[7,8]. Certain population segments are at a higher risk of fatality,
including the elderly, immunocompromised, comorbid patients,
and smokers [9,10]. In general, smokers are more likely to get res-
piratory diseases than non-smokers [11]. Smokers also have twice
the risk of acquiring influenza infection, tuberculosis, and bacterial
pneumonia [12,13]. Ameta-analysis revealed that 22% (n = 31/139)
of current smokers and 46% (n = 13/28) of ex-smokers had severe
complications, including ARDS [14]. However, relative risk (RR)
analysis showed that current smokers were 1.45 times more likely
than former and never-smoker patients to have severe complica-
tions [14-16]. Nevertheless, the role of smoking in COVID-19
remains controversial [14,17,18]. This review will focus on the
relationship between smoking and receptors of SARS-CoV-2 and
impact on COVID-19 leading to tissue damage and diseases espe-
cially in the lungs.
2. SARS-CoV-2 and its key entry genes

The Latin word ‘‘corona” ascended from the crown-like appear-
ance of the coronavirus structural images. The large type 1 trans-
membrane spike (S) glycoproteins attribute to the virus’s corona
shape. The S glycoprotein comprises two distinct functional
domains (S1 and S2) that are assumed to mediate host cell binding,
membrane fusion, and virus entry [19]. The S1 domain contains
receptor-binding sites for angiotensin-converting enzyme-2 (ACE2)
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and is responsible for virus entry into host cells [20]. The S2
domain enables the fusion of the virus membrane and the host cell,
essential for cell infiltration [21].

There is still a limited understanding of the pathogenic path-
ways of SARS-CoV-2. Viral particles infiltrate the host respiratory
epithelial cell through metallopeptidase cell identification. Host
cell enzymes must cleave the S glycoprotein at two different sites
for coronaviruses to enter target cells, thereby presenting potential
drug targets. Several host enzymes are known to activate SARS-
CoV-2, including cathepsin L, furin, and transmembrane serine pro-
tease 2 (TMPRSS2), TMPRSS4, TMPRSS11A, and TMPRSS11D [22].
However, TMPRSS2 and furin play key roles in the proteolytic acti-
vation of SARS-CoV-2 [23]. Furin and TMPRSS2 are essential
enzymes for S protein’s cleavage at the S1/S2 and the S20 sites,
respectively [23]. Bestle et al. [23] have shown that TMPRSS2 is
necessary for SARS-CoV-2 S glycoprotein priming through in-vitro
TMPRSS2 knockdown in human epithelial cells. Similarly, they
revealed that synthetic furin inhibitors strongly blocked the trans-
missibility of SARS-CoV-2 in lung epithelial cells and that more
potent antiviral effects were obtained by combining TMPRSS2 and
furin inhibitors [23].

SARS-CoV-2 host moiety, the ACE2 receptors, are essential for
marinating human’s body homeostasis, including membrane traf-
ficking, the renin-angiotensin (RAS), and cardiovascular systems
[24-26]. ACE2 is widely expressed in all tissues with relatively
higher expression in the respiratory system, including type I and
type II alveolar cells, the central nervous system, the cardiovascu-
lar system, kidneys, and the gastrointestinal tract [27]. ACE2 acts as
a key regulator of RAS, primarily by transforming Ang (an-
giotensin) I to Ang 1–9 and Ang II to Ang 1–7 [28]. ACE2 activity
occurs in various lung diseases, including lung injury and fibrosis,
pulmonary hypertension, and ARDS [29]. More recently, the role of
ACE2 in COVID-19 pathogenesis has gained considerable attention
due to its critical link with immunity, inflammation, the digestive
tract, and cardiovascular diseases. SARS-CoV-2 binding affinity
for ACE2 correlates with the viral replication rate, transmissibility,
and disease severity [30]. ACE2 and viral S protein interactions are
considered a promising therapeutic target for vaccine production
[31].

We performed a comprehensive literature search using the
PubMed/MEDLINE/ database to explore papers published until 31
January 2021. We used the following keywords: COVID-19, SARS-
CoV-2, smoking, ACE2, TMPRSS2, furin, and treatment. Retrieved
publications were selected independently for their relevance and
contribution; literature search was constrained by study subjects
(in-vitro, in-vivo, humans) and language (English). Furthermore,
references retrieved from articles and those from recent reviews
of smoking and COVID-19 were analyzed. This review also includes
publications focusing on epidemiology and clinical characteristics
of COVID-19, the association of smoking with COVID-19, in addi-
tion to the management and therapeutic options for COVID-19.
3. Smoking as a risk factor for COVID-19

Smoking is an established risk factor for several cardio-
metabolic and respiratory diseases, including chronic obstructive
pulmonary disease (COPD) and bronchial asthma [32]. Smoking



Table 1
Smoking and COVID-19.

City/Country Reported cases (%) Smoking history Co-morbidity (%) Mortality (%) Reference

Severe cases n (%) Mild cases n (%)

Wuhan/China 140
(100%)

2/58 (3.4%) 0/82 (0%) 90
(64.3%)

– [16]

Sindh/Pakistan 382
(41.5%)

Positive correlation with disease severity and
death

Positive correlation 2.8% [37]

China 1590
(100%)

111/1590 (7%) 399
(25%)

– [38]

Wuhan/China 191
(100%)

5/54 (9%) of dead 6/137 (4%) of survivors – 54
(28.2%)

[39]

Wuhan/China 78
(100%)

3/11 (27.3%) 2/67 (3%) 29
(37.1%)

2
(2.5%)

[40]

Chongqing/China 133
(100%)

58/65 (89.71%) 61/68 (89.23%) 133
(100%)

– [41]

China 1099
(100%)

29/172 (16.9%) 108/913 (11.8%) 261
(23.7%)

15
(1.4%)

[42]

Wuhan/China 41
(100%)

0/13 (0%) 3/28 (11%) 13
(32%)

6
(15%)

[43]
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tobacco promotes exposure to several toxic chemicals, including
1,3-butadiene, benzene, and NO2 [33]. It can induce inflammation
of the respiratory tract, allergy, permeability of epithelial cells,
mucus formation, and impair mucociliary clearance [34].

Robust evidence indicates that the risk of Mycobacterium tuber-
culosis infection is almost doubled by smoking-induced immune
suppression. Likewise, the risk of influenza, mycoplasma pneumo-
niae, legionella, and pneumococcal infections is 3–5 times higher
in smokers. [35]. However, literature on the role of smoking in
the pathogenesis of previous coronavirus outbreaks (Middle East-
ern respiratory syndrome coronavirus (MERS) and severe respira-
tory syndrome coronavirus (SARS)) is scarce. One study from the
Republic of Korea, based only on twenty-six samples, showed that
smoking increased the risk of death in MERS patients [36].
Although data is sparse for COVID-19 cases, we have summarized
available data comparing disease fatality in smokers and non-
smokers (Table 1).

Several COVID-19 cohort studies analyzed the impact of smok-
ing on disease incidence, comorbidity, and mortality, the results
are summarized in Table 1. The studies either reported a correla-
tion between smoking and COVID-19 severity or divided cohorts
into mild and severe cases, with percentages of smokers in each
group. According to Ujjan et al. [37], there is a correlation between
smoking and disease severity, with all deceased patients (2.8%)
being smokers. Similarly, Zhou et al [39] studied 191 inpatients,
54 of whom died while in the hospital and 137 of whom were dis-
charged. They found that dead patients had a greater smoking ten-
dency than recovering ones. Although several studies found a link
between disease severity and smoking [40,42], few found no differ-
ence or a negative correlation between smoking and COVID-19
severity [41,43].

Zhao et al. (2020) conducted a meta-analysis of seven studies
analyzing the association of COVID-19 fatality with smoking. The
authors found that smoking doubled the risk of severe COVID-19
[44]. Similarly, a meta-analysis of 13 published Chinese studies
found that age over 65, male gender, and smoking were risk factors
for disease progression in COVID-19 patients [45]. Another meta-
analysis conducted by Patanavanich and Glantz (2020) showed a
significant association between smoking and the progression of
COVID-19 [46]. Moreover, another study showed that being a smo-
ker or former smoker was a greater risk factor for a severe COVID-
19 infection (OR = 1.96, CI = 1.36–2.83) and posed a greater likeli-
hood of a more critical condition (OR = 1.79, CI = 1.19–2.70) [32].

However, on the contrary, studies have demonstrated a lack of
association between smoking, COVID-19, and the severity of
1656
COVID-19 disease. In contrast, studies carried out in China reported
only 25% of the COVID-19 patients to be smokers [15,38,47-49], in
Italy, as low as 15% of COVID-19 patients were former smokers
[50].

4. Impact of smoking on the expression of SARC-CoV-2 key
entry genes

Chronic smokers or prolonged exposure to smoke tends to dis-
play several co-morbidities, including emphysema, atherosclerosis,
and immune dysregulation [51], which further enhances COVID-19
progression.

Hung et al. [52] found that exposure to smoke increased the
pulmonary activity of ACE2 and that ACE2 knockout mice had sig-
nificant pulmonary inflammation and distress in response to cigar-
ette smoke. Smoking increased pulmonary JNK, p38, and ERK1/2
levels, indicating that ACE2 expression caused by smoking pro-
motes inflammation and lung injury [52]. Similarly, smoking-
induced abnormal expression of the ACE2 pathway is associated
with blood gas changes, lung inflammation, edema, and injury
[53]. The nitrogen dioxide present in cigarette smoke enhances
the binding of ACE2 to its receptor up to 100 times by stimulating
ACE enzyme activity [33]. Radzikowska et al. (2020) reported that
smoking, asthma, obesity, and hypertension could elevate ACE2
expression in the bronchial biopsy, bronchioalveolar lavage, or
blood samples [54]. Similarly, Brake et al. (2020) reported that
smoking upregulates ACE2 receptor expression in COVID-19
patients [55]. Further, studies have found elevated expression of
ACE2 and TMPRSS2 in several groups of patients with chronic
obstructive pulmonary disease (COPD) and idiopathic pulmonary
fibrosis (IPF) [51,56-60]; both expressions significantly correlated
with previous cigarette exposure [56,61,62]; COPD is considered
a major risk factor for COVID-19 [44,63].

However, ACE2 expression was not altered in patients with
asthma or pulmonary sarcoidosis [51,64,65]. On the contrary,
Matusiak and Schürch [66] conducted a study in asthmatic patients
and found loss of ACE2 expression in nasal epithelium and
increased TMPRSS2 expression in bronchi and central airways. Sim-
ilarly, Liu et al. (2020) recorded that plasma ACE2 level of COVID-
19 patients was significantly elevated and correlated linearly with
viral load and lung injury [67]. Another study by Leung et al. (2020)
analyzed ACE2 expression in the small airway epithelia of COPD
patients and indicated that smoking frequency positively corre-
lates with ACE2 gene expression, which was higher in current
smokers compared to never-smokers [68]. Since ACE2 is considered
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an interferon-stimulated gene [69], corticosteroids can be attribu-
ted to one of the possible reasons for the loss of ACE2 expression in
patients with asthma. However, no significant difference was
found in furin expression in both asthmatics and healthy individu-
als [66]. Furthermore, in-vivo studies also showed unaltered ACE2
expression in a mouse model of cystic fibrosis as well as in mice
exposed to several carcinogens (arsenic, ionizing radiation (IR),
and 1,3-butadiene) [51,70-73].

Halwani et al. [56] used public gene expression datasets to com-
pare the expression of ACE2 and TMPRSS2 in blood samples from
children and adults and found no significant difference between
them. There was also no difference in the expression of ACE2 and
TMPRSS2 in COPD and diabetic patients, while there was an
increase in both enzymes’ expression in hypertensive patients
[56]. However, in asthmatic patients, only ACE2 expression was
elevated [56]. Additionally, the expression of ACE2 and TMPRSS2
was lower in children’s airways than smokers and patients with
COPD, suggesting a plausible reason for the difference in the sever-
ity of COVID-19 disease among different groups of patients [56].

A recent study by Cai et al. [74] analyzed transcriptomic data
sets regarding the association between smoking and the expres-
sion of SARS-CoV-2 receptors, ACE2, TMPRSS2, and furin in lung tis-
sues. They found an upregulation of ACE2 expression in smokers
compared to non-smokers with a 25% increase in lung tissue
expression [74]. Another study analyzed ACE2 in both mice and
human lung tissues and found enhanced expression of ACE2 in
smokers than non-smokers [51]. Cigarette smoke exposure
increased ACE2 expression in mice by 80 percent. Similarly, expo-
sure to smoke in human lung epithelial cells showed increased
ACE2 expression by 30–55% relative to non-smokers [51]. Smith
et al. [51] identified ACE2 as an interferon-stimulated gene in the
lung epithelium’s secretory cells. They indicated that SARS-CoV-2
infections could produce positive feedback loops, further inducing
ACE2 levels and allowing viral dissemination. Moreover, Cai et al.
[74] examined the effects of smoking on the pulmonary expression
of ACE2 in single bronchial epithelial cells. They found that
smoking-induced morphological changes in cells of the bronchial
epithelium. ACE2 was also detected in secretory goblet cells in
the airway of cigarette smokers [51,74], whereas in non-smokers
ACE2 was only expressed in alveolar type II cells [74,75], suggest-
ing elevated ACE2 expression in smokers’ lungs as a plausible deri-
vate of smoking-induced secretory cell hyperplasia. Furthermore,
single-cell sequencing data showed that ACE2 levels were signifi-
cantly associated with multiple mucin genes (MUC1, MUC4,
MUC15 and MUC16) and other epithelial barrier associated genes
(ALCAM, [76] CLDN7, [77] and TJP3 [78]) [51]. Also, gene ontology
analysis showed that ACE2-associated transcripts correlate with
genes regulating secretion, glycosylation and respond to toxic sub-
stances [79]. Besides, interferons induced significant ACE2 expres-
sion. Although IFN-a, IFN-b, and IFN-c treatment-induced ACE2
expression in tracheal cells, only IFN-a and IFN-b altered ACE2
expression in small airway cells [51,80,81], suggesting that ACE2
expression can be plausibly induced by either viral infections or
interferon treatment [51]. In comparison to non-smokers, the main
facilitators of ACE2 receptor in smokers are ADAM17 [82], androgen
receptor (AR) gene [83].

Another study looked at the relationship between ACE2 expres-
sion and various smoking methods and reported that smoking but
not vaping increases ACE2 expression [84]. Furthermore, the study
found that smoking nicotine and flavored e-cigarettes led to
increased pro-inflammatory cytokine and inflammasome produc-
tion [84]. Similarly, nicotine upregulates ACE2 expression [85] by
the activation of a7 nicotinic acetylcholine receptor (nAChR) on
bronchial epithelial cells [86,87], suggesting that smokers are at a
higher risk for SARS-CoV-2 infection. Moreover, nitric oxide (NO) is
also present in cigarette smoke and may impair immunity, raising
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the risk of SARS-CoV-2 infection [88]. Although studies have indi-
cated NO as a risk factor for SARS-CoV-2 infection, the role of nico-
tine and NO in COVID-19 is controversial. In contrast, various
studies indicated controversial data regarding the role of cigarette
smoke regulation of ACE2 expression. An in-vitro study analyzed
cigarette smoke’s effect on ACE2 expression using human bronchial
epithelial cells (H292) by an air–liquid interface system [89]. The
study demonstrated that cigarette smoke exposure induced loss
of ACE2mRNA expression and did not find any association between
ACE2 expression and release of IL-6 from H292 cells exposed to
smoke; thus, suggesting that loss of ACE2 in lung cells can be either
under the direct effect of nicotine or, some other constituent in
cigarette smoke [89]. Moreover, this study indicated that ACE2
mRNA levels correlates both in smokers and non-smokers and
cigarette smoking acts selectively on the bronchial epithelium by
inhibiting viral infection and stimulating other genes’ expression
that can activate several transcriptomic pathways [89]. In addition
to mRNA levels, the study analyzed protein expression of ACE2 and
reported inconsistency between mRNA and protein levels of ACE2;
indicating the protein expression profile is plausibly related to the
fact that enhanced mRNA expression can be a consequence of com-
pensatory mechanism for the loss of ACE2 protein expression on
the cellular membrane [89]. The study also suggests a plausible
pharmaceutical role of nicotine in COVID-19 treatment [89]. Few
studies showed that nicotine has anti-inflammatory activity by
reducing inflammation via nAChR a7 subunit on macrophages
[17,49], thus, possibly adding a therapeutic value. Similarly, NO
was shown to display beneficial effects as a pulmonary vasodilator
[90] and reduced the risk of severe COVID-19 disease in smokers
[91].

A previous study demonstrated higher ACE2 activity in male
mouse kidneys and adipose tissues than female mice; however,
the study did not report high ACE2 expression [92]. Similarly,
another study also reported higher renal ACE2 activity in males
compared to females; lower ACE2 activity in female kidneys was
found to be due to the presence of E2 in the ovarian hormone
[93]. However, the study reported no sex differences in ACE2 activ-
ity in the heart and lung [93,94]. Moreover, research has demon-
strated that sex hormones (androgens and estrogens) regulate
the renin-angiotensin system [95-98]; while androgens increase
plasma renin activity [95], estrogens reduce plasma renin activity
[96]. Based on this, Majdic (2020) proposed that sex hormones
can modulate ACE2 expression in the lung. Consequently, this
could be one of the underlying factors for gender disparities in
COVID-19 morbidity and mortality [99]. As published, the
COVID-19 death rate was found to be dependent on sex; in China
[100] and Italy [101], men’s death rate was significantly higher
than in women. ACE2 expression was significantly lower in female
primary isolated human airway smooth muscle cells than males
using western blot analysis [102]. Moreover, the study demon-
strated that exposure to testosterone and estrogen significantly
upregulated and downregulated ACE2 expression, respectively
[102].

Moreover, sex hormonal regulation was found to regulate ACE2
and TMPRSS2, resulting in differential gender susceptibility to
COVID-19. While ACE2 expression increased in females either
due to skewed chromosome X inactivation or by estrogens,
reduced androgen levels in women resulted in low TMPRSS2
expression increasing its protective role against COVID-19 devel-
opment and progression [103]. This indicates that the role of sex
hormones and chromosomes influence the discrepancy in the
severity of COVID-19 infection between sexes, thus signifying the
increased susceptibility to COVID-19 in men [103]. Recently, Chak-
ladar and colleagues [83] found co-upregulation of both the SARS-
CoV-2 receptors, ACE2 and TMPRSS2, in smokers compared with
non-smokers. The study used gene set enrichment analysis (GSEA)
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and found the androgen signaling pathway pertinent to ACE2 and
TMPRSS2 expression [83]. Voinsky and Gurwitz [104] reported ele-
vated TMPRSS2 expression in bronchial samples from smokers
compared with non-smokers. Studies have shown that smoking
enhances the androgen hormone levels [105], which increases
the expression of ACE2 and TMPRSS2 receptors [83,106]. Along with
the stimulation of the androgen signaling pathway, upregulation of
the receptors also correlated with the central regulators’ overex-
pression (HDAC6, CTNNB1, and SMARCA4) of the androgen path-
ways [83]. Increased TPMRSS4 expression in lung epithelial cells
of smokers may be due to prolonged exposure to several com-
pounds in tobacco smoke, including nicotine [107], acetaldehyde
[108], and tar [109], resulting in oxidative stress and bronchial
inflammation [110-112]. On the contrary, Cai et al. [74] did not find
any correlation between smoking and TMPRSS2 expression. Simi-
larly, another study found that smoke-exposure enhanced Cathep-
sin B, but not TMPRSS2 or Cathepsin L expression in the respiratory
tract of mice and humans [51]. Moreover, analogous to lung
epithelium, in smokers, ACE2 and TMPRSS2 expression was
enhanced in the oral epithelium; thus, suggesting a high suscepti-
bility of SARS-CoV-2 in oral epithelial cells [83].

Based on the studies reported, it is controversial whether smok-
ing increases or reduces the risk of contracting COVID-19. A study
in Atlanta performed analysis across six acute care hospitals and
associated outpatient clinics in 220 hospitalized and 311 non-
hospitalized COVID-19 patients and reported smoking was an
independent risk factor for COVID-19 hospitalization [113]. More-
over, meta-analysis reported smokers to be at a higher risk of
developing severe or progressive disease [114]. Unlike smoking,
there is no data to support vaping prevalence in COVID-19
patients; nevertheless, it has been hypothesized that vaping could
prime the lung for SARS-CoV-2 infection and correlate with worst
outcomes, chiefly based on ancillary data on lung inflammatory
processes described in in-vitro and in-vivo studies [115,116]. How-
ever, epidemiological studies failed to report vaping habits in com-
parison to reports of smoking amongst hospitalized COVID-19
patients [117]. While, a study from the University of Stanford,
based on a self-reported internet survey, revealed that use of e-
cigarette increases the risk by five-fold of positive COVID-19 in
comparison to never users [118], on the contrary, cross sectional
self-reported surveys demonstrated lack of association between
diagnosed/suspected COVID-19 among never, current, and ex-
vapers [119,120]. In addition, Farsalinos and colleagues reported
that current smoking status was comparatively lower in COVID-
19 patients; thus, indicating a protective role of smoking against
COVID-19 [17]. Although smoking may not plausibly enhance risk
for developing COVID-19, the biological and inflammatory signal-
ing cascade that occurs during SARS-CoV-2 infection can be poten-
tially devastating for a smoker.
5. Possible therapeutic targets

Drugs including chloroquine and hydroxychloroquine are cur-
rently approved for malaria and autoimmune diseases. Several
countries have widely used them for COVID-19 treatment
[121,122]. However, due to their adverse side-effects, including a
loss of vision, nausea, and cardiovascular complications, neither
chloroquine nor hydroxychloroquine have been recommended in
the clinical setting to treat COVID-19. It is shown that chloroquine
and hydroxychloroquine exert their effect by accumulating in lym-
phocytes and macrophages, thus inhibiting pro-inflammatory
cytokines secretion and activating anti-SARS-CoV-2 CD8+ T-cells
[123]. Several other immunomodulators and anti-inflammatory
drugs are also being tested in clinical trials [124].
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On the other hand, novel therapeutic interventions are urgently
needed to stop or slow down the virus’s replication and spread.
Many therapeutic options are currently being investigated apart
from vaccine development, including drugs with distinct antiviral
and immune-inflammatory properties [39,125]. The efforts are
directed to mask the COVID-19 functional receptors on human
cells, ACE2 and TMPRSS2 [39,125]. Several therapeutic strategies
for COVID-19 have been recommended, including pre-existing
medicines (chloroquine, hydroxychloroquine, remdesivir and lopi-
navir) for viral treatment, protein modeling, and genetic analysis
using several computing techniques [126-130]. Camostat, the ser-
ine protease inhibitor, blocks both TMPRSS2 and TMPRSS4 and
reduces influenza virus replication and cytokine production in pri-
mary cultures of human tracheal epithelial cells [131]. Therefore,
camostat was proposed as a potential COVID-19 therapeutic agent
[132].

Reducing or quitting smoking can slow down the damage of the
respiratory epithelial architecture [133], reduce secretory cell
hyperplasia [134], and decrease ACE2 secretion by 40% [51]. Sol-
uble ACE2 is considered a plausible treatment option in cases
where ACE2 is over-expressed in the airway’s epithelium in smok-
ers [135]. Monteil et al. [136] showed that human recombinant
soluble ACE-2 (hrsACE2) reduced SARS-CoV-2 viral loads in
infected Vero-E6 cells, kidneys, and vascular organoids. In Europe,
hrsACE2 is under Phase 2 clinical trial (ClinicalTrials.-
gov NCTO4335136) as a therapeutic agent for COVID-19 [137].
However, the efficacy of such therapy in smokers and COPD
patients who have elevated levels of ACE2 needs to be determined.
Moreover, use of therapeutics and dietary supplements to normal-
ize NO levels in smokers should be considered to minimize the
incidence of COVID-19 disease and its complications [88].

Investigations using in-vitro models and anti-retroviral drugs
(lopinavir and ritonavir) are effective against human immunodefi-
ciency virus 1 (HIV-1) infection, SARS-CoV, MERS-CoV, and SARS-
CoV-2 viruses [138,139]. However, research has shown that nei-
ther lopinavir nor ritonavir improves symptoms compared to stan-
dard care in severe COVID-19 patients [140,141]. However, a
combination of lopinavir-ritonavir with oseltamivir showed com-
plete recovery after COVID-19 pneumonia [142,143]. On the other
hand, remdesivir has been shown to effectively inhibit SARS-CoV-2
in in-vitro studies using Vero E6 cells [126,144].

6. Summary and outlook

Although smoking can enhance the expression of key entry
genes of SARS-CoV-2 used for viral activation, the underlying
mechanisms of tobacco-related upregulation of these receptors
and the degree to which smoking affects infection susceptibility
and clinical manifestations remain unknown. Future mechanistic
studies are warranted to address these issues.
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