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Review

Streptococcal Sepsis, Septic Shock, 
and Toxic Shock Syndrome

Sepsis is a progressively injurious systemic immunopathol-
ogy that is triggered in response to a range of bacterial and 
fungal pathogens. The features of sepsis and septic shock were 
first described by Jacobs and Bone and have since been refined 
several times, along with the published guidelines for manage-
ment of the condition.1-4 The initial features of sepsis are mild 
and largely non-specific however, severe sepsis is characterized 
by impaired organ function and may be associated with coagu-
lation defects such as disseminated intravascular coagulation.1,2 
The onset of septic shock is associated with a profound drop 
in arterial blood pressure that is refractory to adequate volume 
resuscitation, and precedes eventual multisystem failure and 
death.1,2

Streptococcal toxic shock syndrome (STSS) is defined by a 
number of criteria that largely mirror those defining septic shock, 
coupled with evidence of an invasive GAS infection (Table 1).3,5 
While staphylococcal toxic shock syndrome presents as a discrete 
entity in association with otherwise mild or even occult infec-
tions (e.g., menstrual-related TSS in tampon users), STSS is 
commonly associated with systemic GAS bacteremia or patho-
logical soft tissue necrosis. The defining criteria of STSS include 
some specific features that are not associated with toxic shock 
per se, but instead indicate the presence of the underlying GAS 
pathology (Table 1). As there is considerable overlap between the 
criteria for septic shock and STSS, and it is common for patients 
to satisfy the conditions for both, herein the term STSS is used 
interchangeably with streptococcal septic shock.

The Epidemiology of Invasive GAS Disease and STSS

STSS reportedly complicates approximately 10–16% of inva-
sive GAS infections; however, the true incidence of toxic shock 
may well be higher as ICU admission is recorded in around 20% 
of invasive GAS cases.6 STSS is associated with a case fatality 
rate of 35–45% which is almost twice as high as that reported 
for invasive GAS cases lacking a shock manifestation.6,7 There 
is no correlation between STSS and any specific invasive pathol-
ogy, and the condition is frequently encountered in association 
with bacteremia, necrotizing fasciitis, pneumonia, and puerperal 
sepsis.8

GAS strains are routinely divided into serotypes based upon 
the variable antigenic properties of the major surface M protein. 
While STSS can be caused by a large number of different GAS 
M serotypes, the condition is particularly associated with M1 and 
M3 strains, which together account for approximately 50% of 
STSS cases in Europe, and over 30% of all invasive disease cases 
in the United States.6,7 The recent resurgence of serious strep-
tococcal disease has coincided with the emergence of a highly 
virulent clone of serotype M1T1 GAS which is frequently recov-
ered from invasive infections and STSS cases (discussed in detail 
below).9,10 M1T1 clones can be distinguished from related sero-
type M1 isolates by the presence of the phage-encoded virulence 

*Correspondence to: Shiranee Sriskandan; 
Email: s.sriskandan@imperial.ac.uk
Submitted: 07/25/2013; Revised: 09/06/2013; Accepted: 09/06/2013
http://dx.doi.org/10.4161/viru.26400

The contribution of group A streptococcal 
virulence determinants to the pathogenesis  

of sepsis
Mark Reglinski and Shiranee Sriskandan*

Department of Infectious Disease and Immunity; Imperial College London; London, UK

Keywords: group A streptococcus, sepsis, toxic shock syndrome, superantigen, STSS

Abbreviations: GAS, group A streptococcus; TSST-1, toxic shock syndrome toxin 1; STSS, streptococcal toxic shock syndrome; 
TLR, toll like receptor; SAg, superantigen; ABD, antigen binding domain; TCR, T-cell receptor; DIC, disseminated intravascular 

coagulation; TF, tissue factor

Streptococcus pyogenes (group A streptococcus, GAS) is 
responsible for a wide range of pathologies ranging from mild 
pharyngitis and impetigo to severe invasive soft tissue infec-
tions. Despite the continuing susceptibility of the bacterium 
to β-lactam antibiotics there has been an unexplained resur-
gence in the prevalence of invasive GAS infection over the 
past 30 years. Of particular importance was the emergence 
of a GAS-associated sepsis syndrome that is analogous to the 
systemic toxicosis associated with TSST-1 producing strains 
of Staphylococcus aureus. Despite being recognized for over 
20 years, the etiology of GAS associated sepsis and the strepto-
coccal toxic shock syndrome remains poorly understood. Here 
we review the virulence factors that contribute to the etiology 
of GAS associated sepsis with a particular focus on coagulation 
system interactions and the role of the superantigens in the 
development of streptococcal toxic shock syndrome.
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factors speA (encoding a superantigen) and sdaI (encoding a 
DNase) within the accessory genome.11 Furthermore, M1T1 iso-
lates are associated with heightened production of the cytolytic 
toxins streptolysin O and NAD+ glycohydrolase, which have 
been shown to contribute to the epithelial inflammation during 
streptococcal sepsis (discussed below).12 The enhanced virulence 
that is associated with these genetic alterations, coupled with the 
ability of M1T1 to switch from a superficial to an invasive dis-
ease phenotype in vivo has facilitated global dissemination of this 
clone over the past 30 years.9,10

While the presence of a single superantigen gene (or supe-
rantigen gene repertoire) cannot be uniquely associated with the 
development of STSS, the phage encoded speA and speC genes 
have received particular attention with regard to invasive infec-
tion.8,13,14 A high rate of speA and/or speC gene carriage has fre-
quently been reported among STSS-associated isolates compared 
with those recovered from superficial infections however, the 
relevance of this association (if any) is yet to be elucidated.8,13,15

The Control of Virulence (Cov) System 
and Invasive GAS Infection

The CovR/S system (also known as CsrR/S) is a two com-
ponent transcriptional regulator that modulates expression of 
10–15% of the GAS transcriptome.16-18 Mutation of the CovR/S 
system results in transcriptional upregulation of an aggressive 
repertoire of virulence associated genes, and thus triggers a phe-
notypic switch from a superficial to an invasive disease pheno-
type.12,19-21 Indeed such mutations have been shown to account 
for the prolific phenotypic switching of M1T1 GAS in vivo. 
Of particular relevance is the reported upregulation of the speA 
and speJ genes which contribute to the inflammatory pathogen-
esis of STSS through non-specific T-cell activation (discussed 
in detail below).11 CovR/S mutation also results in derepres-
sion of a multitude of virulence factors that facilitate resistance 
to opsonophagocytosis, including the hyaluronic acid capsule, 

streptococcal inhibitor of complement (Sic) and the chemokine 
protease SpyCEP.10 Such mutations may help to perpetuate the 
symptoms of streptococcal sepsis by facilitating persistence of 
GAS at the nidus of infection.

Interestingly, the cysteine protease SpeB undergoes reciprocal 
regulation by CovR/S, yet is also implicated in the pathogenesis 
of necrotizing fasciitis and STSS.22 SpeB can augment inflamma-
tion through activation of the kallikrein-kinin system (discussed 
in detail below) and by cleaving interleukin 1β precursor to form 
biologically active IL-1β.23,24 While SpeB is therefore predicted 
to enhance the classical symptoms of shock, the precise role of 
the molecule during STSS remains unclear. Recently Ikebe et al. 
have reported that the frequency of CovR/S mutation is higher 
among strains recovered from STSS patients than those isolated 
from superficial infections although the significance of this find-
ing remains the subject of some debate.25,26

GAS Interactions with the Coagulation 
System during Severe Sepsis

The pathophysiology of sepsis-associated coagulopathy
Blood coagulation (thrombogenesis) is an essential process 

that maintains the integrity of the circulatory system and provides 
innate protection against systemic infection through the isolation 
of invading pathogens.27,28 Thrombogenesis is initiated follow-
ing vascular injury and involves a stepwise series of proteolytic 
reactions that culminate in the formation of a fibrinous clot.29 
Vascular injury also facilitates adhesion and activation of circu-
lating platelets which subsequently become incorporated into the 
growing clot.29 Streptococcal sepsis is often associated with aber-
rant thrombogenesis resulting in the consumption of clotting 
factors and the formation of circulating microthrombi.28,30 The 
pathological effect of this disseminated intravascular coagula-
tion (DIC) is 2-fold. The formation of circulating microthrombi 
has been shown to result in venous thrombosis and infarction of 
the subcutaneous tissues in a murine model, while trafficking 

Table 1. The diagnostic criteria for septic shock and streptococcal toxic shock syndrome

Septic shock Streptococcal toxic shock syndrome

Presumed or confirmed infection Isolation of GAS from normally sterile site

Plus at least ONE of the following Plus at least TWO of the following

	 Renal dysfunction 	 Renal dysfunction

	 Respiratory distress 	 Respiratory distress

	 Hepatic dysfunction 	 Hepatic dysfunction

	 Hematological abnormalities 	 Coagulopathy

	 Altered mental status 	E rythroderma ± desquamation

	 Unexplained metabolic acidosis 	 Soft tissue necrosis

	 Tachycardia 		  Pain

		  Tissue destruction

		  Skin discoloration

AND AND

Hypotension that is refractory to adequate volume resuscitation Hypotension that is refractory to adequate volume resuscitation
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of microthrombi to the organs is thought to contribute to the 
pathogenesis of organ dysfunction.31-33 In addition, the depletion 
of platelets that results from microthrombus formation has been 
shown to impair normal clot formation resulting in severe sec-
ondary bleeding when vascular injury occurs.28,32

M1 protein interactions with fibrinogen
GAS has been shown to facilitate platelet aggregation through 

a series of stepwise, immune mediated reactions (Fig.  1). The 
initial interaction may be facilitated by a fibrinogen intermedi-
ate which simultaneously binds to the GAS M1 protein and the 
α

IIb
β

3
 integrins present on the surface of platelets.34 Alternatively 

GAS may colocalize with circulating platelets at sites of vascular 
damage where the components of the subendothelial matrix have 
become exposed. Subendothelial collagen in particular provides 
a platform for the multimerization of circulating von Willebrand 
factor, which has been shown to facilitate platelet immobiliza-
tion upon the vascular endothelium under sheer force condi-
tions.35,36 Regardless of how the initial interaction occurs, the 
adherent platelets are subsequently activated by the anti-GAS 
IgG response which engages with platelet Fc receptors (FcγRII) 
and initiates clot formation.34 Soluble M1 protein that has been 
released from the bacterial cell surface is similarly capable of 
activating and aggregating platelets in the presence of anti-M1 
IgG.37 M1 activated platelets may also interact with neutrophils 
and monocytes resulting in the activation of both cell types and 
the generation of more tissue factor.37

In addition to platelet activation, binding of fibrinogen to 
soluble M1 has been shown to result in the formation of large 
aggregates (M1/Fg complexes) that are capable of activating neu-
trophil β2 integrins.38,39 β2 integrin activation triggers a release 
of heparin binding protein, a soluble inflammatory mediator that 
has been shown to induce localized vascular leakage. The crystal 
structure of these M1/Fg complexes has been resolved and the 
irregular coiled coil structure of the M1 protein has been shown 
to cross link four fibrinogen molecules leading to the construc-
tion of a supramolecular network.38 Intravenous administration 
of M1 protein into mice induces colocalization of activated neu-
trophils and protein aggregates within the tissues of the lung, 
resulting in localized inflammation and pulmonary vascular 
leakage.39 M1/Fg complexes have been detected in necrotic tissue 
biopsies recovered from STSS patients supporting a role for these 
complexes in the induction of vascular leakage during human 
infection.39

GAS and the extrinsic pathway of coagulation
One of the most important early initiators of the coagulation 

cascade is tissue factor (TF). TF is produced by the subendothe-
lial tissues and monocytes, and forms an active complex with the 
serine protease FVIIa on contact with the blood.29 The TF-driven 
(or extrinsic) coagulation pathway is known to be activated dur-
ing sepsis, and several studies have reported increased plasma 
TF levels in patients manifesting trauma-associated SIRS and 
severe sepsis.40-43 While TF upregulation in GAS sepsis patients 
has never explicitly been examined, serotype M1 and M3 (but 
not serotype M6) GAS have been shown to elicit TF synthesis 
from freshly isolated human monocytes.44 A similar effect was 
achieved using purified soluble M protein indicating that this 

virulence factor may be partly responsible for GAS-mediated 
DIC.30 This hypothesis is supported by recent data demonstrat-
ing that purified soluble M protein stimulates the release of 
TF-rich microparticles from activated monocytes, and that these 
microparticles can be identified in the blood of septic patients.30,45 
TF/factor VII complexes have also been shown to stimulate pro-
duction of the proinflammatory cytokines IL-1β and TNF-α 
from macrophages and neutrophils via protease-activated recep-
tor 1 activation.46

GAS and the intrinsic pathway of coagulation
In addition to the extrinsic arm of the coagulation cascade, 

GAS may also trigger coagulation via the intrinsic pathway 
through a specific interaction with the contact (or kallikrein–
kinin) system. The contact pathway helps to stabilize the formed 
clot through activation of factor XII, and stimulates the genera-
tion of small proinflammatory peptides known as kinins from 
high molecular weight kininogen.28 Activation of the contact 
system at the GAS cell surface triggers the release of bradyki-
nin, a potent vasodilator that induces vascular leakage, localized 
edema, hypotension, and pain.47 Bradykinin release results from 
the proteolytic processing of the soluble zymogen H-kininogen, 

Figure 1. GAS-mediated platelet aggregation and activation. The initial 
cross linking interaction occurs via simultaneous binding of circulating 
fibrinogen (gray) by the M protein (purple) and the platelet αIIbβ3 integrin 
(red) (A). Platelet activation occurs when the Fc receptor (blue) comes 
into contact with surface associated IgG (B).
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which can bind to the GAS cell surface via the M protein. 
Subsequent recruitment of plasma kallikrein results in a massive 
release of active bradykinin and thus promotes localized inflam-
mation and vasodilation.48,49 The secreted GAS cysteine protease 
SpeB has also been shown to promote cleavage of H-kininogen, 
suggesting a role for this protease during in vivo kinin activa-
tion and inflammation.23 Systemic cleavage of H-kininogen 
has been demonstrated in vivo using a murine model of strep-
tococcal sepsis and ex vivo using inflamed tissue from invasive 
disease cases.50,51 Patients with severe GAS infections and STSS 
often demonstrate evidence of isolated activation of the intrinsic 

pathway of coagulation, as a surrogate 
of contact system activation.52 Taken 
together, these studies suggest that 
activation of the contact pathway at 
the GAS cell surface may be respon-
sible for much of the abnormal vascu-
lar physiology observed during STSS.

Superantigen-Mediated 
Modulation of the Host 

Immune Response

The superantigens
The superantigens (SAgs) are 

a family of toxins that are capable 
of activating a large set of human 
T cells, resulting in a massive produc-
tion of proinflammatory cytokines. 
Conventional antigens are processed 
into short fragments by antigen pre-
senting cells prior to translocation to 
the antigen binding domain (ABD, 
also known as the epitope groove) 
of the MHC class II molecule.53 The 
amino acids that line the ABD are 
highly polymorphic and as a result 
each MHC class II isoform is only 
capable of presenting a finite num-
ber of antigens, and activating a 
very small subset circulating T cells 
(Fig. 2).

In contrast, SAgs are capable of 
non-specifically cross linking loaded 
MHC class II molecules with the vari-
able N-terminal domain of the T-cell 
receptor (TCR) β chain (denoted the 
Vβ region) without prior processing 
(Fig. 2).54,55 Subsequent ligation with 
the dimer interface of CD28 results 
in a massive release of proinflamma-
tory cytokines (most notably IL-2, 
IFN-γ, and TNF-α) which in turn 
potentiates the acute shock and sys-
temic vascular leakage that is associ-
ated with STSS.54,56-59

The majority of GAS SAgs are also capable of binding to 
MHC class II receptors via high affinity zinc binding (Table 2). 
Zinc binding is facilitated by the formation of a tetravalent metal 
complex that incorporates a conserved zinc atom located within 
the MHC class II β-domain.59,60 Subsequent interactions with 
the N-terminus of the bound peptide antigen facilitates promis-
cuous MHC II engagement. Zinc-dependent binding thus facili-
tates deposition of SAg molecules upon the antigen presenting 
cell surface, leading to further T-cell activation.59,61

In addition to these monovalent binding strategies, SpeA 
and SpeC are capable of forming monomeric dimers that are 

Figure 2. The different modes of SAg binding to MHC class II molecules (red) and the T-cell receptor 
(yellow). The mitogenicity of a conventional antigen (blue) is limited by its ability to cross link the hyper-
variable ABD with the TCR (A). SAgs are capable of activating many more T cells by binding to a specific 
repertoire of Vβ subsets. SAg presentation is facilitated by non-specific binding of the MHC α chain (e.g., 
SpeA in green) or β chain (e.g., SpeC in purple) (B) or by zinc-dependent β chain binding and engage-
ment of the bound peptide antigen (C). Zinc-dependent β chain binding may also occur following dimer-
ization of SpeC (D); however, the significance of this with regards T-cell activation is yet to be elucidated.
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potentially capable of interacting with two MHC II molecules 
(and/or TCRs) simultaneously.62,63 While the physiological rel-
evance of this dimerization remains the subject of some debate, 
the current evidence suggests that it is not essential for the mito-
genic activity of either SAg.62-65

Each SAg is specific for a distinct repertoire of Vβ gene prod-
ucts, 20–30 of which exist within the human genome (Table 2) 
and as such a single SAg is capable of activating up to 20% of all 
circulating naive T cells.53,66 Cytokine production in response to 
secreted SAg is extremely rapid, as evidenced by animal models 
where gene transcription and systemic cytokine release can be 
detected within one hour of toxin exposure.67,68 While the ben-
efits of SAg production remain incompletely understood, the 
ubiquitous presence of SAg genes within the GAS metagenome 
suggests that SAg-mediated T-cell activation imposes a signifi-
cant selective advantage upon toxigenic GAS isolates.8,55,69

Superantigen-mediated TLR upregulation
Further to direct TCR binding, streptococcal SAgs may 

augment cytokine release via a number of additional pathways. 
It has been reported that SAg exposure can enhance the TLR 
response to gram-negative lipopolysaccharide, thus enhancing 
TNF cytokine responses during natural coinfection.70 This effect 
is particularly marked where there is hypoperfusion of the gastro-
intestinal tract that affects mucosal integrity. While such synergy 
has been hard to demonstrate in vivo, the effect has been repli-
cated in vitro using primary human monocytes. In vitro priming 
of monocytes with physiological concentrations of streptococcal 
SAgs increases membrane expression of TLR4 via MHC class 
II ligation, and thus enhances the response to endotoxin and 
other TLR4 ligands.71 MHC class II recognition of streptococcal 
SAgs may therefore contributes to the pathophysiology of sepsis 
through upregulation of the proinflammatory cytokines TNF-α, 
IL-1β, and IL-6.71

In vitro SAg exposure also upregulates monocyte TLR2 
expression, enhancing the potential for further synergistic 

interactions.72 TLR2 signaling in response to peptidoglycan and 
lipoteichoic acid results in activation of the transcription fac-
tors NFκB and AP1, stimulating the release of proinflammatory 
cytokines and a downstream induction of the adaptive immune 
response.73,74 TLR2 transcription and expression has been shown 
to be upregulated in neutrophils and monocytes from streptococ-
cal and non-streptococcal sepsis patients compared with healthy 
controls.72,75,76  This suggests that TLR signaling may drive the 
immunopathological symptoms of sepsis prior to activation of 
the adaptive immune response.

Superantigen-mediated epithelial inflammation
The ability of SAgs to interact with epithelial cells has been 

demonstrated using a variety of cell lines however, most studies 
focus mainly on the staphylococcal superantigens.77-79 Stimulation 
of vaginal epithelial cells with SpeA reportedly triggers produc-
tion of the proinflammatory cytokines IL-6, IL-8, and MIP-3α 
in vitro; however, the specific receptor binding interactions that 
elicit this effect remain uncharacterized.77 A concomitant pro-
duction of streptolysin O, a hemolytic exotoxin that promotes 
cytolysis through the formation of transmembrane pores, is 
thought to enhance mucosal inflammation through localized tis-
sue destruction and the exposure of further epithelial cells.77 This 
“outside-in” signaling may result in SAg mediated T-cell activa-
tion at the submucosa and could therefore facilitate early activa-
tion of proinflammatory cytokine cascade during streptococcal 
septic shock.

Experimental Studies of the Effect 
of the GAS Superantigens

Laboratory studies
In 1989, Lee and Schlievert reported that the administration 

of purified SpeA stimulated an STSS-like pathology in a rabbit 
model, providing early evidence that this family of toxins could 
elicit features of profound inflammation and shock.80 However, 

Table 2. The Vβ specificities and binding preferences of the GAS SAgs

SAg MHC II chain bound Zinc binding Vβ specificity

SpeA α Y 2.1, 12.2, 14.1, 15.1

SpeC β Y 2.1, 3.2, 12.5, 15.1

SpeG* β Y 2.1, 4.1, 6.9, 9.1, 12.3

SpeH β Y 2.1, 7.3, 9.1, 23.1

SpeI β Y 6.9, 9.1, 18.1, 22

SpeJ* β Y 2.1

SpeK/L β Y 1.1, 5.1, 23.1

SpeL/M β Y 1.1, 5.1, 23.1

SpeM ? Y 1.1, 5.1, 23.1

SSA α N 1.1, 3, 15

SMEZ-1* β Y 2.1, 4.1, 7.3, 8.1

SMEZ-2* β Y 4.1, 8.1

*SMEZ and SpeG are chromosomally encoded and encoded ubiquitously within the GAS metagenome. SpeJ is also chromosomally encoded; however, 
speJ negative clones of GAS are extremely common. While SpeB and SpeF were initially identified as SAgs, they have since been reclassified as a cysteine 
protease and a DNase (DNaseB) respectively. Table adapted from reference 59.
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this study was conducted prior to the identification of several 
additional GAS SAgs, one of which (SMEZ) is a highly potent 
activator of rabbit Vβ T cells, and is a recognized contaminant 
of crudely purified SpeA preparations.81,82 Indeed  targeted muta-
genesis of the speA gene has little impact on the overall mito-
genic activity of toxigenic GAS in vitro despite the presence of 
high SpeA concentrations (>500 ng/ml) within the tested culture 
supernatants.83 It should be noted that SAg production in vitro 
is markedly reduced compared with in vivo synthesis, and that 
this effect is particularly apparent when phage encoded SAgs 
are considered (potentially as a result of in vivo phage induc-
tion).84-86 Nevertheless, the targeted mutagenesis data suggests 
that a large amount of functional redundancy exists among the 
GAS SAgs, and that the differential Vβ specificities allow the 
repertoire of each isolate to act in concert to stimulate a potent 
T-cell mitogenesis.

The interpretation of experiments using bolus SAg adminis-
tration is complicated by the rapid clearance of injected SAg tox-
ins and the natural resistance of mice to bacterial SAgs. Rabbits, 
pigs, and non-human primates demonstrate greater SAg respon-
siveness than mice and are more amenable to SAg infusion; 
however, reagents to study such models are limited and present 
obvious ethical and cost implications. To circumvent these issues, 
humanized transgenic mouse models of streptococcal sepsis that 
express human MHC class II molecules have been used to dem-
onstrate the impact of SAgs produced during GAS soft tissue 
infection.85,87 Using a high SpeA-producing scarlet fever isolate 
and an isogenic speA knockout mutant, it was possible to show 
that Vβ-specific T-cell expansion did indeed occur in response 
to SAg exposure, and that T-cell activation takes place in a num-
ber of tissues during invasive infection.83 Using a similar pair of 
isogenic GAS clones that differed in ability to produce SMEZ, a 
specific release of cytokines was attributed to SAg synthesis dur-
ing sepsis, consistent with the widely held view that SAgs can 
and do trigger a cytokine storm.88 Importantly this also indicates 
that STSS can occur in the absence of phage-encoded SAgs sug-
gesting that carriage of one or more chromosomal SAg genes is 
sufficient to stimulate cytokine release.69,89

SMEZ elicits detectable T-cell proliferation at sub-picomolar 
concentrations and exhibits a high degree of antigenic variation 
that does not affect the potency or Vβ specificity of the mol-
ecule.90 This pattern of antigenic variation suggests that SMEZ 
is uniquely important for survival of GAS during invasive patho-
genesis, and that the need to escape antibody neutralization has 
driven the progressive variation within the smez locus, without 
affecting the mitogenicity of the molecule. Despite these observa-
tions, a highly conserved naturally occurring smez mutation has 
been shown to abrogate production of SMEZ by M3 GAS iso-
lates, including those recovered from active STSS cases.91 Taken 
together these data suggest that a combination of GAS virulence 
factors that include, but are not limited to, the SAgs are required 
to stimulate the signs of STSS.

Clinical studies
Despite the advances made through the study of SAgs under 

experimental conditions, definitive clinical evidence of SAg 
induced T-cell proliferation is lacking. Most clinicians report 

that lymphocyte levels are too low to conduct such studies at the 
time of presentation; however, a few case studies reporting T-cell 
repertoire changes during STSS have been published.92,93 In addi-
tion several studies describe a sequential release of cytokines dur-
ing STSS and invasive soft tissue infection that is consistent with 
SAg mediated T-cell activation.94,95 SAg production and immune 
recognition is also evidenced by a handful of studies that success-
fully detected circulating SAg and anti-SAg antibodies within 
the blood of STSS patients by bioassay and ELISA.94,96

Several clinical studies have suggested that the SAgs may 
suppress phagocyte recruitment during active disease and there-
fore promote survival of bacteria at the nidus of infection.97-99 
However, the observed reduction in neutrophil recruitment 
during severe GAS infection most likely results from chemo-
kine cleavage by SpyCEP and C5a peptidase.100,101 Furthermore, 
conflicting data recovered from experimental analysis has sug-
gested that the SAgs may enhance inflammation and subsequent 
phagocyte recruitment when produced in isolation. These con-
comitant effects are thought to result from the rapid induction 
of endothelium-activating cytokines such as TNF, and CXC 
chemokines.83,102-104 Given that SAgs undergo a specific interac-
tion with the components of the adaptive immune response, col-
lateral interference with T-follicular helper cell function may be 
expected. Consequent interference with memory B cell activation 
may impact on clearance of GAS at the nidus of infection if the 
generation of de novo anti-GAS antibody is impaired.57,96,105 The 
current data therefore suggests that SAg production is strongly 
immunostimulatory, but with an as yet unclear impact on anti-
GAS immunity and bacterial clearance.

Inherited and Acquired Host Susceptibilities 
to Streptococcal Toxic Shock Syndrome

The lack of association between a specific SAg profile and 
the provocation of STSS, coupled with the observation that 
highly toxigenic GAS clones can be isolated from a spectrum 
of disease manifestation suggests that the immunogenetics 
of the host may be partly responsible for the outcome of toxi-
genic GAS infection.106-108 The human MHC genes are highly 
polymorphic and three pairs of linked α and β chains (denoted 
HLA-DP, HLA-DQ, and HLA-DR) may give rise to four iso-
forms of MHC class II molecule. With the exception of the 
monomeric DRα locus, a multitude of different alleles has been 
described for each locus.53 Structural characterization of several 
SAg-MHC complexes has established that the structure of the 
SAg binding domain is highly variable between different MHC 
class II isoforms.109-111 Polymorphism within the DQα

1
 locus 

has a direct effect on SpeA binding, and alleles that facilitate 
a higher affinity interaction have been shown to trigger a more 
prolific T-cell response in vitro.108 MHC class II polymorphism 
has also been shown to influence the outcome of SAg mediated 
disease in vivo. Certain “protective” haplotypes have been shown 
to confer strong protection against STSS through the elicita-
tion of a polarized, anti-inflammatory cytokine response.107,112 
Interestingly, SAg cytokine responses in experimental rodents 
are doubled in females compared with males, underlining the 
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Concluding Remarks

The resurgence of invasive GAS infection over the past 
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remains unanswered.
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