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Assessing brain and biological
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The development of effective treatments to prevent and slow Alzheimer’s

disease (AD) pathogenesis is needed in order to tackle the steady increase

in the global prevalence of AD. This challenge is complicated by the need to

identify key health shifts that precede the onset of AD and cognitive decline

as these represent windows of opportunity for intervening and preventing

disease. Such shifts may be captured through the measurement of biomarkers

that reflect the health of the individual, in particular those that reflect brain

age and biological age. Brain age biomarkers provide a composite view of the

health of the brain based on neuroanatomical analyses, while biological age

biomarkers, which encompass the epigenetic clock, provide a measurement

of the overall health state of an individual based on DNA methylation analysis.

Acceleration of brain and biological ages is associated with changes in

cognitive function, as well as neuropathological markers of AD. In this mini-

review, we discuss brain age and biological age research in the context

of cognitive decline and AD. While more research is needed, studies show

that brain and biological aging trajectories are variable across individuals and

that such trajectories are non-linear at older ages. Longitudinal monitoring

of these biomarkers may be valuable for enabling earlier identification of

divergent pathological trajectories toward AD and providing insight into points

for intervention.

KEYWORDS

brain age, biological age, epigenetic clock, Alzheimer’s disease, epigenetic age, brain
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Introduction

As of 2022, an estimated 5 million Americans are living with mild cognitive
impairment (MCI) and 6.5 million Americans are living with Alzheimer’s Disease
[AD] (2022), and this number is predicted to reach 13.8 million by 2060 National
Institute on Aging (2022). Identifying strategies for disease prevention, earlier
diagnosis, and improved treatment are urgently needed. Notably, changes in the brain,
including amyloid deposition, tau phosphorylation, and neuroimaging alterations,
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which ultimately result in AD, initiate two decades or more
before onset of symptoms Alzheimer’s Disease [AD] (2022).
Such early changes highlight valuable opportunities to monitor
brain and overall health shifts that may precede symptom, or
disease, onset, and which may be considered in combination
with well-established risk factors, such as age (Hebert et al.,
2010), APOEε4 carrier status (Saunders et al., 1993; Farrer et al.,
1997), and family history (Fratiglioni et al., 1993; Green et al.,
2002). While effective treatments still need to be developed,
assessing aging trajectories will enable the implementation
of interventions that may help slow disease pathogenesis. In
this mini-review, we discuss biomarkers of brain aging and
biological aging in the context of cognitive decline and AD.

Measuring brain age using
neuroanatomical changes

One widely adopted neuroimaging approach to assessing
brain health is determination of the brain age gap, or predicted
age difference between chronologic and brain age, as a
biomarker of brain aging and health. The two most widely used
methods include the brainAGE (Brain Age Gap Estimation)
method (Franke and Gaser, 2019) and that of Cole et al. (2015).
These methods primarily employ structural MRI (magnetic
resonance imaging) and machine-learning algorithms (Beck
et al., 2022), to evaluate neuroanatomical changes in order
to estimate an individual’s brain age and its divergence from
chronological age (Cole et al., 2015; Franke and Gaser, 2019).
A positive brain age gap thus reflects increased brain aging (e.g.,
higher brain age as compared to chronological age), whereas a
negative value reflects slower aging, and in longitudinal analyses,
positive values indicate accelerated brain aging, while negative
values indicate decelerated aging (Franke and Gaser, 2019).
Aging-related structural brain changes that may influence brain
age include atrophy (Fjell et al., 2014; Storsve et al., 2014;
Grajauskas et al., 2019), loss of white and gray matter (Coupé
et al., 2017), and perturbations to functional connectivity
(Bennett and Madden, 2014; Damoiseaux, 2017) with increased
gray matter atrophy and accelerated changes characterizing
progressive MCI and AD (Desikan et al., 2008; Driscoll et al.,
2009; Sluimer et al., 2009; Anderson et al., 2012).

Brain age in the context of
cognitive functions and
Alzheimer’s disease

The brain age gap biomarker has demonstrated utility
in differentiating and predicting changes associated with AD
(Table 1). Elevated brain age is associated with decreased
cognitive functions in healthy subjects (Richard et al., 2018;

Boyle et al., 2021; Elliott et al., 2021; Subramaniapillai et al.,
2021), MCI subjects (Franke et al., 2012; Kaufmann et al., 2019;
Huang et al., 2021), dementia (Kaufmann et al., 2019), and
mortality in elderly subjects (Cole et al., 2018). In a study of
early AD, brainAGE scores were an average of 10 years higher
(P < 0.001) in AD subjects (Franke et al., 2012), and across
multiple studies, AD subjects showed accelerated brain aging
of 5.36–10 years (Franke et al., 2010, Franke et al., 2012; Löwe
et al., 2016; Wrigglesworth et al., 2021). In an analysis of MCI
and AD subjects with 3 year follow-up, brainAGE showed
increasing mean values across: controls (−0.30 years), subjects
with stable MCI (−0.48 years), subjects with progressive MCI
(6.19 years), and those with AD (6.67 years) (Franke et al.,
2012). Acceleration of brain age was observed with progressive
MCI subjects demonstrating a 1.05 year increase in brainAGE
with each chronological year and AD subjects demonstrating
a 1.51 year increase (Franke et al., 2012). BrainAGE values
did not change for control and stable MCI subjects during
follow-up and brainAGE correlated with clinical severity and
cognitive testing at an individual level. Increased brain age gaps
in amnestic MCI subjects have also been found and APOEε4
carriers demonstrate higher ages compared to non-carriers
(Huang et al., 2021). Further, the combination of brain age
gaps with other AD markers, including APOEε4 carrier status,
amyloid status, and MMSE (Mini-Mental State Examination),
differentiated progressive from stable MCI (Huang et al., 2021).
In separate analyses, APOEε4 carrier status was associated with
increased brain age acceleration in progressive MCI or AD
subjects, and not in controls or subjects with stable MCI.

Brain age has also been shown to predict conversion of MCI
to AD. Elevated baseline brain age values were associated with
an increased risk of conversion from MCI to AD, with more
accurate predictions in APOEε4 carriers (Löwe et al., 2016). In
a study of 195 MCI subjects, of whom 133 were diagnosed with
AD during follow-up, baseline brain age values demonstrated
81% accuracy in predicting conversion to AD during the
first year of follow-up. This method was more accurate than
predictions made based on chronological age, hippocampal
volume, cognitive scores (MMSE), and CSF (cerebrospinal
fluid) biomarkers (total tau, phospho-tau, Abeta42, and ratio of
Abeta42/phospho-tau) (Gaser et al., 2013). The study also found
that each additional brain age year was associated with a 10%
elevated risk of developing AD (Gaser et al., 2013).

Investigations into correlations between brain age and
neuropsychological and cognitive assessments have yielded
varied results. Significant correlations have been reported
between brain age and instruments including MMSE, CDR
(Clinical Dementia Rating), and/or ADAS (Alzheimer’s Disease
Assessment Scale) in AD subjects when pooled with healthy
controls (Löwe et al., 2016; Beheshti et al., 2018; Wrigglesworth
et al., 2021). Brain age gap also correlated with memory,
attention, and language in amnestic MCI subjects and
memory, executive function, and MMSE in MCI subjects
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TABLE 1 Human brain age studies on cognitive functions, mild cognitive impairment (MCI), and/or Alzheimer’s disease (AD).

References Study focus Cohorts No. of subjects
(female)

Mean age ± SD Measurements Primary findings

Franke et al., 2012 To longitudinally
evaluate brain age
changes in MCI and
AD

ADNI 406 (172) 75.43 ± 1.16 T1-weighted MRI Acceleration of brainAGE was
found in AD patients and subjects
who converted to AD within
3 years. An additional increase in
brainAGE was found at 9 years
follow-up. Brain age acceleration
was associated with cognitive
decline and disease severity.

Gaser et al., 2013 To determine if
brainAGE predicts
conversion to AD in
MCI subjects

ADNI 579 (318) 70.63 ± 5.78 T1-weighted MRI BrainAGE predicted conversion of
MCI to AD within 3 years of
follow-up with 81% accuracy. These
predictions were more accurate
than the use of cognitive
measurements and CSF biomarkers.
Each additional brainAGE year was
associated with a 10% increased risk
of developing AD.

Löwe et al., 2016 To examine the
impact of APOE
genotype on brain
aging in AD

ADNI 405 (NA) 75.55 ± 1.15 T1-weighted MRI BrainAGE was significantly
different across controls, MCI, and
AD subjects. BrainAGE correlated
with neuropsychological scores in
APOEe4 carriers and non-carriers.
BrainAGE acceleration was
observed in progressive MCI and
AD subjects and brainAGE
correctly predicted conversion of
MCI to AD even without APOE
genotype.

Boyle et al., 2021 To assess any
association between
brain age gap and
cognitive functions

TILDA; CR/RANN;
Dokuz Eylul
University

1,359 (855) 40.04 ± 17.78 T1-weighted MRI Brain age gap was negatively
correlated with general cognitive
performance (2 cohorts); processing
speed, visual attention, and
cognitive flexibility (3 cohorts);
visual attention and cognitive
flexibility (2 cohorts); semantic
verbal fluency (2 cohorts)

Elliott et al., 2021 To evaluate
brainAGE, pace of
biological aging, and
cognitive decline in
longitudinal data in
middle-aged adults

Dunedin
Longitudinal Study

1,037 (497) 45.15 ± 0.69 T1-weighted MRI;
cognitive function

batteries

Subjects with older brainAGE had
worse cognitive functions in both
childhood and adulthood, along
with accelerated pace of biological
aging, and older facial appearance.

Gautherot et al.,
2021

To evaluate
predicted brain age
difference in relation
to phenotypic
heterogeneity and
severity in
early-onset AD

COMAJ, PPMI,
ADNI

232 (125) 58.99 ± 0.35 3D T1-weighted
MRI

Early-onset AD subjects had higher
brain age differences compared to
controls and non-amnestic subjects
had greater brain age differences
compared to amnestic subjects and
controls. Increases in brain age
differences correlated with disease
severity. Predicted age difference
was predictive of low MMSE and
high CDR in early-onset AD
subjects.% gray matter volume, and
not white matter volume, was
negatively associated with brain age
differences.

(Continued)
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TABLE 1 (Continued)

References Study focus Cohorts No. of subjects
(female)

Mean age ± SD Measurements Primary findings

Gonneaud et al.,
2021

To assess if brain
age, determined
using resting state
functional
connectivity (rsFC),
predicts
chronological age
across life and if
brain age
demonstrates
changes in
preclinical familial
AD, including in
relation to
beta-amyloid
pathology

DIAN,
PREVENT-AD,

CamCAN,
FCP-Cambridge,

ADNI, ICBM

1,340 (557) 46.71 ±6.76 T1-weighted MRI;
Amyloid-beta
(Abeta) PET

Brain aging was accelerated in
subjects with pre-clinical AD; this
association correlated with subjects
with increased amyloid-beta
deposition per PET. In subjects at
risk for sporadic AD, APOEe4
carrier status and Abeta were not
associated with accelerated brain
age, but asymptomatic subjects who
were close to expected age of
symptom onset tended to show
accelerated brain aging.

Huang et al., 2021 To determine if
brain age captures
deviations from
healthy aging in
amnestic MCI
(aMCI) patients and
is associated with
cognitive deficits

BABRI, ADNI 974 (587) 69.95 ± 5.59 T1-weighted MRI aMCI patients had higher brain age
differences than controls and
differences are associated with
cognitive impairment. APOEe4
carriers had elevated brain age
differences compared to
non-carriers. aMCI patients who
were amyloid-positive had higher
brain age differences than
amyloid-negative subjects. Brain
age differences along with AD
markers differentiated progressive
from stable MCI at baseline.

Subramaniapillai
et al., 2021

To evaluate if there
are sex differences
associated with
brainAGE in relation
to AD risk factors in
cognitively healthy
adults

DLBS, SALD,
MMALS,

PREVENT-AD

1,067 (697) 52.02 ± 8.35 T1-weighted MRI Female APOEe4 carriers with
family history of AD had more
advanced brain aging than men. In
this same sub-cohort, higher BMI
was associated with less brain aging
and lower BMI was not. In APOEe4
carriers, engaging in physical
activity was more beneficial to
men’s brain aging.

Millar et al., 2022 To predict brain age
in preclinical AD
using rsFC

Knight ADRC,
WUSTL, DIAN

941 (537) 53.59 ± 18.96 T1-weighted MRI;
Abeta PET

Symptomatic AD subjects had
significantly increased brain age;
preclinical AD subjects and
APOEe4 carriers had decreased
brain age. The latter findings may be
associated with biphasic responses
to AD pathogenesis or may reflect
dysfunction in functional networks
in preclinical AD.

ADNI, Alzheimer’s Disease Neuroimaging Initiative; TILDA, The Irish Longitudinal Study on Aging; CR/RANN, Cognitive Reserve/Reference Ability Neural Network; COMAJ,
Cohorte Malade Alzheimer’s Jeunes; PPMI, Parkinson’s Progression Markers Initiative; DIAN, Dominantly Inherited Alzheimer Network; PREVENT-AD, Presymptomatic Evaluation
of Experimental or Novel Treatments for AD; CamCAN, Cambridge Centre for Ageing and Neuroscience; FCP-Cambridge, 1000-Functional Connectomes Project-Cambridge; ICBM,
International Consortium for Brain Mapping; BABRI, Beijing Aging Brain Rejuvenation Initiative; ADRC, Alzheimer’s Disease Research Center; WUSTL, Washington University in St.
Louis; DLBS, Dallas Lifespan Brain Study; SALD, South Asian Lifespan Dataset; MMALS, Montreal Memory and Aging Lifespan Study.

(Huang et al., 2021). Significant correlation between brainAGE
and MMSE in AD subjects, and between brainAGE and ADAS
in progressive MCI subjects, have also been reported (Franke
et al., 2012; Wrigglesworth et al., 2021). An MCI study also
identified correlation between the brain age gap with CDR

and ADAS at baseline; this correlation retained significance at
follow-up at which point MMSE also demonstrated a correlation
with brain age gap (Gaser et al., 2013; Wrigglesworth et al.,
2021). Analysis of brain age across independent data sets
of healthy adults have further found a negative relationship
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between brain age and cognitive function measures including
general cognitive status, semantic verbal fluency (Franke et al.,
2013), processing speed, and cognitive flexibility (Boyle et al.,
2021). Lastly, in a cohort of healthy 45 year old adults, higher
brainAGE correlated with cognitive decline and changes in IQ
scores since childhood (Elliott et al., 2021).

Additional studies have developed alternative
methodologies for estimating brain age. When using resting-
state functional connectivity to determine brain age, although
low accuracy of age prediction was observed, significantly
increased brain age gaps were found in AD subjects compared
to controls (Millar et al., 2022). Preclinical AD subjects also
unexpectedly demonstrated younger brain ages compared to
controls, although acceleration of brain age has been observed
in preclinical AD (Gonneaud et al., 2021). While further studies
are needed, decreased brain age in preclinical AD subjects may
reflect compensatory responses to preclinical AD pathology or
heterogeneity of brain network changes in aging and AD (Millar
et al., 2022). It will thus be important to determine when, based
on brain aging measures, a preventive intervention should
be administered. Different interventions may have distinct
mechanisms of action that may be more effective at different
stages of disease progression, e.g., some interventions may
ameliorate pathological processes occurring later in disease,
whereas others may prevent progression at earlier stages of
disease. Other studies have also evaluated the use of PET
(positron emission tomography) imaging (Goyal et al., 2019),
cortical thickness (Aycheh et al., 2018), and convolutional
neural networks (Cole et al., 2017), which distinguished brain
age gaps of early-onset (<65 years old) AD subjects from
controls (Gautherot et al., 2021).

Measuring biological age using
DNA methylation profiling

Research into human longevity and “healthspan”—the
average length of healthy years of life—has explored approaches
toward measuring biological age, the level at which the body
is biologically functioning, as compared against the expected
level of functioning per chronological age (Rutledge et al., 2022).
One approach is analysis of DNA methylation changes, e.g.,
cytosine-5 methylation of CpG (cytosine-phosphate-guanine)
dinucleotides, to determine an individual’s “epigenetic clock”
and predicted epigenetic age (DNAm) (Hannum et al., 2013;
Horvath, 2013). These clocks may be used to identify changes
in rates of biological aging and to investigate the impact of
aging interventions (Belsky et al., 2020). The first generation
of epigenetic clocks that were constructed include the Horvath
clock (353 CpG sites) (Horvath, 2013) which was developed
using 51 tissue types, and the Hannum DNAm score (71
CpG sites) (Hannum et al., 2013) which was developed using
leukocytes. These measurements are predictive of chronological

age (Horvath and Raj, 2018) and enables determination of
biological age acceleration based on discrepancy between
chronological age and DNAm age (Hannum et al., 2013;
Horvath, 2013). The next generation of clocks incorporated
clinical features and/or blood-based measurements to enable
DNAm predictions of healthspan and mortality (McCrory
et al., 2021); these include the DNAm PhenoAge (phenotypic
age) score (513 CpG sites) (Levine et al., 2018) and the
GRIMage score (1,030 CpG sites) (Lu et al., 2019). An increase
in epigenetic age in relation to chronological age indicates
age acceleration, which is related to adverse health outcomes
(Fransquet et al., 2019; Oblak et al., 2021) and mortality
(Oblak et al., 2021). Such acceleration has demonstrated
associations with factors such as socio-economic status, gender,
alcohol consumption, smoking status, and others (Ryan et al.,
2020; Oblak et al., 2021). Estimation of age acceleration is
further reflected in the development of a third generation
DNA methylation biomarker, DunedinPACE (Pace of Aging
Calculated from the Epigenome) (Belsky et al., 2022). This
biomarker was constructed using the Dunedin Longitudinal
Study cohort for whom 19 biomarkers of multiple organ systems
(cardiovascular, metabolic, renal, hepatic, immune, periodontal,
and pulmonary) were measured longitudinally in subjects at 26,
32, 38, and 45 years of age. The resulting pace of aging model
from this data was distilled into a single DNA methylation
biomarker that captures cross-system aging-related changes.

Biological age in the context of
cognitive functions and
Alzheimer’s disease

Epigenetic age has been found to be associated with AD
(Table 2). The Horvath clock and PhenoAge score are associated
with neuropathological markers of AD, including diffuse and
neuritic plaques, amyloid load, and neurofibrillary tangles,
based on analysis of AD prefrontal cortex (Levine et al., 2015,
2018). The PhenoAge score was found to also predict all-
cause mortality, age-related morbidity, healthspan, and AD,
along with physical function measures (Levine et al., 2018).
Additionally, the Horvath clock was a significant predictor
of dementia in a late-middle-aged cohort (55–65 years) with
15 years of follow-up (Degerman et al., 2017); and demonstrated
an association with ante-mortem cognitive and memory decline
in AD, although no correlation between AD dementia status
and DNAm was identified (Levine et al., 2015). The absence of
this correlation may reflect the underlying complexity of AD
pathogenesis, which was exemplified by the high level of inter-
individual variability of cognitive deficits in AD subjects (Levine
et al., 2015).

Analysis of epigenetic age acceleration has yielded variable
findings in middle-aged adults and broadly with respect to
dementia risk (Table 2). In studies of middle-aged adults, no
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TABLE 2 Human epigenetic age studies on cognitive functions, dementia, mild cognitive impairment (MCI), and/or Alzheimer’s disease (AD).

References Study focus Cohorts No. of subjects
(female)

Mean age ± SD Analyzed tissue Measurements Primary findings

Levine et al.,
2015

To examine association between
epigenetic age and cognitive
decline and neuropathological
markers of AD

ROS, MAP 700 (445) 81.36 ± 6.59 Dorsolateral
prefrontal cortex
(DLPFC)

DNAm (Horvath);
cognitive test battery;
neuropathological
assessments

Acceleration of epigenetic age was
associated with diffuse and neuritic
plaques, amyloid load, global cognitive
functioning, and episodic and working
memory in AD subjects. Acceleration was
heritable and demonstrates genetic
correlation with diffuse plaques and
possibly working memory.

Degerman et al.,
2017

To evaluate epigenetic age
changes in groups with different
memory trajectories over a
15 year period

Betula Longitudinal
Study

52 (25) 57.90 ± 0.10
(baseline);
72.77 ± 0.06
(follow-up)

Peripheral blood DNAm (Horvath);
episodic memory
tests

DNAm age differed significantly across
high/average/low memory groups with the
high memory group (who maintained
memory functions) showing younger
DNAm age by 2.7–2.8 years. DNAm at
follow-up, and not chronological age, was
a predictor for dementia (AD or vascular
dementia).

Levine et al.,
2018

To develop and assess a new
epigenetic biomarker of aging,
PhenoAge

ROS, MAP 700 (445) 81.36 ± 6.59 DLPFC DNAm (PhenoAge) Age-adjusted PhenoAge was positively
associated with AD neuropathologies
(amyloid load, neuritic plaques,
neurofibrillary tangles). PhenoAge is
higher in AD subjects versus controls.

Beydoun et al.,
2020

To assess sex-specific
relationships of DNAm with
cognitive performance in
middle-aged subjects

HANDLS 199 (95) 56.14 ± 0.36 Blood mononuclear
cells

DNAm (Horvath,
Hannum); cognitive
performance
batteries

Acceleration of DNAm (Hannum) was
related to increased cognitive decline in
men per visual memory and attention
domains.

Sibbett et al.,
2020

To assess if DNAm age
acceleration is associated with
risk of dementia

LBC1921 488 (280) 79.06 ± 0.03 Whole blood DNAm (Horvath,
GrimAge,
PhenoAge);
intelligence and
cognitive test
batteries; APOE
genotype

No association was found between
increased epigenetic age acceleration and
dementia risk.

Grodstein et al.,
2021

To determine if DNAm in cortex
samples from older subjects are
related to clinical and
neuropathological measures of
AD

ROS, MAP 721 (461) 88.00 ± 6.70 DLPFC DNAm (Horvath,
Hannum, PhenoAge,
GrimAge, cortical)

All DNAm clocks were associated with
Abeta load and AD pathological diagnoses
with the cortical clock demonstrating the
strongest associations. The cortical clock
was the only one significantly associated
with mean tangle density and measures of
cognitive decline.

(Continued)
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TABLE 2 (Continued)

References Study focus Cohorts No. of subjects
(female)

Mean age ± SD Analyzed tissue Measurements Primary findings

Grodstein et al.,
2020

To evaluate how blood-based
DNAm measurements compare
to brain tissue-based DNAm in
older subjects and in the context
of AD diagnoses

ROS, MAP (1) 41 (27); (2) 730
(467); (3) 186 (122)

(1) 88.70 ± 4.70; (2)
88.00 ± 6.70; (3)
90.00 ± 6.00

(1) Peripheral blood
CD4 ± cells; (2)
DLPFC; (3) posterior
cingulate cortex

DNAm (Horvath,
Hannum, PhenoAge,
cortical)

All clocks were lower than chronological
age. Epigenetic age was modestly
correlated across blood and DLPFC
samples from the same subjects. When
stratified by sex, AD pathology diagnosis,
and AD clinical diagnosis, correlations
between epigenetic and chronologic ages
were high.

Fransquet et al.,
2021

To determine if acceleration of
epigenetic clocks predicts
dementia risk

ASPREE 160 (92) 77.00 ± 0.85 Peripheral blood DNAm (Horvath,
Hannum, PhenoAge,
GrimAge); cognitive
test battery

Subjects with pre-symptomatic dementia
did not demonstrate accelerated
epigenetic aging compared to controls.

Vaccarino et al.,
2021

To assess if DNAm age
acceleration is associated with
cognitive decline in cognitively
healthy twins

VET registry: ETS 266 twins [133 pairs]
(0)

56.00 ± 3.00 Whole blood
(lymphocytes)

DNAm (Horvath,
Hannum, Pheno
Age, Grim Age);
cognitive test battery

At baseline, there was no relationship
between DNAm acceleration and
cognitive functions. In longitudinal
analyses of intra-twin analyses, each
additional year of age (Horvath) was
related to a 3 and 2.5% decrease in the
executive function and memory function
scores, respectively. Middle-aged men
with higher DNAm relative to their
brother showed a faster rate of cognitive
decline based on 11.5 year follow-up.

Sugden et al.,
2022

To assess blood-based DNA
methylation measures of
biological aging in relation to
cognitive functions and clinical
diagnoses in cognitively normal,
MCI, and AD subjects; to assess if
DNA methylation measures of
biological aging predict dementia
risk

ADNI, FHS ADNI: 649 (288);
FHS: 2,264 (NA)

ADNI: 74.77 ± 7.66;
FHS: NA

ADNI: whole blood;
FHS: buffy coat

DNAm (Horvath,
Hannum, PhenoAge,
GrimAge);
DunedinPACE;
cognitive test
batteries

Only DunedinPACE was associated with
clinical diagnosis of AD and cognitive
impairment in the ADNI cohort.
DunedinPACE was associated with risk of
dementia in the FHS cohort.

ROS, Religious Orders Study; MAP, Rush Memory and Aging Project; VET, Vietnam Era Twin; ETS, Emory Twin Study; ASPREE, ASPirin in Reducing Events in the Elderly; LBC1921, Lothian Birth Cohort 1921; HANDLS, Healthy Aging in Neighborhoods
of Diversity across the Lifespan; ADNI, Alzheimer’s Disease Neuroimaging Initiative; FHS, Framingham Heart Study.
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relationship between epigenetic age, or age acceleration, with
cognitive function was observed (Starnawska et al., 2017; Belsky
et al., 2018; Vaccarino et al., 2021). However, epigenetic age
acceleration was associated with increased cognitive decline in
middle-aged men within visual memory and attention domains
(Beydoun et al., 2020). In terms of dementia risk, in a study
of older adults with pre-symptomatic dementia compared to
controls (mean age 77.0 years), accelerated epigenetic aging
did not predict dementia risk (Fransquet et al., 2021). Another
study also evaluated epigenetic age acceleration in incidental
dementia, and adjusted for multiple covariates including APOE
genotype, age, and sex, but did not observe a relationship
between age acceleration and dementia incidence (Sibbett et al.,
2020). However, these studies did not differentiate between
AD and other types of dementia, which may harbor different
underlying pathological processes, and the former study did
not adjust for APOE genotype. Even so, age acceleration
associated with AD has been observed in an AD mouse
model (Coninx et al., 2020), and the Hannum and PhenoAge
clocks both demonstrated an association between epigenetic age
acceleration and hippocampal volume in AD (Milicic et al.,
2022).

Such variability in findings may be associated with
heterogeneity in sampled populations and aging processes
within and across subjects, and factors associated with
measurement of the epigenetic clock, such as the use of
variable training sets, tissues, and algorithms. The absence
of correlations may also arise from capturing distinct aging
processes. Inter-individual variability in methylation profiles,
based on the Horvath clock, has been observed in those with
the same chronological age and different epigenetic age, as
well as for those with the same chronologic and epigenetic
age (Shahal et al., 2022). In middle-aged adults, Horvath’s
clock also demonstrated variability within separate memory
performance groups, with a lower epigenetic age observed in
subjects who sustained memory functions over time (Degerman
et al., 2017). Horvath’s clock may also exhibit bias in older
individuals (>60 years) and when analyzing different types
of tissues (El Khoury et al., 2019). Interestingly, multiple
studies have observed that older individuals, e.g., >70 years,
demonstrate younger epigenetic ages compared to chronological
age (Degerman et al., 2017; El Khoury et al., 2019; Fransquet
et al., 2021) and that age acceleration slows or reverses in older
subjects (El Khoury et al., 2019; Fransquet et al., 2021).

Recent studies have expanded analysis to human brain
tissue to develop DNAm methods for age prediction. Shireby
et al. (2020) developed an epigenetic clock, DNAmClockCortical
(347 CpG sites), using human cortex DNA methylation data
collected across a wide age range (1–108 years; n = 1,397)
with exclusion of AD subjects. This clock was validated in
an independent human cortex data set, was found to be
associated with lower neuron proportions, and more accurately
predicted age of brain tissue samples compared to the Horvath

and PhenoAge clocks, as well as compared to a third blood
and saliva-based clock (Zhang et al., 2019; Shireby et al.,
2020). In an analysis of both blood and prefrontal cortex
from the same subjects, modest correlation of epigenetic age
(Horvath, Hannum, PhenoAge, and DNAmClockCortical) was
observed with DNAmClockCortical outperforming the other
clocks (Grodstein et al., 2020). However, a separate analysis
found that while DNAmClockCortical showed high predictive
ability, there was under-estimation of DNAm age in subjects
> 60 years of age and a non-linear relationship was found
between DNAm and chronological age (Shireby et al., 2020).

In an independent analysis, Grodstein et al. (2021)
evaluated the performance of multiple epigenetic clocks,
including the Horvath, Hannum, PhenoAge, GrimAge, and
DNAmClockCortical measures, on prefrontal cortex from older
subjects (mean age at death of 88.0 + /6.7 years; n = 721). Within
this cohort, almost half of the participants had a diagnosis of
dementia, including AD dementia. Overall, all clocks, except
for GrimAge, showed significant association with global AD
pathology, encompassing neuritic and diffuse plaque load
and neurofibrillary tangle burden, with DNAmClockCortical
demonstrating the greatest association (P < 0.00001). This
was reflected in the finding that for each standard deviation
increase in DNAmClockCortical age, there was a 90% increased
probability of pathologic AD (odds ratio = 1.91, 95% confidence
interval 1.38, 2.62), compared to a 30% increased probability
when using the Hannum, Horvath, or PhenoAge clocks (no
relation was identified for GrimAge). In analyses of the
epigenetic clocks in relation to clinical and genetic factors,
including dementia and AD dementia diagnoses, cognition
and memory scores, and APOE genotype, it was found that
older epigenetic ages based on the Hannum, Horvath, and
PhenoAge clocks were not associated with increased likelihood
of AD dementia, global cognitive decline over time, or specific
cognitive function declines. In contrast, DNAmClockCortical
was significantly associated with all these measures, and older
epigenetic age was also associated with APOEε4 carrier status.
This study underscores the unique nature of brain tissue when
estimating epigenetic age, how epigenetic clocks may need to be
tailored to disease processes, and that utilizing CpG sites that
are conserved in both brain and other tissues will be important
to explore (Grodstein et al., 2021). It further highlights the need
to consider other biological aging clocks that are not based
on epigenetic phenomena and that utilize other tools such as
transcriptomics, proteomics, and metabolomics (Rutledge et al.,
2022).

Integrating brain and biological
age to assess aging trajectories

Estimation of brain and biological age gaps and acceleration
have shown promise as potential biomarkers for identifying
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changes in aging trajectories and for use in mid-life intervention
studies aimed at preventing MCI and AD. One challenge
with determining biological age in the context of brain
health is sample access. As a result, developing ante-mortem
approaches, such as using peripheral blood, is needed.
Moreover, since AD is also associated with other health
factors that may influence biological aging, the use of
integrated biomarker strategies that consider both brain and
biological ages may be beneficial. One example of implementing
such an approach was the evaluation of brainAge in the
previously described Dunedin Longitudinal Study cohort of
middle-aged subjects (45 years), in combination with the
“pace of aging” biomarker of biological age (Belsky et al.,
2015). This analysis was based on the previously mentioned
19 pace-of-aging biomarkers, and cognitive functions, from
longitudinal data collected between 3 and 45 years of
age for each subject (Elliott et al., 2021). Compared to
individuals of the same chronological age but younger
brainAge, individuals with older brainAge demonstrated
accelerated pace of biological aging between 26 and 45 years
of age; reduced adult cognitive functions; and rapid facial
aging. They also demonstrated decreased childhood cognitive
functions and accelerated cognitive aging. This study provides
evidence that older mid-life brainAge is related to early
life differences and that accelerated aging may accumulate
during life (Elliott et al., 2021). Thus, brain and biological
age measures may capture overlapping aging features and
may be influenced by individual differences that occur
through-out life.

The DunedinPACE biomarker, which reflects aging-
related changes across organ systems, also represents
one solution toward capturing such overlapping features.
DunedinPACE was developed using the DunedinPoAm
(Dunedin[P]lace[o]f[A]ging[m]ethylation) algorithm
which takes advantage of blood-based DNA methylation
patterns that are associated with 19 pace-of-aging
biomarkers (Belsky et al., 2020, 2022). In a cohort
of cognitively normal older adults and subjects with
MCI or AD, a comparison of different generations of
epigenetic age measurements (Horvath and Hannum
clocks, PhenoAge and GrimAge, DunedinPACE),
DunedinPACE was the only measure that was associated
with a diagnosis of AD and worse cognitive function
scores (Sugden et al., 2022). Increased pace-of-aging,
based on DunedinPACE, was also found to be associated
with risk of developing dementia in a separate cohort
(Sugden et al., 2022).

Discussion

Although brain and biological age measures have yet
to be widely adopted into clinical trials, their continued

development and evolution have yielded promising
biomarkers to evaluate in future studies designed to assess
the efficacy of geroprotectors and other interventions for
treating MCI and AD. This lack of adoption is associated
with multiple factors including: (1) evaluation of AD
interventions has historically focused on identifying
changes in disease symptoms including cognitive functions
and/or neuroimaging alterations, rather than divergence
away from healthy aging trajectories.; (2) more research
is needed to determine if measuring this divergence is
both clinically actionable and meaningful.; (3) Studies
are also needed to evaluate if “improving” brain and
biological age biomarkers is associated with actual positive
brain and health changes, and if these changes result in
slowing down the progression of, or preventing, onset
of AD.; (4) particularly for biological age measures,
it remains unclear as to how specific this estimate is
for portraying brain health. For example, can someone
who is neurologically healthy demonstrate an advanced
biological age primarily due to accelerated aging in other
organ systems?; and (5) the cost of collecting additional
measurements in clinical trials may currently be prohibitive,
especially since the clinical utility of brain and biological
ages is still unclear. Even so, as future studies continue
to shed light on these questions and optimize strategies
for measuring brain and biological ages, the creation of
standardized and validated approaches for determining
brain and biological age will ultimately enable us to test if
interventions truly slow aging and if this change further slows
development of, or prevents onset of, MCI, AD, and other
neurodegenerative diseases.

Based on existing brain and biological aging research,
one penultimate phenomenon that has become common
knowledge is the unique nature of aging trajectories
in the brain and body for each person (Vieira et al.,
2017; Aycheh et al., 2018; Elliott et al., 2021) (i.e.,
pronounced inter-individual variation in aging rates).
This is embodied both by the “early system integrity”
concept for which varied aging trajectories in the brain
and body begin at birth and are influenced by genetic,
lifestyle, and environmental factors (Deary, 2012; Elliott
et al., 2021), as well as the geroscience perspective for
which age-related decline occurs across multiple body
systems (Kennedy et al., 2014; Elliott et al., 2021).
Importantly, both brain age and biological age measures
demonstrate non-linear changes at older ages (Huang et al.,
2021), such as in long-lived supercentenarians (Horvath
et al., 2015; Armstrong et al., 2017). The complexity
and heterogeneity of these measurements highlight the
utility of performing single subject (N-of-1) longitudinal
analyses (Lillie et al., 2011; Schork and Goetz, 2017)
to identify important health shifts in aging. Currently,
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biological age estimation can be performed with relative ease
from blood collections, whereas brain age measurements require
neuroimaging solutions. However, further evaluating multi-
system measures such as DunedinPACE and estimating both
brain and biological ages, provide complementary data that may
be valuable for identifying interventional opportunities aimed at
preventing or slowing onset of AD.
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